
Cambridge University Press
978-1-108-47782-6 — River Networks as Ecological Corridors
Andrea Rinaldo , Marino Gatto , Ignacio Rodriguez-Iturbe 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1 Introduction

This introductory chapter outlines the leit-motiv of the book – dendritic substrates for ecological

interactions, chief and foremost river networks in our case, bear important consequences for a number of

processes, from patterns of biodiversity to controls on the spread of waterborne disease. In this chapter

we discuss important methodological aspects of spatially explicit ecology that we use throughout this

book. The image that we have chosen for the heading of this introductory chapter refers to accurate

measurements of the behavior of the alga Euglena gracilis when exposed to controlled light fields. The

superposed trajectories of individuals’ movements, tracked in the Laboratory of Ecohydrology at EPFL,

recall a Jackson Pollock painting. Laboratory studies of mesoscopic-scale movement and reproduction

support theoretical work on directional dispersal in networked environments and give important

bearings for the tenet of this book, as described in this chapter. Image courtesy of Andrea Giometto

1.1 The Context

Although natural ecosystems are characterized by strik-

ing diversity in form and function, they often exhibit deep

structural similarities, at times emerging across scales

of space, time, and organizational complexity [2]. One

angle through which such features could be considered

is via the necessary linkages among macroecological

“laws” [3, 4], often expressing the scale invariance of

ecological patterns of abundance or trait diversity sub-

sumed by algebraic relations (popularly dubbed power

laws), intended both as functional relationships among

ecologically relevant quantities and probability distribu-

tions that characterize their occurrence [5]. Clearly, not

all ecological patterns exhibit scale-invariant properties;

many well-defined characteristic scales exist in a broad

spectrum of ecosystem dynamics. Yet many do, and

there scaling theory offers a powerful tool to make way

for coherent, unified descriptions capturing the essence

of a process. In this chapter we introduce our main

theme (highlighting the role of river networks viewed

as ecological corridors that shape species and population

distributions) in the context of spatially explicit ecologi-

cal modeling.

One example, discussed in this chapter, concerns

species’ numbers and their abundance and size emerging

in relation to broad ecosystem features like the topology

of the substrate for ecological interactions [6–10].
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2 Introduction

We shall observe how emerging features, such as the

distribution of species’ persistence times at observation

sites [9], are controlled more by the nature of the

landscape where interactions occur than by many

detailed features specific to the underlying ecosystem.

A large body of empirical [9, 11] and laboratory [12–16]

evidence is quoted to support such a view. We argue that

dispersal constrained by specific habitat structures is a

major determinant of the observed diversity patterns at

both species and genetic levels [6, 8, 14, 17–20]. This

result, a rather far-reaching one, is well captured by

spatially explicit ecological approaches that we introduce

in this chapter (Sections 1.2 and 1.3).

We contend that, within an ecohydrological frame-

work, river network structures and their embedded hydro-

logic dynamics play an important role [21]. First, they

provide supporting landscapes for ecological processes,

many of which are essential to human life and societies.

Historically, human settlements followed the river

networks for the necessary water resources [22]; river

networks are home to (and provide hierarchical habitat

features for) freshwater fish [6–8] and stream ecology in

general [23, 24] as well as pathways to life-threatening

waterborne human diseases and zoonoses, that is, for

human and animal hosts alike [25]. River networks

may be also seen as meta-ecosystems that affect the

metabolism of terrestrial organic carbon in freshwater

ecosystems, an important part of the global carbon

cycle [23, 26], and the amount of nutrients removed from

streams and reservoirs affected by network structure and

stream ecology therein [24, 27].

A broad research field exists where signatures of the

hydrologic, ecologic, and geomorphologic dynamics of

river basins coexist. This field has proved its importance

by furthering our understanding of spatially explicit

epidemiology and ecology (Chapters 2 and 3). Our

ultimate goal is a comprehensive theory of how dendritic

structures, their associated features, and interactions with

external forcings (chiefly, hydrological stochasticity)

shape emergent properties of various ecosystems. Such

theory would help us address a wide variety of important

questions: from conservation plans for freshwater

ecosystems to optimal control for containing waterborne

disease epidemics to proper inclusion of riparian

systems into large-scale resource management [21, 28].

Understanding and control of biological invasions is also

part of this scheme. While providing what we believe

is a useful review, the novelty of this book lies in

envisioning a research area where hydrology, ecology,

and geomorphology intersect. We feel that important

advances will be made in this area in the near future.

This book is by no means intended to provide closure on

the role of river networks as ecological corridors; rather,

it is a blueprint for future developments. Throughout

its material, in fact, we suggest specific areas or open

problems that appear to us to be particularly promising.

Incorporating ecological dynamics into riverine sys-

tems is not an easy task, given the variety of the taxa

involved, their trophic positions, and the interactions

between the different organisms ranging from competi-

tion to predation to parasitism. Very frequently, if the

aim is to investigate population dynamics, the analysis

is restricted to one or a few species or functional groups.

This is what has been done, for example, when exploring

zebra mussel invasions [29] or cholera dynamics [30].

If instead the aim is to investigate general patterns of

biodiversity, one considers specific taxa or groups usu-

ally sharing the same trophic level, for example, fish

or phytoplankton or riparian vegetation. In such a case,

the main operating ecological interaction is interspecific

competition, either indirect (e.g., exploitation of com-

mon food resources or nutrients) or direct (e.g., via

interference). Available data usually comprise lists of

presence/absence of species, possibly complemented by

their relative abundances, the latter being averaged over

time or simply measured in a given year. If the identity

of the particular species is neglected, it is possible to

derive species-abundance distributions, namely, the num-

ber of species that have a certain abundance or a cer-

tain abundance rank. Static models of species-abundance

relations have long been proposed to achieve that goal

(see, e.g., [31] for an excellent review). Dynamic models

in which the observed relation is obtained as the long-

term equilibrium of a model containing the basic time-

dependent processes that shape community biodiversity

are more recent. The processes shaping the maintenance

of biodiversity are four fold [32]: selection, namely,

the differences in the species fitnesses and therefore in

their competitive ability, which operates in both eco-

logical and evolutionary time; drift, namely, the inher-

ent stochasticity that brings species to extinction and

operates on an ecological timescale only when the size

of the community is rather small; speciation, which

counters drift and selection over evolutionary timescales;

and dispersal, which counters local species extinction

via the movement of organisms across space and acts

on ecological timescales. Caswell’s seminal paper on

the related dynamic models [33] borrowed concepts of

neutral molecular evolution and applied them to the

ecological context. The organic development of a neutral
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1.1 The Context 3

theory of biodiversity was presented in a unified way

only later [34]. The main tenet therein assumes that

selection (i.e., differences in competitive ability, stated

otherwise) is not operating, while drift is countered by

speciation or dispersal. Concerning this last point, it is

important to remark that almost all neutral theories are

spatially implicit in that they consider either an isolated

community whose survival is thus guaranteed by specia-

tion, or a local nonisolated community whose survival is

guaranteed by immigration from a “background” meta-

community. A coherent theory that considers all four

processes in a space-explicit framework distinguishing

between ecological and evolutionary timescales is still

lacking (but see [35] for a notable attempt). This book

aims at partially filling this gap by presenting a series

of models that are always space explicit and suited to

specifically describing the peculiar structure (and thus

connectivity) of river basins. We proceed step by step,

first including the dendritic substrate of river basins

into the neutral paradigm of biodiversity, then breaking

perfect neutrality by adding either space-dependent carry-

ing capacities of local communities or elevational niche

apportionment. Species invasion and disease spread are

subsequently investigated by paying greater attention to

realistic details, though with a species-specific focus and

within fluvial ecological substrates.

To set the context, we start with an example of the

simplest dynamic model of biodiversity, the neutral

one [34], which assumes that all species are competitively

equivalent at a per capita level. It should be noted

that some unrealistic assumptions of the neutral theory

have attracted much criticism [36–38], for example, in

terms of timescales, testability, and robustness; also,

the neutral theory overlooks much species-specific

ecological information, which is required when studying

the dynamics of the system or of a set of particular

species and the interactions among them [39] (Box 1.1).

However, the neutral model has the advantage of letting

us introduce the biodiversity-shaping processes one

by one; in fact, the neutral theory switches off all the

differences between species and all the interactions with

the exception of strong competition for space (both intra-

and interspecies), as we shall recall below. Being focused

on competition for space, it is thus particularly suited to

testing the fundamental differences between the spatial

structure of river basins and 2D isotropic landscapes. Our

first approach thus focuses on the quantitative assessment

of the role of directionality and network structure on eco-

logical organization, in particular on patterns of diversity

distribution. We show, in particular, how the implemen-

tation of the neutral theory behaves in 2D lattices or 2D

space-filling trees imposing directional dispersal [21, 40].

The investigation of the differences between the two

substrates (the common name for the ecosystem land-

scape where interactions occur) proved important to later

developments, chiefly laboratory ones (Section 1.2).

1.1.1 Neutral Theory of Biodiversity

in a Nutshell

The neutral theory of biodiversity (NTB) was originally

proposed [33] in complete analogy with the neutral

theory of molecular evolution [41, 42], which assumes

that gene mutations are selectively neutral, namely, that

new genes are demographically equivalent to old genes,

as they do not confer any advantage in terms of decreased

mortality and/or increased fertility. The main advocate

of NTB was Hubbell [34, 43], who greatly developed

these ideas starting from his work on tropical forests,

which typically display very high biodiversity. In NTB,

genes are replaced by species, which all have the same

demographic fitness. Mutations are replaced by the occur-

rence of new species. It is worth noting that in genetics,

neutrality is rooted in specific biochemical mechanisms,

for example, that different sequences of three nucleotides

(codons) may code for the same amino acid. In ecology,

instead, we do know that all species are different and have

differential ecological functions and abilities. Moreover,

in genetics, neutral theory is not advocated as the theory

that can explain the whole of genetic diversity but as a the-

ory that can explain the evolution of specific genes. Even

the neutralists do not deny the importance of Darwinian

selection in the origin of adaptations, although they think

that most of the molecular diversity can be explained by

random genetic drift, that is, the neutral model. In any

case, neutral models in ecology may be seen as a limit

approximation. The theory might hold when dealing

with biodiversity within communities characterized by

species with similar traits, for instance, those belonging

to the same functional group or, more generally, the same

guild. In these cases, in fact, we may conceive that the

differences in demographic rates are not very large.

Neutral models and the pertaining theory have been

fully developed by statisticians and population geneti-

cists [41, 44–46] and blended into a coherent theory of

biodiversity by Hubbell [34]. Thus, all the basic results

of NTB can be found in the population genetics liter-

ature: just replace genotypes with species and mutants

with new species. Neutral models are not space explicit

and are traditionally phrased according to two possible

www.cambridge.org/9781108477826
www.cambridge.org


Cambridge University Press
978-1-108-47782-6 — River Networks as Ecological Corridors
Andrea Rinaldo , Marino Gatto , Ignacio Rodriguez-Iturbe 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction

paradigms: (1) biodiversity is studied at the regional

scale, and the arrival of new species is due to immigration

from outside the region; (2) biodiversity is analyzed at

the continental level, and a new species can only arise

via speciation. Clearly the two paradigms imply not only

a different spatial scale but also a different timescale,

because speciation is much rarer than the arrival of a

new species from the surrounding regions, especially if

the region is not very large. The extension of NTB to a

space-explicit paradigm in riverine networks is actually

one of the goals of the present book. In this section, we

summarize the results of the space-implicit approach.

In NTB, abundances of all species fluctuate at random

according to a birth–death stochastic process. The pro-

cess may obey different rules (see below), but the most

popular is the one in which the total number of individu-

als (no matter of what species) is constant across gener-

ations and equal to N . We might think of this situation

as the one arising when considering territorial organisms,

each occupying a fixed portion of the landscape, which

is made up of N territories. At each time step a ran-

domly chosen individual dies and is replaced by another

individual, which may be the progeny of individuals

belonging to a species already present in the community

or an individual of a new species. It is often stated that

NTB implies no interaction between species. This is not

completely true: competition (of the so-called contest

type) is actually quite strong, because each individual

excludes any other individual from its own territory. How-

ever, neutrality is due to the assumption that intraspecific

competition and interspecific competition have the same

strength: no species has any advantage over another

species in the process of replacing a dead individual.

The assumption of a constant number of individu-

als allows the derivation of the dynamics of a simple

biodiversity index in the following manner (reported in

[36]). Let f t be the probability at generation t that two

individuals of the community belong to the same species.

We assume that the N individuals, before dying, produce

progeny. The frequency of the progeny of each parent

is 1/N because we assume neutrality, namely, that the

fertility of each individual is the same independently

of the species. Then each territory will be occupied at

generation t + 1 by one individual chosen at random

among all the progenies. However, with probability γ,

this individual may be replaced by an individual of a

new species (this might occur because of either mutation

or immigration). Now, pick two individuals at random

at generation t + 1. If they are the progeny of the same

parent in the previous generation (which occurs with

probability 1/N), then the probability that they belong to

the same species is 1. If they are the progeny of different

parents (which occurs with probability 1−1/N), then the

probability that they are of the same species is f t . Also,

with probability (1− γ)2, neither of the two individuals

picked at random belongs to a new species. Therefore,

one finally obtains

f t+1 =
(

1−γ
)2

(

1

N
+

(

1−
1

N

)

ft

)

. (1.1)

In the long run, f t will approach the following equilib-

rium:

f̄ =

(

1−γ
)2

N − (N −1)
(

1−γ
)2
,

which, by assuming that γ is very small, N is very large,

and Nγ is finite, is well approximated by

f̄ ≈
1

1+2Nγ
. (1.2)

The quantity 2Nγ is termed the fundamental biodiver-

sity number θ. In fact, it is related to one of the most used

biodiversity indices, Simpson’s diversity index H. This

is defined as the probability that two individuals of the

same community belong to different species [47]. Thus,

at equilibrium, Simpson’s index of a neutral community

is given by

H = 1− f̄ =
2Nγ

1+2Nγ
=

θ

1+ θ
.

Most of the discussion around NTB is, however,

focused not on a single biodiversity index but rather

on the whole distribution of abundances defined as

the distribution of the number of species n j (t) in the

ecological community containing exactly j individuals

at time t. As the abundances vary according to a birth–

death stochastic process, n j (t) varies stochastically, of

course. Under appropriate conditions, the values of n j (t)

converge (in distribution) to a steady state for t → ∞.

This is termed the expected distribution of species

abundance, say, φ j , often used to fit empirical data.

One can then compute the average of n j , E
[
n j

]
. Of

course, data come from a sample of the community that

does not presumably include all the N individuals of the

community and all the S species. The assumption is made

that the community has reached equilibrium, and the

sample is so large as to justify the fact that the sampled

n j is close to the theoretical expected value of n j , namely,

φ j (but see [46] for how to deal with small samples).

It is often stated that NTB implies that φ j is

the logarithmic series proposed by [48], so that the
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1.1 The Context 5

logarithmic series would be a sort of fingerprint of

neutrality. However, this claim is not true in general.

Three remarks are worthwhile before briefly going

into the details: (1) depending on the rules of the

stochastic process that governs the NTB model, different

functions for φ j can be obtained, one of which is the

logseries; (2) numerous different mechanisms, other

than NTB, can lead to the logseries distribution, and

therefore, as clearly stated by [31], “an empirical species-

abundance distribution cannot by itself give evidence on

how to choose among them;” (3) many empirical

species-abundance distributions have been examined

since the 1940s, and, depending on the dataset, some-

times the best fit was the lognormal distribution, some-

times the geometric series, sometimes the logseries,

and so on [47]. Therefore, researchers should refrain

from using the logseries as a yardstick for neutral

theory.

Let us now discuss how φ j can be obtained. A key

paper [45] set the problem within a wide context. The

paper considers a model with Malthusian demography

and a model in which the total size of the community

is constant and equal to N . Here, we illustrate and

discuss both.

Box 1.1 Deriving Species Abundance Distributions from Malthusian Models

First, consider the case of a Malthusian demography with constant birthrate β, constant death rate

µ, and constant rate of demographic increase r = β− µ. Neutrality implies that birth and death rates

are equal across species. Each new species arises according to a Poisson process, with a constant

arrival rate ν. The times between arrivals are independent, exponentially distributed with mean 1/ν.

The only possible transitions of a certain species abundance j ( j = 1,2, ..) in an element of time dt

are from j to j −1, j or j + 1, and the transition rules are as follows: from j to j −1 with probability

jµdt, from j to j + 1 with probability j βdt, from j to j with probability 1− j (β + µ)dt. If j = 0

(which is true for a candidate new species), the only possible transitions in time dt are from 0 to

0 or 1, the transition probabilities being as follows: from 0 to 1 with probability jνdt, from 0 to 0

with probability 1− jνdt. It should be clear that in Karlin and McGregor’s approach the number of

species S(t) is not fixed a priori because there is a continuous turnover of species due to migration

or speciation. This should be contrasted with, for example, the somewhat simpler approach of [49],

in which the number of species S is fixed a priori. Each of the S species can become extinct and then

start again owing to migration or speciation.

It is useful to recapitulate some properties of the simple birth–death Malthusian process [44]. Let

Pj (t) be the probability that a population started with one individual at time 0 contains j individuals

at time t. Then Pj (t) is a geometric series with a modified zero term:

P0(t) =
µ(exp(rt)−1)
β exp(rt)−µ

Pj (t) = (1−P0(t)) (1−u(t)) u(t) j−1, with u(t) =
β(exp(rt)−1)
β exp(rt)−µ

.
(1.3)

Note that P0(t) is nothing but the probability of extinction at time t. By letting t go to∞, one obtains

that eventual extinction is certain if β ≤ µ, while eventual extinction occurs with probability µ/β if

β > µ. It is easy to prove that the expected value of the abundance j varies as exp(rt). For this reason,

the case β > µ is discarded because the expected value of the abundance of each species increases

exponentially with time, which is clearly quite unrealistic. As for the average time to extinction for

β ≤ µ, it is easy to prove (by integrating over time 1− P0(t), which is the probability that the time

to extinction is less than t) that it is given by

text =
1

β
(ln µ− ln (µ− β)) . (1.4)

Therefore, the time to extinction is infinite if β = µ,r = 0.
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Box 1.1 Continued

As the expected value of the abundance of each species is constant if β = µ,r = 0, this first case

seemed a good starting point for [45] and [46] as well as for [33]. Actually, it is possible to prove

[45, 46] that in this case the number of species n j (t) containing exactly j individuals at time t has a

Poisson distribution with expected value given by

E
[
n j (t)

]
=

ν

j β

(

βt

1+ βt

) j

. (1.5)

This is exactly the expected distribution φ j of species abundance at time t and is a logseries of

the kind advocated by [48]: αλ j/ j, provided that one sets α = ν/β and λ =
βt

1+βt
. Problems arise,

however: (1) the mean of the total size N of the community (sum of the abundances of all the

species) can be shown to increase linearly with time ( E[N (t)]= νt); (2) the mean of the total number

of species S increases logarithmically with time ( E[S(t)] = ν
β

ln(1+ βt)). This seems to be a sort of

paradox, given that the probability of extinction is 1 for all species, but it can be explained as follows:

the expected number of species grows to infinity because the average lifetime of each species is

infinite even if each species becomes ultimately extinct. Therefore, the case r = 0 of the Malthusian

model describes an ever-increasing community in both the total number of individuals and the total

number of species, which is somewhat unrealistic. Also, if we let t→∞ in expression (1.5), we get

for the species-abundance distribution

φ j =
ν

j β
= α/ j,

that is, a hyperbolic distribution with just one parameter, which would be unable to fit most observed

species-abundance distributions. The way out, advocated by [46] and [33], is to calculate the species-

abundance distribution conditional on a fixed size N of the community; [46] has proved that it is

given by

E
[
n j |N

]
=

ν

β j

(

ν/β+N − j −1

N − j

) / (

ν/β+N −1

N

)

. (1.6)

Actually, it is this functional form and not the logseries that has been used by [33] to compare the

patterns of species abundance generated by NTB against those generated by other traditional models,

such as the broken-stick and the lognormal models.

The second case considered for the Malthusian model is β < µ. If it is so, extinction is still certain,

but the average extinction time text is finite and given by Equation (1.4):

text = −
1

β
ln

(

1−
β

µ

)

,

in which β/µ < 1. One should note that text is also the average lifetime of each species. Thus, it is

easy to understand [45] that the average number of species E[S(t)] will converge to an equilibrium

E[S], which is simply given by the product of the arrival rate ν times the average lifetime of each

species text . Therefore, in this case, the mean number of species of the community is finite and

given by

E[S] = −
ν

β
ln

(

1−
β

µ

)

.
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Box 1.1 Continued

We can now somehow suspect that the logseries is involved because the right-hand side of this

equation is nothing but the sum of the following logarithmic series:

∞
∑

j=1

ν

β j

(

β

µ

) j

.

In fact, [45] have proved that the probability distribution of n j (t) converges for t→∞ to a Poisson

distribution whose expected value is

E
[
n j

]
= ν

∞
∫

0

Pj (t)dt .

After some boring calculations, based on the previous formulas for Pj (t) (Equation (1.3)), we obtain

E
[
n j

]
= φ j =

ν

β j

(

β

µ

) j

. (1.7)

Thus the logseries is the expected value of the species-abundance distribution. Also, one can easily

obtain the average size of the community,

E [N] =

∞
∑

j=1

j
ν

β j

(

β

µ

) j

=

ν

β

ν
β

1− ν
β

,

which closes our derivations.

Karlin and McGregor’s approach [45] allows the cal-

culation of the expected number of species (which are

not always the same but have a continuous turnover) on

the basis of the three fundamental rates: birth β, death

µ, arrival or speciation ν (Equation (1.7)). Actually, the

species-abundance distribution, the number of species,

and the total number of individuals in the community

depend on just two parameters: the ratios ν/β and β/µ.

The logseries has also been obtained by a slightly differ-

ent model [49]. They have assumed that there exists a

given number S of potential species in the community.

Each of these species may become extinct according to

the above described birth–death process. Once extinct, it

may be replaced by another species at a rate of occur-

rence ν0. Therefore, the rate of arrival (sensu [45]) of a

new species (no matter which) in the whole community

is ν0SP0, where P0 is the probability of extinction at

equilibrium (which may be equated to the fraction of the

S species that are extinct at equilibrium). As a matter of

fact, the logseries obtained by [49] coincides with that

obtained by [45], provided one sets ν = ν0SP0.

The problem with this model (in both versions, by

[45, 49]) is that it relies on β/µ being a number smaller

than 1. However, β/µ is nothing but the average size

of the progeny produced by one parent in the whole

lifetime, namely, the fitness of each species (remember

that because of neutrality, all the species have the same

fitness). This immediately points out the weakness of the

Malthusian model with β < µ. Although the results are

very elegant and lead to the logseries distribution, the

theory relies on assuming that the ecological community

consists of species that are all unfit. Such a community

would be easily invaded by a new species with a fitness

even slightly larger than unity at low density. As a

matter of fact, a more realistic NTB model would require

consideration of a community of non-Malthusian species

exhibiting some sort of density dependence. Fitness can

be assumed to be larger than unity for low abundance,

declining with increasing abundance and smaller than

unity above a carrying capacity. This would guarantee

that all the species are equally fit, they do not increase or

decrease disproportionately, and their time to extinction

is finite (see, e.g., [50]), not infinite as in the Malthusian

models with β ≥ µ. Obviously, the resulting expected

value of the species-abundance distribution is no longer

a logseries if one assumes density dependence. As far
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as we know, there is no simple function describing

the distribution even for prototypical models of density

dependence, such as the logistic model. However, this

does not imply that the NTB assumption cannot be used.

Very simply, expected distributions can be derived by

extensive simulation of density-dependent models and

compared with data.

The model that is most used in NTB, however, is the

one in which the total community size is constant. This

approach was pioneered by [45]. They basically assume

a mechanism similar to the one that was illustrated with

reference to Equation (1.1). However, they consider time

units that are so small that at most one event can take

place: one of the N individuals dies at random and

is replaced by one individual of the same species or

by one individual of another species with probability

proportional to the relative abundance of each species.

Then, with probability ρ, the replacing individual may

mutate into another species. In practice, if n j (t) = Nj,

j = 1,2, . . .r,
r
∑

j=1
Nj = N (r being the number of possible

species) and the transition is from species k to species i,

then nk (t + 1) = Nk − 1,ni (t + 1) = Ni + 1. The species

i may be one of the species already present in the

community or a new species. Obviously, k may coincide

with i, and in this case, nothing changes after one time

unit. The number of species r is considered to be very

large because it includes not only the species that are actu-

ally present in the community but also those that might

arise because of speciation or immigration (of course,

these latter species are characterized by n j (t) = 0 and

n j (t + 1) = 1 if t is the time of speciation immigration).

Karlin and McGregor [45] have found that for t → ∞

and r →∞ the expected species abundance distribution

φ j = E
[
n j

]
, j ≥ 1 is given by

φ j =
1

j

N ρ

1− ρ
�
�

N
1−ρ
− j −1

N − j
�
�
/�
�

N
1−ρ
−1

N
�
�. (1.8)

It is interesting to observe that Equation (1.8) formally

coincides with Equation (1.6) of Box 1.1 if one sets

ν/β = ρN/(1− ρ). Note that Equation (1.6) was obtained

from a time-continuous stochastic process in which ν is

the instantaneous rate of new species arrival in the whole

community. Since 1/β = 1/µ is the average generation

time of each species, the quantity ν/β is the average

number of new species arriving in the community per

generation. Instead, Equation (1.8) derives from a time-

discrete stochastic model in which ρ is the speciation

probability per individual in a time unit. In any case,

expressions (1.6) and (1.8) are equivalent in terms of data

fitting because they have the same form as a function of

the abundance j.

Using Equation (1.8) [45], one obtains the probability

that two individuals are of the same species. It turns

out to be given by 1/(1 + N ρ − ρ), which for small

speciation probability ρ, large N , and finite N ρ is very

well approximated by

f̄ =
1

1+N ρ
.

This expression is the same as Equation (1.2), provided

one sets 2γ = ρ. The factor 2 is simply due to the fact

that Equation (1.1) was obtained by assuming that two

individuals may mutate at the same time, while [45]

assume that at most one individual can mutate in each

time unit.

1.2 Neutral Individual-Based Models on

Networks (and Beyond)

One example, and an early suggestion that was

instrumental in directing our thinking, stems from an

application of the neutral model of biodiversity [34].

It deals with the quantitative assessment of the role

of directionality and network structure on ecological

organization. A word of caution is in order, as the

exercise that we present here might be somewhat

misleading. In fact, many factors other than network

configuration and transport anisotropy are operating in

nature, playing different but obviously relevant roles.

However, inclusion of all factors, no matter how detailed

and realistic, hardly seemed a good starting point for the

pursuit of any generalizable signatures like the one we

are taking on at this point [21]. Here, in fact, we first show

results from a baseline, rather abstract theoretical model

that focuses on the fundamental differences between the

topology of river basins and 2D landscapes. The neutral

theory offers the elements for a basic dynamics capable of

maintaining biodiversity. Despite its bold (and in many

cases unrealistic) assumptions, the neutral model has

produced many important results, even after having been

tested extensively against empirical data – many features

shown by real systems do not require a more complicated

model [51]. Patterns predicted by the neutral theory can

also arise from nonneutral interspecific dynamics in the

presence of some stochasticity and high species richness,

thus widening the range of applicability of the theory.

Despite its success, it is crucial to recognize that the

neutral theory overlooks much ecological information,
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1.2 Neutral Individual-Based Models on Networks (and Beyond) 9

for example, species-specific information that is required

when studying the dynamics of the system or of particular

species and the interactions among them [39]. In

any event, employing the neutral theory is generally

justified as long as steady state biodiversity patterns

are addressed (but see [39]). Here, we show how the

implementation of the neutral theory behaves in 2D

lattices or 2D space-filling trees imposing directional

dispersal [21, 40]. Two different frameworks, namely, an

individual-based model and a metacommunity model, are

introduced to that end. Contact models are introduced

much later, in Section 3.2.3.

Box 1.2 Species Diversity in Neutral Metacommunities

The main tenet of the unified neutral theory of biodiversity [34] assumes that selection, in this context

the difference in competitive ability of species, is turned off in the making of species diversity,

and – a bold statement indeed – that all species’ vital rates are equivalent at a per capita level. The

main ecosystem-forming processes are therefore simply drift, countered by speciation or dispersal.

It should be noted here that originally all neutral theories were meant to be spatially implicit, in that

they considered isolated communities whose survival depended on speciation, or a local connected

community, whose survival was guaranteed by immigration from some background metacommunity

providing immigration rates and their composition.

The neutral theory of biodiversity [34], with its minimal set of assumptions and parameters,

has been the subject of a lively debate that peaked about 10 years ago, proving both influential

[49, 51–53] and controversial [54–57] as an explanation of biodiversity patterns. Here, we are

interested in testing and exploiting the theory (as in [8]) across ecosystems, not simply in two-

dimensional landscapes or in mean-field contexts, to which other spatial aspects contribute only

weakly [34, 49, 52, 57, 58]. This book, in fact, focuses on the search for implications of hydrologic

controls placed by river networks functioning as ecological corridors, a highly constraining milieu

where landscape effects matter decisively.

The overall context that we need to explore here shares the concerns of the early biogeographers:

what conditions are to be met for a species to occupy a site and maintain a population there? In

this context, three factors matter: dispersal ability, habitat suitability, and susceptibility to biotic

filtering [59]. In words, a species must be capable to reach the site by accessing the region and

disperse therein; the climatic drivers and, more generally, the abiotic environmental conditions must

be ecophysiologically suitable for the species; and the biotic environment, the whole of the relevant

biological interactions, must meet a minimum of species’ needs. Dispersal capacity from areas where

the species is endemic (or simply exists) is key. Its nature includes the biogeographic natural history

of the species embedding all factors limiting its spread from the places where they first originated.

This, naturally, includes barriers to migration, the roles of biotic and abiotic dispersal vectors, and

the suitability of the landing site from all biological viewpoints [59] – in brief, all it takes in terms of

the environmental conditions that a species needs to settle, grow, and maintain a viable population.

If landscape effects are key, lesser importance lies in biotic interactions with other organisms, either

favorable (like mutualism and commensalism) or unfavorable (like predation and competition), in

shaping local communities. Biotic interactions may or may not include environmental constraints on

communities, such as the concept that whole communities (and ecosystems thereof) may experience

species composition limited by environmental carrying capacities or defining roles of ecosystem

engineer species that manipulate their environment favoring other species [59]. Pinpointing the

relative importance of the various effects is case specific and primarily requires examining ecological

patterns along geographic and environmental gradients (Sections 2.2, 2.4, and 2.5). Moreover, the
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Box 1.2 Continued

examination of specific population dynamics (Chapter 3) will explore whether individual populations

of a species may persist in suboptimal conditions and, in such a case, what factors affect the intrinsic

vital rates (say, growth and death rates), determining ultimately their steady state abundances.

Fluctuations induced by population dynamics that prompt environmentally suitable sites to become

unoccupied may also be a factor, ofter blurring a clear-cut interpretation of species–environment

relations [59]. Despite stochastic fluctuations, however, species distributions in space are most often

expected to respond to major features, perhaps not simply local environmental determinism [59], that

control their potential and realized ecological niches (Box 2.9). Cases where this does not happen

would be such that fluctuations in demography and the strength of biotic interactions are so large

that species–environment relations would be clouded. While this is obviously not excluded in real

ecosystems, the general aim of this book prevents inclusive efforts in that direction.

The threefold influence of dispersal, niche, and biotic interactions shapes species distributions

in space (say, within specific dendritic and dendrite-derived landscapes in our case). It may be

deconstructed in many cases of interest, viewing their components as separate entities treated like

specific boundary conditions [59], and yet suitable conditions for a species lie at the intersection

of the ensemble of factors that determine the individual suitabilities. Also, one must consider that

obviously a species may not colonize a site for reasons other the the ones accounted for above. In

particular, human disturbances, so as to say, may prevent the establishment of virtually any species,

inasmuch as – accepting, for example, the idea that the size of the largest species surviving in an

ecosystem is related to the ecosystem’s size [60, 61] – habitat fragmentation has a long-term impact

that may have long-established endemic species go locally extinct. However, once locally extinct,

one may assess whether the species might be capable of recolonizing the same site once again,

possibly because of dispersal [34] (see also Section 1.3).

How and where species have emerged from evolutionary processes may explain patterns of

biodiversity at any scale. Speciation causes, whether allopatric (where geographic barriers split the

range of ancestor species disrupting gene flow between the separated populations and ultimately

leading to distinct species or subspecies) or sympatric (where divergence is due to ecological

specialization), are known to be numerous (see, e.g., [62]). For the limited purposes of this book,

it is sufficient to acknowledge that geographic or ecological speciation processes have occurred,

and continue to occur at a slow pace (Section 1.3), because our focus is firmly placed on how

speciation may shape future patterns of species distribution in complex landscapes shaped (or

constituted) by fluvial processes. Rather than questioning whether (and how) species resulting from

specific speciation processes would result in more/less specialized features, we shall sample a large

number of neutral traits on noninteracting species and observe landscape effects under the null

model provided by the neutral theory of biodiversity – with a few nonneutral ingredients at times

selectively added to zoom in on the network perspective we pursue. It is also a matter of scale,

of course. At continental scales, biogeographical history and dispersal limitation predominate, and

environmental suitability plays secondary roles in explaining the geography of a focus species [59].

This perspective will have to be extended when studying biological invasions in networked

environments (Chapter 3), because the effects of niche changes (Box 2.9) between native and

invaded ranges may pitch in loudly when considering whether biological invasions are at all

possible.
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