

Index

abiotic processing, stages of, 467-468 Archean, 283 abiotic reactions, 430, 457, 467 Ashadze, 494 abiotic sulfurization, 483-484 asthenospheric mantle, 70-72, 78-80 atmosphere loss, MO and, 17-19 abyssal peridotite, 455-456 accretionary cycle, 277 atmospheric recycling, of sulfur, 100-102 ATP, 588 accumulation curve, 631 acetate, in ultramafic systems, 495 Aulbach, S., 68 acetogenesis, 483 axial diffuse vents active volcanoes basalts and, 492 emissions from, 194-197, 216 oceanic rocky subsurface and, 492 temporal variability of, 208-209 axial high temperature adiabatic mantle, 166-167 basalts, 488-492 affinity, 590 oceanic rocky subsurface and, 488-492 aldehyde disproportionation reactions, 433-434 Azores, 240-242 aldol reactions, 434 Alfred P. Sloan Foundation, 1 Bagana, 217 aliphatic chains, 462 Baltic Sea, 527-528 alkalinity, cycle of, biological evolution and, 296 basalts. See also mid-ocean ridge-derived basalts alkanes, 424, 426-427 axial diffuse vents and, 492 alkenes, 424 axial high temperature, 488-492 alloy-silicate melt partitioning, 29 carbon content of, 4-5 coefficients, 16–17 D_c alloy/silicate and, 25 carbon dioxide and, 144 ocean islands and, 144 hydrogen and, 25-26 benzaldehyde, 433-434 of LEVEs, 20-21 benzene, 426 LEVEs and, 25 Berner's model, 336 American-Antarctic Ridge, 255-257 bicarbonate ions, 19 anabolic reactions, 607-608 bioavailability, of OC, 505 anaerobic methane-oxidizing archaea (ANME), biofilm-based metabolisms, 504 530-531, 534 biogeochemical cycling, 480 anhydrous MORBs, 135-136 reaction rate controls, 505 animation, as substitution reaction, 430-433 biogeochemistry, of deep life, 561-562 ANME. See anaerobic methane-oxidizing archaea biological evolution, 299-300 Anthropocene, 627 alkalinity, cycle of and, 296 antigorite, 285-286 dioxygen cycle and, 294-296 aqueous electrolytes, 368 subduction and, 294 in confined liquids, 372 biomass, 587-588 aquifers, 191-192 deep biosphere, 588 energy limits and, 588 aragonite, 74, 137 archaea bioorthogonal non-canonical amino tagging (BONCAT), 563 anaerobic methane-oxidizing, 530-531, 534 in subsurface biome, 533-534 biotic recycling, of sulfur, 100-102

653

654 Index

bipartite networks, 642-643 in basalts, 4-5 Birch-Murnaghan equation of state (BMEOS), 171 baseline, 347-348 Birch's law, 50 in BSE, 10-14, 25-26 BMEOS. See Birch-Murnaghan equation of state in chondritic building blocks, 12 Boltzmann constants, 395 across CMB, 55-56 BONCAT. See bioorthogonal non-canonical amino in continental lithosphere, 70-72 of continental subsurface, 500-501 tagging Brazilian diamonds, 103 in convecting mantle, 70-72, 254-257 bridgmanite, 75-76, 90-91 in core formation, 20 in core over time, 55-56 Brillouin scattering, 77 Brønsted acid catalysis, 422 in core-mantle segregation, 24-25 BSE. See Bulk Silicate Earth defining, 40 bulk rock investigations, 449-451 dissolved inorganic, 480-489 bulk silicate, 112 distribution of, 80-81, 276 Bulk Silicate Earth (BSE), 322, 325 on Earth, 4-5 in E-chondrites, 11-12 carbon in, 10-14, 25-26 C/H ratio of, 14, 19 estimates of abundance of, 66-67 chondrites, 6-7 in exogenic systems, 347-348 C/N ratios of, 14, 19 extraction of, from mantle, 67-73 C/S ratio of 16-18 feedbacks, 299 D/H ratio of, 7-9 in Fe(Ni) alloys, 72 equilibrium accretion and budget of, 19-21 forms of, 11-14, 66 fractionation of, 18-19 hydrogen in, 10-12 LEVE budgets of, 14-19, 25-26 inheritance of, in mantle, 68 magma ocean differentiation and budget of, 19-21 isotopic composition of, 8-9 nitrogen in, 10-12 as light element in core, 27-28, 40, 55 S/N ratio of, 16-18 in mantle, 238 sulfur in, 10-12 mantle melting and, 257-262 volatile budget of, 19-21 melting points and, 53-54 Bureau, H., on diamond formation, 106-108 in meteorites, 11-14 mineral ecology, 630-633 CaCO₃, 56. See also carbonates movement of, 1 outgassed from volcanoes, 211-215 deep carbon stored as, 74 in dolomite, 73-74 oxidation of, 418-419 calcite, 74 oxidized form, 70-72 calcium silicate perovskite, 112 in partial melting, 258 Ti-poor, 112-113 perturbations in flux of, 277-278 Ti-rich, 112-113 polymorphs, 73-74 ratios, 11-14 emissions and, 201-206, 209 in redox reactions, 80-81 temporal variability of, 209 reduced form, 70-72 unrest in, 203-204 residence time of, 277-278 Calvin-Benson-Bassham cycle, 564-565 sedimentary, 133 CaMg(CO₃), 73-74. See also carbonates solidus and, 264 Canary Islands, 143, 149-150, 240-242 solubility, 18, 20-21 Candidate Phyla Radiations, 556-565 sources of, 211-215 Cannizzaro reactions, 433-434 speciation of, from mantle, 67-73 Cape Vede, 149-150 stability of, 70-72 carbide, 29, 461 in subconduction zones, 133 atomic scale structure of, 47 temporal distribution of, 628-629 crystalline, 47 in ultramafic systems, 494 in Fe(Ni) alloys, 72 in ureilites, 16 graphite-Fe, 8 volcanic, 215 carbon budgets, 4-5 molten iron, 47 carbide inner core model, 41-42 constraints on, 56-57 carbon. See also deep carbon; organic carbon of core, 40-41 abundance, 11-14 from core accretion, 66-67 abundance of, in mantle, 67-73 from core-mantle differentiation, 66-67

ingassing, 66	primary magma, 253
of Moon, 8–11	saturation, 238–264
outgassing, 66	solubility of, 238
volcanic carbon and, 216–217	volcanic, 190
carbon cycle, 57	carbon distribution, in core formation, 22–25
cadence of, 278–279	carbon dynamics, at subduction/collision transition,
	292–293
carbon deposition centers and, 276–278 carbonate melts in, 129	carbon flux, 150–151, 339–341
components of, 277	carbonate precipitation and, 331–333
continental, 499	carbonate weathering and, 330–331
	metamorphic inputs, 329–330
contingency at, 299–300 deep water and, 105–106	OC weathering and, 330–331
diamonds and, 94–95	outputs, 331–334
longevity of, 278–279, 299	silicate weathering and, 331–333
long-term, 276–278	subduction zones and, 281
mantle transition zone and, 102–103	
non-steady-state dynamic of, 299	volcanic inputs, 328–329 Carbon in Earth, 1
organic chemistry of, 416–420, 438–439	
pace of, 278–279	carbon isotopes
prediction of, 280–281	composition, 103 of diamonds, 103
pulse of, 278–279, 292, 299	in fluid-buffered systems, 97
self-stabilizing feedbacks, 299	fractionation, 97
subduction, 276	of PDAs, 109
subduction, 276 subduction zones and, 416–417	redox-neutral formation and, 96–98
supercontinent assembly and, 625–626	carbon neutrality, of subduction zones, 283–284
surface processes and, 279–283	carbon phase
tectonic, 279, 293–295	diagram, 595
carbon deposition centers, carbon cycle and, 276–278	•
carbon dioxide, 455–456. See also emissions, carbon	oxygen fugacity of, 76–77 carbon reservoirs, 323–324
dioxide	deep, 74–75
	sizes of, 41
atmospheric plumes of, 188–189 basalts and, 144	carbon solubility, 18
bulk, 135–136	in magmas, 67–68
	subduction zone and, 284–285
decadal averages of, 196–197 degassing, 238–264	carbon speciation
· ·	in MO, 22
diffuse emissions, 191–192, 201–206 direct measurement of, 191	oxy-thermobarometry and, 76–77
	carbon transformation pathways, in subduction zones,
dissolution, 21–22	277–278
eclogites and, 146–147	
experimental containers and, 457–458 during explosive eruptions, 197–198	carbon transport, 133 in cratonic lithospheric mantle, 142
flux, 195–196, 242–243, 250	under nanoconfinement, 363–364
global emission rates of, 193–194	in subduction zone, 289
groundwater and, 191–192	carbonaceous chondrites, LEVEs in, 15–29
incipient melting and, 165–166, 170–171, 177	carbonaceous matter (CM)
indirect measurement of, 190–191	abiotic formation of, 466–468
in magmas, 238–264	accumulation of, 466
as magmatic volatile, 188	composition of, 466–467
in mantle, 67–68, 177	experimental occurrences of, 461–465
mantle plumes and, 251–254	formation of, 464
melt density and, 170–171	future research on, 469–470
methanation, 367–375	in hydrothermal experiments, 462–463
methane and, 95–96	in hydrothermally altered mantle-derived rocks,
in mid-ocean ridge system, 242–243	449
in MORBs, 243, 250–251	limits to knowledge about, 469–470
OIB, 252	oxygen fugacity and, 462–463
partial melting and, 165–166	carbonate basalt, 113
peridotite and, 146–147	carbonate basait, 113
periodite and, 170-177	caroonate tons, 17

carbonate melts	carbonatites, 133-134
in carbon cycle, 129	abundance of, 149
compositions, 137–138	classification of, 148
in cratonic lithospheric mantle, 138–139, 142–143	crustally emplaced, 147-150
from diapirs, 287–288	deep, 144
extraction of, 148	emplacement of, 149
from hot slabs, 287–288	evolution of, 149
importance of, 150	formation of, 144, 149
incipient melting of, 166-168	limits to knowledge and, 150-151
in intraplate settings, 143	magmas, 130
under mid-ocean ridges, 147–148	magmatism of, 149
migration of, 129, 132	ocean islands and, 149
at ocean islands, 143	in subconduction zones, 134
silicate melts and, 168-169	carbon-bearing fluids
stability fields of, 147	complexity in, 358, 360
structure of, 168–169	fluid-fluid interactions, 366
with subconduction zones, 132–134	guest molecules in, 366-372
in upper mantle, 129	nanoconfinement and, 363
in various geodynamic settings, 166–168	carbon-bearing phases
carbonate stability	limits to knowledge about, 81–82
constraints on, 130–131	stable forms of, 66
oxygen fugacity and, 130	carbon-bearing reactants, in experiments,
carbonate weathering, carbon flux and, 330–331	458–461
carbonated basalts	carbonite peridotite
bulk compositions, 137	in mantle, 131–132
melt stability of, 179	melting of, 131–132
carbonated MORBs, 135–136	CARD. See catalyzed reporter deposition
carbonated sediment	Carnegie Institute of Science, 388–389
melting of, 134–138	CaSiO ₃ -perovskite, 112–113
potassium in, 137–138	retrogressed, 114–115
solidus of, 135–136	CaSiO ₃ -walstromite, 91–92
in transition zone, 134–138	catabolic reactions, 599–601
in upper mantle, 134–138	catalyzed reporter deposition (CARD), 562-563
carbonates	cathodoluminescence, of Marange diamond, 95
assimilation, 70	CaTiO ₃ -perovskite, 112–113
breakdown of, 80-81	C-bearing phases, in E-chondrites, 11–12
in cratonic lithospheric mantle, 140-142	cell counts, 586
experimental calibrations, 140–142	cellular bioenergetics, 566–567
Fe-bearing, 75	cementite. See Fe ₃ C
formation of, 133	Cenozoic, 276, 293
in mantle, 72–73, 143–145	Census of Deep Life, 558
mineral dissolution of, 133–134	C/H ratios
Na-carbonate, 137	of BSE, 14, 16-19
pelagic, 296–299	bulk weight, 13–14
phase at solidus, 135–136	subchondritic, 19
precipitation, 331–333	C-H species, stabilization of, 19
pump, 279–280	Le Chatelier's Principle, 420
redox constraints on, 140–142	chlorite, 285–286
seismic detectability of, 77	chondrites
silicate and, 142–143	BSE, 6–7
solubility of, 285	CI, 6–7
stability fields of, 147	E-chondrites, 6-7, 11-12, 15
structure of, 282	ЕН, 15
thermoelastic properties of, 77–78	EL, 15
carbonate–silicate melts, formation of, 69	ordinary, 15–16
carbonatite melts, 173	chondritic building blocks, carbon in, 12
mobility of, 168-178	CI, chondrites, 6–7

Circulation Obviation Retrofit Kit, 528–530	limits to knowledge about, 57-58
Claisen–Schmidt condensation, 434	pressure of, 44
climate, 188, 215	recovery, 237
stability of Earth, 4	core accretion
climatic drivers	carbon budget from, 66-67
in elemental cycling, 319–321	multistage, 25–26
negative feedbacks and, 319–321	simulation of, 24–25
clinopyroxene, 136–137	core formation
CLIPPIR diamonds, 114	carbon distribution in, 22–25
inclusions in, 114–115	carbon in, 20
silicates in, 114–115	D _c alloy/silicate in, 22–25
closed-system volcanoes, 209	disequilibrium, 26–27
CM. See carbonaceous matter	LEVEs in, 20
CMB. See core-mantle boundary	multistage, 23–26, 28
C/N ratios	proto-Earth, 26–27
of BSE, 14, 19	single-stage, 28
bulk weight, 13–14	sulfide segregation and, 16–18
	core–mantle boundary (CMB)
superchondritic, 19 Coast Range Ophiolite Microbial Observatory	• • • • •
* *	carbon across, 55–56
(CROMO), 532 C-O-H fluids, 134	chemical equilibrium at, 55–56
	pressure for, 54–55
cold oxic basement, subsurface biome of, 530	temperature at, 53
compositional expansion coefficients, 41–50	core–mantle differentiation, carbon budget from,
compressional-wave velocity, 53	66–67
conductive geotherms, 132	core–mantle fractionation, 23–24
confined liquids	core–mantle segregation, 5, 22–23
aqueous electrolytes in, 372	carbon in, 24–25
reactivity and, 374–375	cracking reactions, 496–497
solubility and, 369–370	cratonic lithospheric mantle
volatile gas solubility in, 370–372	carbon transport in, 142
continent. See supercontinent assembly	carbonate melts in, 138-139, 142-143
continental crust, 326–327	carbonates in, 140–142
continental lithosphere, carbon in, 70–72	deep, 142–143
continental lithospheric mantle, 326-327	kimberlite in, 138–139
continental rifts, emissions and, 201–206	metasomatism of, 142–143
continental subsurface, 497–498	oxygen fugacity in, 141
biomes, 524–527	reduction of, 141
carbon content of, 500-501	Cretaceous Peninsular Ranges, 344–345
carbon cycling, 499	CROMO. See Coast Range Ophiolite Microbial
deep bedrock in, 503-504	Observatory
deep coal beds in, 503	crustally emplaced carbonatites, 147-150
environments, 498-501	cryptic methane cycle, 405–406
hydrocarbon reservoirs in, 502-503	C/S ratios
continental weathering, 310	of BSE, 16–18
convecting mantle, 237	bulk weight, 13-14
carbon in, 70–72, 254–257	of fumaroles, 193
limits of knowledge about, 263-264	temporal variability and, 210-211
melting, 257–262	C/X ratios, 5
plumes, 251–254	cycloalkanes, 426
sampling, 240–242	cyclohexane, 423–426
convective geotherms, 132	cyclohexanol, 426
core, 4–5	•
carbon as light element in, 27–28, 40, 55	Darcy's law, 177
carbon budgets of, 40–41	D _c alloy/silicate
carbon in, over time, 55–56	alloy–silicate melt partitioning and, 25
composition, 57	in core formation, 22–25
Fe_7C_3 at, 55	sulfur in, 25

DCO. See Deep Carbon Observatory	diamonds
deamination	Brazilian, 103
rates, 431–432	Bureau on, 106–108
as substitution reaction, 430–433	carbon cycle and, 94–95
DECADE. See Deep Earth Carbon Degassing	carbon isotope composition of, 103
decompression melting, 257	carbonates in, 135
deep bedrock, in continental subsurface, 503–504	CLIPPIR, 114–115
deep biosphere	crystallization from single carbon fluid species, 97–98
adaptations for survival in, 539, 568–569	deep water and, 105
biomass, 588	defects in, 92
energetics, 585	depth of formation, 91–92
limits to knowledge about, 505–506	diagnostic tools for, 107
locations, 481	experiments for studying, 106–108
metabolism, 562–565	Frost on, 106–108
similarities across, 504–505	FTIR maps and, 92–94
deep carbon	future research on, 115–116
as CaCO ₃ , 74	geobarometry of, 91
organic chemistry of, 416–420, 438–439	HDF migration and, 99–100 history of, 93–94
reservoir, magnesite as, 74–75	•
science, emergence of, 1 subduction, 288–289	inclusion entrapment, 106–108 isochemical precipitation, 97
Deep Carbon Observatory (DCO), 1, 90, 388–389	Jagersfontein, 103
Carbon Mineral Challenge, 632	Kankan, 103
data and, 620	limits to knowledge about, 115–116
DMGC and, 115–116	lithospheric, 89–90
Integrated Field Site Initiatives, 641	mantle metasomatism and formation of, 99–100
on volcanism, 189–190	from mantle transition zone, 103–104
deep carbonatites, 144	Marange, 95
deep coal beds, in continental subsurface, 503	metasomatic fluids and formation of, 98–100
Deep Earth Carbon Degassing (DECADE), 195, 206,	Monastery, 103
217–218	monocrystalline growth of, 107
on volcanism, 189–190	natural growth media, 107
deep life, 539–541	Northwest Territories Canadian, 99–100
biogeochemistry of, 561–562	obtaining, 89–90
deep mantle	platelets in, 93–94
oxy-thermobarometry of, 76–77	polycrystalline formation of, 108–109
redox freezing in, 111-114	precipitation of, and methane, 95-96
Deep Sea Drilling Program (DSDP), 250	Proterozoic lherzolitic formation, 110–111
deep water	redox freezing and, 111-114
carbon cycle and, 105–106	redox-neutral formation of, 96-98
diamonds and, 105	scanning electron microscope images of, 107-108
in ringwoodite, 106	sublithospheric, 89–90
degassing	super-deep, 105
diffuse, 199–201, 204	synthesizing, 106–107
MO, 5	thermal modelling of, 92–94
passive, 197, 206–207	trapping of inclusions in, 92
dehydration, 436	Diamonds and the Mantle Geodynamics of Carbon
aqueous alcohol, 421–422	(DMGC)
as elimination reaction, 420–423	DCO and, 115–116
dehydrogenation reactions, 423–427	goals of, 115–116
depleted MORB mantle (DMM), 211–215	research areas of, 90
Desulfovibrio indonesiensis, 570–571	on super-deep diamonds, 105
devolatization pattern, 285–286	diapirs, carbonate melt from, 287–288
D/H ratio, of BSE, 7–9	DIC. See dissolved inorganic carbon
diagenesis, 430	dielectric constants, in nanoconfinement, 372–374
DIAL. See differential absorption LIDAR	differential absorption LIDAR (DIAL), 190–191
diamantiferous peridotite 70	differential equations first order 317

diffuse degassing, 199–201, 204	eclogite, 70
emissions from, 207–208	carbon dioxide and, 146–147
diffuse emissions, 191–192, 201–207	in mantle, 144
diffusion	melting, 215
pore, 364–366	eclogite-derived melts, 146–147
surface, 364–365	eclogitic lithospheric diamonds, 90
viscosity-diffusion, 171–172	Eddy covariance (EC), 191
diffusion-sink experiments, 176	Eger Rift, 206
dioxygen cycle, biological evolution and, 294–296	EH chondrites, 15
disequilibrium core formation, 26–27	elastic geobarometry, 91–92
disproportionation reactions, 433–434	electrical conductivity anomalous, 181
aldehyde, 433–434	enhancement, 176–177
dissolution, of siderites, 462–463	•
dissolved inorganic carbon (DIC), 480–489	incipient melting and, 173–174, 179
dissolved organic carbon (DOC), 480–489 solubilization of, 484	melt mobility and, 179 in olivine matrix, 174
DMGC. See Diamonds and the Mantle Geodynamics	electrophilic aromatic substitution (EAS), 433–434
of Carbon	elemental cycling
DMM. See depleted MORB mantle	basic concepts of, 315
DOC. See dissolved organic carbon	climatic drivers in, 319–321
dolomite	negative feedback in, 319–321
CaCO ₃ in, 73–74	residence time in, 315–321
crystal structure of, 73–74	steady state in, 315–319
high-pressure polymorphs and, 73–74	elimination reactions
iron and, 73–74	dehydration as, 420–423
MgCO ₃ in, 73–74	hydration as, 420–423
dolomitic carbonite, 132	EM1 OIB, 102
Dorado Outcrop, 492–493	EMFDD reaction, 131
dormancy, 588–589	emissions, carbon dioxide
dormant volcanoes, emissions from, 198	from active volcanoes, 194–197, 216
down-going slab materials, 133	calderas and, 201–206, 209
DSDP. See Deep Sea Drilling Program	constraints, 207
Dobt : see Deep sea Diming Program	continental rifts and, 201–206
E. coli, 570–571	cumulative, 201–202
EAR. See East African Rift	data distribution, 203
Earth. See also Bulk Silicate Earth	decadal averages of, 196–197
carbon on, 4–5	diffuse, 191–192, 201–207, 216
climate stability of, 4, 313	from diffuse degassing, 207–208
life on, 4	from dormant volcanoes, 198
mantle reservoir of, 4–5	estimation of, 197
organic chemistry and, 415–416	during explosive eruptions, 197–198
proto-Earth core formation, 26–27	fumaroles and, 198–201
structure of, 4–5	global of carbon dioxide, 193–194
surface temperature of, 313	hydrothermal systems, 201–206
whole-Earth carbon cycle, 315–316, 338–341	measurement of, 199–201
Earth Microbiome Project, 641	next iteration of, 206–208
EarthChem Library, 240–242, 623	over geologic time, 215
EAS. See electrophilic aromatic substitution	plume gas, 188, 201–203
East African Rift (EAR), 149, 205–206, 217, 328–329	quantifying, 215–217
East Pacific Rise, 179, 240–241	synthesis of, 215–217
Ebelman reaction, 292	temporal variability of, 208–209
EC. See Eddy covariance	vent, 216
E-chondrites	EMOD buffers, 96–97
carbon in, 11–12	endogenic systems, 314–315
C-bearing phases in, 11–12	energy limits, 585
LEVEs and, 15	anabolism and, 607–608
model, 6–7	biomass and, 588

660	Index
energy limits (cont.)	Fe-Ni-C alloys, solidus temperature ranges in, 72
density and, 603–605	Fe–O binary system
maintenance in, 586–587	characterizing, 44
microbial states and, 586-589	eutectic composition, 42–43
time and, 606-607	melting temperatures, 55
Enermark field, 526–527	sound velocities of, 53
entropy, 590	ferropericlase, 76
changes in, 590	Fe–S binary system
defining, 590	characterizing, 42
enzyme evolution, 635-636	eutectic composition, 42–43
equilibrium accretion, BSE budget and, 19-21	eutectic point of, 55
eruption forecasting, temporal variability and, 209-21	1 melting temperatures, 55
eukaryotes, in subsurface biome, 535-536	sound velocities of, 53
eutectic composition, 41–42	Fe-Si binary system
of Fe-O binary system, 42-43	characterizing, 42–44
of Fe-S binary system, 42-43	eutectic composition, 42–43
of Fe-Si binary system, 42-43	melting temperatures, 55
exogenic reservoirs, 327–328	sound velocities of, 53
exogenic systems, 314–315	FISH. See fluorescent in situ hybridization
carbon flux, 331	Fisher–Tropsch process, 460–461
carbon in, 347–348	flank gas emission, 188
experimental containers, carbon dioxide and, 457-458	
extreme cellular biophysics, 570-572	fluid inclusions, in oceanic lithosphere, 456-464
extreme molecular biophysics, in subsurface	fluid-fluid interactions, 366
environment, 567–570	fluorescent in situ hybridization (FISH), 562–563
	flux melting, 144
Fe ₃ C	formaldehyde, 459
density of, 47–48	formate, in ultramafic systems, 495
inner core phase and, 50–52	founder effect, 540
natural form of, 44–48	Fourier-transform infrared spectroscopy (FTIR) maps
near iron end member, 48	190–191, 238, 451–452
orthorhombic, 44–48	diamonds and, 92–94
Fe_7C_3	Friedel–Crafts reaction, 434
constraints from, 52	Frost, D. J., 69
at core, 55	on diamond formation, 106–108
electrical resistivity of, 55	FTIR. See Fourier transform infrared spectroscopy map
sound velocities of, 52	FTT reactions, 457–458
Fe-bearing carbonates, melting of, 75	magnetite and, 464
Fe–C alloy	fumaroles, 213–214
constraints from, 52	C/S ratios of, 193
elasticity parameters for, 45	emission rates and, 198–201
liquid, 49, 52	
melting temperatures of, 53–55	G protein-coupled receptors (GPCRs), 568
near iron end member, 52	Gakkel Ridge, 240–241, 250
slab-derived, 56	Galapagos Spreading Center, 248–249
sound velocities of, 50	Garrett melt inclusion, 246–247
Fe–C binary system, 41–42	gas giants, growth of, 10
densities of, 44, 48	generalized inverse Gauss–Poisson (GIGP), 631–632
FeCO ₃ , 78–79	genetic drift, 540
feedback loops, 317–318	Genomic Standard Consortium, 641
Fe-H, sound velocities of, 53	geobarometry
Fe-light element alloys	of diamonds, 91
melting curve parameters, 52	elastic, 91–92
sound velocities of, 52–53	geo–bio interactions, 640–643
Fe(Ni) alloys	geochemical tracers, 68
carbide in, 72	geologic time
carbon in, 72	emissions over, 215
precipitation curve, 70–71	volcanic carbon and, 215

geological cycle, 294	heteroatoms, 456
GeoMapApp, 241–242	HFSE. See high-field-strength element
geomimicry, 439	high-field-strength element (HFSE), 98-99
geotherms	highly siderophile element (HSE), 15–29
conducive, 132	sulfide segregation and, 16–18
convective, 132	HIMU OIB, 102
Gibbs energy, 589–599	histone-like nucleoid structuring proteins (HNS), 568
changes in, 591	HKF equations. See Helgeson–Kirkham–Flowers
composition and, 599-601	equations
densities, 604–605	Holocene, 194
molal, 604	hot slabs, carbonate melt from, 287–288
pressure and, 599-601	hothouses, 345–346
standard state, 592–595	hot spots, 240–242, 257
surveying, 601–603	heat flux from, 252
temperature and, 599–601	HS+ model. See Hashin-Shtrikman upper-bound
GIGP. See generalized inverse Gauss-Poisson	model
global emission rates, of carbon dioxide, 193–194	HSE. See highly siderophile element
Global Volcanism Program (GVP), 197	hydration, as elimination reaction, 420–423
Volcanoes of the World, 194	hydraulic fracturing, 526–527
GOSAT. See Greenhouse Gases Observing Satellite	hydrocarbon reservoirs, in continental subsurface,
GPCRs. See G protein-coupled receptors	502–503
grain boundaries, 361–362	hydrocarbons, short-chain, 495
Grand Tack scenario, 8–11	hydrogen
graphite, 29	alloy–silicate melt partitioning and, 25–26
exhausting, 259–260	in BSE, 10–12
formation, 465–466	fractionation of, 18–19
in mantle, 259–260	isotopic composition of, 8–9
thermodynamic predictions, 465	methane and, 459–460
graphite-Fe-carbide, 8	hydrogenation reactions, 423–427
graphitization, 282–283	Hydrogenophaga, 531–532
green chemistry, 439	hydrogenotrophic methanogenesis, 483
greenhouse conditions, 342	hydrolyzable amino acids, 495
Greenhouse Gases Observing Satellite (GOSAT),	hydrothermal
192–193	carbon pump, 279–280, 283
greenhouse intervals, 342-343	circulation, 495–496
groundwater	experiments, CM in, 462-463
carbon dioxide and, 191–192	petroleum, 484–497
Vesuvio, 191–192	reactions, 436–437
Guaymas Basin, 527–528	hydrothermal systems
guest molecules, in carbon-bearing fluids, 366–372	abundance of, 204
Gulf of Mexico, 527–528	emissions and, 201–206
Gutenberg discontinuity, 164-165	sedimented, 496–497
GVP. See Global Volcanism Program	volcanism and, 204
C	hydrothermally altered mantle-derived rocks, CM in,
Halicephalobus mephisto, 535	449
harzburgite, 132	
Hashin-Shtrikman upper-bound (HS+) model,	ICB. See inner core boundary
174–176	ICDP. See International Continental Drilling Programs
Hauri, E. H., 189-190, 248-249, 264, 323	icehouse conditions, 342
Hawaii melt inclusions, 263	icehouse drivers, 344–345
Hazen, R. M., 630-632	Iceland, 240–242
HDF microinclusions, in lithospheric diamonds, 99	igneous aquifers, 499–502
HDF migration, diamonds and, 99-100	IMLGS. See Index to Marine and Lacustrine
heat flux, from hotspots, 252	Geological Samples
Helgeson-Kirkham-Flowers (HKF) equations, 596	incipient melting
helium, 213–215, 244–245	carbon dioxide and, 165–166, 170–171, 177
hematite-magnetite, 457	of carbonate melt, 166–168
hematite_magnetite_pyrite, 457	composition, 167

662

Cambridge University Press 978-1-108-47749-9 — Deep Carbon Edited by Beth N. Orcutt , Isabelle Daniel , Rajdeep Dasgupta Index <u>More Information</u>

incipient melting (cont.)	Juan de Fuca Ridge, 240–241, 248–249, 493, 528–530
defining, 163–165	warm anoxic basement of, 528-530
density, 170–171	Jupiter, 8–11
electrical conductivity and, 173-174, 179	
interconnectivity, 175–176	Kaapvaal cratons, 69, 101, 103
limits of knowledge about, 182	Kankan diamonds, 103
mantle convection and, 181-182	karpatite, 450–451
melt mobility of, 177-179	Kerguelen Islands, 143
origins, 164	kerogen, 282–283
of peridotite, 179	Kidd Creek, 400–401
profiles, 167–168	Kilauea, 253
of silicate melt, 166–168	kimberlite, 89–90, 106–107, 139–140
stability fields in, 165–166	in cratonic lithospheric mantle, 138–139
transport properties, 171–172	eruption dates, 93, 111
types of, 177–178	genesis of, 140
viscosity-diffusion, 171–172	group 1, 139
water and, 165–166, 170–171	group 2, 139
Index to Marine and Lacustrine Geological Samples	Jagersfontein, 76
(IMLGS), 240–241	magmatism, 110–111
inner core	origins of, 139
Fe_3C and, $50-52$	oxygen fugacity and, 130–131
late veneer, 8–11	parental magma composition, 139-140
phase, 50–52	kinetic array, 399–401
sound velocities in, 50–51	kinetic inhibition, 419–420
inner core boundary (ICB), 41–42	kinetic minimum, 293
insoluble organic molecules (IOMs), 11	kinetic rate constants, 340
Integrated Ocean Drilling Program (IODP),	kinetics
250, 527	isotope clumping, 393–399
International Continental Drilling Programs (ICDP),	Michaelis–Menten, 393–399
641	Kokshetav, 292
International Ocean Discovery Program (IODP), 641	
interphase boundaries, 361–362	LAB. See lithosphere–asthenosphere boundary
Interunion Commission on Biothermodynamics,	labile amino acids, 497
596–597	large igneous provinces (LIPs), 254
intraplate settings, carbonate melts in, 143	large ion lithophile element (LILE), 98–99
inverse Monte Carlo simulations, 26–27	large number of rare events (LNRE), 630–631
IODP. See Integrated Ocean Drilling Program,	late accretion, 14–16
International Ocean Discovery Program	LEED. See low-energy electron diffraction
IOMs. See insoluble organic molecules	LEVEs. See life-essential volatile elements
iron	Lewis acid catalysis, 422 lherzolite, 132
carbon alloys, 40–41 dolomite and, 73–74	LIDAR. See Light Detection and Ranging
melting point, 53–54	life, records of, 294
redox capacity of, 107–108	life-essential volatile elements (LEVEs), 4, 28–29
spin state, 78–79	alloy–silicate melt partitioning and, 25
iron end member	alloy–silicate partitioning of, 20–21
Fe ₃ C near, 48	budgets of BSE, 14–19, 25–26
Fe–C alloy near, 52	in carbonaceous chondrites, 15–29
iron–light element systems	constraints from isotopes of, 7–8
binary phase relations, 41–42	in core formation, 20
phase relations of, 41–44	delivery timing of, 17–18
isotope clumping, 388	distributions of, 5–6
kinetics, 393–399	E-chondrites and, 15
isotopic reservoirs, 401–405	initial distributions of, 20
1	isotopic compositions of, 5
Jagersfontein diamonds, 103	limits of knowledge, 29
Jagersfontein kimberlite, 76	origins of, 11, 19–20

Index 663

solubility data for, 19 maintenance unknowns involving, 29 in energy limits, 586-587 Light Detection and Ranging (LIDAR), 190-191 measurements of, 587 light elements, 49 Manam, 217 carbon as, in core, 27-28, 40 mantle. See also convecting mantle; cratonic lignin phenols, 481-483 lithospheric mantle; deep mantle; upper mantle Ligurian Tethyan ophiolites, 453-454 abundance of carbon in, 67-73 LILE. See large ion lithophile element adiabatic, 166-167 LIPs. See large igneous provinces asthenospheric, 70-72, 78-80 liquid Fe-C alloy, 49 carbon dioxide in, 67-68, 177 constraints from, 52 carbon in, 238 elasticity parameters for, 46 carbonate in, 143-145 sound velocities of, 52 carbonate minerals in, 72-73 liquid outer core, oxygen in, 44 carbonite peridotite in, 131-132 convection, 181-182 lithophile elements, 6-7 lithosphere-asthenosphere boundary (LAB), 164 deep, 76-77, 111-114 defining, 181 degassing, 339-342 geophysical discontinuities, 181 eclogite in, 144 thermal, 167-168 extraction of carbon from, 67-73 graphite in, 259-260 lithospheric diamonds, 89-90 classification of, 90 incipient melting and, 181-182 composition of, 90 ingassing, 339–342 eclogitic, 90 inheritance of carbon at, 68 formation of, 90 oxidation of, 258 HDF microinclusions in, 99 oxidized carbon in, 77-78 peridotitic, 90 peridotite in, 113-114, 144 reduced mantle volatiles in, 94-96 resistive lids, 164-165 slab-derived fluids in, 134 refertilization in, 110 lithospheric mantle, continental, 326-327 speciation of carbon from, 67-73 lithospheric reservoir, 348 sulfur in 100-102 LNRE. See large number of rare events mantle geodynamics. See Diamonds and the Mantle Logatchev hydrothermal fields, 449-450, 494 Geodynamics of Carbon Loihi, 253 mantle melting regime, 164 longevity, of carbon cycle, 278-279 carbon and, 257-262 Lost City, 404-405 mantle metasomatism, 100-101 low energy states, 589 characterizing, 163 low-velocity zone (LVZ), 164-165, 181 defining, 163-165 limits of knowledge about, 182 diamond formation and, 99-100 low-energy electron diffraction (LEED), mantle plumes 452-453 carbon dioxide and, 251-254 convecting, 251-254 Lucky Strike segment, 240-241 LVZ. See low-velocity zone mantle reservoirs of Earth, 4-5 macrofauna, 481 modern, 322-326 magma ocean (MO) primitive, 322-326 atmosphere interactions, 17-19 mantle transition zone BSE budget and, 19-21 carbon cycle and, 102-103 diamonds from, 103-104 carbon speciation in, 22 degassing, 5 hydration state of, 105 magmas, carbon dioxide in, 238-264 MAR. See Mid-Atlantic Ridge magnesite, as deep carbon reservoir, 74-75 Marange diamonds, 95 magnesium budgets, 492-493 cathodoluminescence of, 95 magnetite, 459 methane and, 95-96, 98 RIFMS for, 98 FTT and, 464 Mars, 26-27, 259-260, 321 MAGs. See metagenome-assembled genomes Masava, 209 Maier-Kelley formulation, 596 Main Ethiopian Rift (MER), 205-206 mass-independent fractionation (MIF), 100-101

664

MED. See Mineral Evolution Database melt, incipient. See incipient melting melt composition, melt mobility and, 177-179

melt density

calculation of, 170-171

carbon dioxide and, 170-171

curve, 170-171

water and, 170-171

melt inclusions

data sets, 240-242

Garrett, 246-247

glassy, 253

Hawaii, 263

isotopic heterogeneity in, 246-248

MORB, 244-248

OIBs and, 252-253

Siqueiros, 246-247

volumes, 242

melt mobility

electrical conductivity and, 179

of incipient melts, 177-179

melt composition and, 177-179

melt stability, of carbonated basalts, 179

melts. See specific types

Menez Gwen, 494

MER. See Main Ethiopian Rift

Mesozoic, 276

metagenome-assembled genomes (MAGs), 558-560

metamorphic inputs, carbon flux, 329-330

metamorphism, defining, 188

metasomatic fluids, diamond-forming, 98-100

metasomatism. See also mantle metasomatism

of cratonic lithospheric mantle, 142-143

overprints, 142

metatranscriptomics, 560

meteorites, carbon in, 11-14 methanation, carbon dioxide, 367-375

methane, 388-389, 447-448, 459, 489

biogenic, 503

carbon dioxide and, 95-96

cycling, 504

in diamond precipitation, 95-96

formation, 403, 465-466

hydrogen and, 459-460

limits to knowledge about, 409

in Marange diamonds, 95-96, 98

oxidation, 405-409

production of, 459-460

synthesis of, 95-96

thermodynamic equilibrium and, 388-389

in ultramafic systems, 494-495

methanogenesis

differential reversibility of, 406

reversibility of, 394

methanol, 459

formation of 459

methylcyclohexanol, 435-436

Index

MgCO₃, 56. See also carbonates

in dolomite, 73-74

Michaelis-Menten kinetics, 393-399

microbial array, 399-401

microbial ecosystems, 640-643

microbial metabolism, in subsurface environment, 562-565

microbial states, energy limits and, 586-589

micro-Raman spectroscopy, 91-92

microscale, in situ investigations at, 451-464

Mid-Atlantic Ridge (MAR), 240-241, 494

mid-ocean ridge system

carbon dioxide in, 242-243

carbonate melts under, 147-148

mid-ocean ridge-derived basalts (MORBs), 112-113,

213, 237

anhydrous, 135-136

bulk compositions of, 135-136

carbon dioxide in, 243, 250-251

carbonated, 135-136

chemistry of, 135-136

compositions, 137, 248-251

eruption of, 243

melt inclusions, 244-248

oxidation of, 69

oxygen fugacity and, 69

samples, 243-244

solubility in, 243-244

vapor-undersaturated, 246

variations in, 248-251

MIF. See mass-independent fractionation

Mineoka ophiolite complex, 455-456

Mineral Evolution Database (MED), 621

Miyakejima volcano, 195

MO. See magma ocean

modern mantle reservoirs, 322-326

molecular lubrication, pore diffusion and, 365-366

Momotombo, 209

Monastery diamonds, 103

montmorillonites, 464-465

Moon

carbon budgets of, 8-11

formation of, 11, 26-27

MORBs. See mid-ocean ridge-derived basalts

Mount Etna, 208, 328-329

Multi-Gas measurements, 190-191

Murowa, 93

Na-carbonate, at solidus, 137

Nankai Trough, 527-528

nanoconfinement

carbon transport under, 363-364

carbon-bearing fluids and, 363

dielectric constants in, 372-374 nanoporosity, 359-360, 362-363

features of, 360-363

NanoSIMS, 562-563

National Centers for Environmental Information	Oldoinyo Lengai, 198–199
(NCEI), 240–241	oligomer dissociation, 569
National Oceanographic and Atmospheric Association,	olivine, 132
240–241	carbonation of, 462
NBO/T approach, 21–22	olivine matrix, electrical conductivity in, 174
NCEI. See National Centers for Environmental	Olmani Cinder cone, 132
Information	OMI. See Ozone Monitoring Instrument
negative feedback, 317-318, 338	Opalinus Clay, 526–527
climatic drivers and, 319–321	orangeites, 139
in elemental cycling, 319–321	Orbiting Carbon Observatory (OCO-2), 192–193
Neoproterozoic, 346–347	ordinary chondrites, 15–16
network analysis, 640–643	organic carbon (OC), 282
Newer Volcanics of Victoria, 132	anaerobic breakdown of, 483
Nibelungen, 494	bioavailability of, 505
nitrogen	burial rate, 333
aggregation, 93	carbon flux and, 330–331
in BSE, 10–12	dissolved, 480–489
depletion, 18–19	oxidation of, 481
fractionation of, 18–19	particulate, 480–489
isotopic composition of, 8–9	weathering, 330–331
as siderophile elements, 25	organic chemistry
nitrogen cycle, mantle transition zone and, 102–103	bonds in, 415–416
nominal oxidation state of carbon (NOSC), 587–588	of carbon cycle, 416–420, 438–439
non-ideal conditions, 598	of deep carbon, 416–420, 438–439
Northwest Territories Canadian diamonds, 99–100	Earth and, 415–416
NOSC. See nominal oxidation state of carbon	organic matter preservation, in sedimentary subsurface
novel genes, 564–565	484–485
Nuna, 629	organic oxidations, 427–429
Nyiragongo volcano, 195, 201–206	orthopyroxene, 132
	oxidation
OC. See organic carbon	aqueous, 428
Ocean Drilling Program (ODP), 492–493	of carbon, 418–419
Hole 735B, 455	methane, 405–409
Leg 201, 527–528	organic, 427–429
ocean island basalt (OIB), 237	of organic carbon, 481
carbon dioxide in, 252	oxidized carbon, in mantle, 77–78
chemistry of, 135–136	oxygen, in liquid outer core, 44
melt inclusions and, 252–253	oxygen exposure time (OET)
sulfides from, 101–102	models of, 486–487
ocean islands	sedimentary subsurface and, 486
basalts and, 144	oxygen fugacity, 17–18, 21–22, 150–151
carbonate melts beneath, 143	of carbon phases, 76–77
carbonatites and, 149	carbonate stability and, 130
oceanic crust, 487–488	CM and, 462–463
axial diffuse vents and, 492	in cratonic lithospheric mantle, 141
axial high temperature and, 488–492	kimberlite and, 130–131
characteristics, 491	magnitude of, 131
fluid inclusions in, 456–464	MORBs and, 69
recharge water and, 487–488	oxy-thermobarometry
ridge flanks and, 492–493	carbon speciation and, 76–77
subsurface biome of, 528	of deep mantle, 76–77
ultramafic systems and, 493–495	Ozone Monitoring Instrument (OMI), 193, 206–207
warm anoxic basement, subsurface biome of, 528–530	data sets, 197
OCO-2. See Orbiting Carbon Observatory	
ODP. See Ocean Drilling Program	pace, of carbon cycle, 278–279
OET. See oxygen exposure time	PAH. See polycyclic aromatic hydrocarbon
OIB. See ocean island basalt	Paleocene–Eocene thermal maximum (PETM), 319

666

Cambridge University Press 978-1-108-47749-9 — Deep Carbon Edited by Beth N. Orcutt , Isabelle Daniel , Rajdeep Dasgupta Index <u>More Information</u>

> partial melting protoplanetary bodies, 20 carbon dioxide and, 165-166 P-T trajectories, 285-287, 289 carbon in, 258 subduction zone, 289-290 particulate organic carbon (POC), 480-489 pulse, of carbon cycle, 278-279 microorganisms accessing, 484 pumps PDAs. See polycrystalline aggregates carbonate, 279-280 Pearson correlation coefficients, 246-247 hydrothermal carbon, 279-280 pelagic carbonates, in subduction zone, 296-299 soft-tissue, 279-280 periclase, 113-114 pyrite-pyrrhotite-magnetite, 457 peridotite, 130, 144-145 abyssal, 455-456 QFM buffer, 258 carbon dioxide and, 146-147 quartz-fayalite-magnetite, 457 incipient melting of, 179 in mantle, 113-114, 144 radiogenic isotopes, 237-238 solidus of, 258 rare biosphere, 525-526 peridotitic lithospheric diamonds, 90 rare earth elements (REE), 129 permeability, 177, 203-204 Rayleigh isotopic fractionation in multi-component perturbations, 277-278 systems (RIFMS), 97, 109 Peru Margin, 527-528 for Marange diamonds, 98 petit spot volcanism, 179, 238 reactivity, confined liquids and, 374-375 PETM. See Paleocene-Eocene thermal maximum recharge water, oceanic rocky subsurface and, 487-488 petrogenic carbon, 481-483 recycling processes, 164 Phanerozoic, 149, 281-282 Redoubt Volcano, 204 phase relations, of iron-light element systems, 41-44 redox capacity of iron, 107-108 Photobacterium profundum, 570-571 piezolyte, 570 of sulfides, 107-108 Pitcairn, 253 redox constraints, on carbonates, 140-142 Planck constants, 395 redox freezing in deep mantle, 111-114 planetary embryos, 28-29 defining, 113-114 sulfur in, 26 plume gas emissions, 188, 201-203 diamonds and, 111-114 POC. See particulate organic carbon redox processes, in subduction zone, 290-291 Poisson's ratio, 77-78 redox reactions, 75, 81 polycrystalline aggregates (PDAs), 108-109 carbon in, 80-81 redox-neutral formation absolute ages of, 109 carbon isotope values of, 109 carbon isotope fractionation and, 96-98 formation of, 109 of diamonds, 96-98 polycrystalline diamond formation, 108-109 reduced mantle volatiles polycyclic aromatic hydrocarbon (PAH), 450-451, in lithospheric diamonds, 94-96 497 in sublithospheric diamonds, 94-96 pore diffusion REE. See rare earth elements molecular lubrication and, 365-366 refractory elements, constraints from isotopes of, 6-7 steric effects and, 364-365 refractory garnet peridotites, 111 porosity. See nanoporosity remineralization, 481 potassium, in carbonated sediment, 137-138 reservoirs carbon, 41, 323-324 predictive reaction-rate models, 432-433 PREM model, 50 deep carbon, 74-75 exogenic, 327-328 pressure-temperature plot, silicate melts and, 144-145 primary magma carbon dioxide, 253 hydrocarbon, 502-503 isotopic, 401-405 primitive mantle reservoirs, 322-326 lithospheric, 348 process end members, 401-402 propanoic acid, 428 mantle, 4-5, 322-326 protein expression, 635-636 Solar, 8-9 protein unfolding, 569 residence time defining, 318-319 Proterozoic, 283 Proterozoic lherzolitic diamond formation, 110-111 in elemental cycling, 315-319 through time, 110-111 response time, defining, 318-319

Index 667

Rhine Graben, 206 structure of, 168-169 ribosomal gene sequencing, 558 in upper mantle, 143-144 ridge flanks in various geodynamic settings, 166-168 advective flow through, 492 viscosity-diffusion and, 172 oceanic rocky subsurface and, 492-493 silicate weathering RIFMS. See Rayleigh isotopic fractionation in multicarbon flux and, 331-333 feedback, 334-338 component systems ringwoodite, deep water in, 106 global rates of, 336-337 Rio Grande Rift, 206 silicates, in CLIPPIR diamonds, 114-115 rocks. See specific types SIMS. See secondary ion mass spectrometry Rodinia, 620, 629 single-carbon species, 459 supercontinent assembly of, 623-625 single-cell amplified genomes (SAGs), 558-560 Rotorua, 201-204 single-species ecosystems, 525-526 RRUFF Project, 633 SiO₂ bulk, 135-136 S isotopic systematics, 100-101 in subduction zone, 291 in sulfide inclusions, 101 SIP. See stable isotope probing Sabatier reaction, 395-398 Siqueiros Fracture Zone, 245-246 Saccharomyces cerevisiae, 570-571 Siqueiros melt inclusion, 246-247 Siqueiros Transform, 240-241 SAGMEG. See South African Gold Mine Miscellaneous Euryarchaeal Group slab-derived fluids, in mantle, 134 slave cratons, 101 SAGs. See single-cell amplified genomes sapropels, 484 SLiMEs. See subsurface lithoautotrophic microbial scanning electron microscope images, of diamonds, ecosystems 107-108 small polar compounds, 496 scanning transmission X-ray microscope, 485 small volcanic plumes, 198-201 Schoell plot, 402 smectite clays, 464-465 seafloor dredging, 237-238 S/N ratio, of BSE, 16-18 seafloor weathering feedback, 338 snowballs, 346-347 soft-tissue pump, 279-280 secondary ion mass spectrometry (SIMS), 238 sedimentary aquifers, 499-502 Solar reservoir, 8-9 sedimentary carbon, 133 subduction, 280-281 carbon and, 264 sedimentary subsurface, 481 carbonate phase at, 135-136 chemical composition of, 481-484 of carbonated sediment, 135-136 organic matter preservation in, 484-485 curves, 136 oxygen exposure time and, 486 Na-carbonate at, 137 sorption in, 485-486 of peridotite, 258 sedimented hydrothermal systems, 496-497 solubility selective preservation, 483-484 confined liquids and, 369-370 serpentinized oceanic rocks, 451-452 of DOC, 484 Serpentinomonas, 531-532 sorption, in sedimentary subsurface, 485-486 shear-wave velocity, 53 sound velocities Shimokita Peninsula, 527-528 of Fe-C alloy, 50 in inner core, 50-51 siderites, 461 dissolution of, 462-463 South African Gold Mine Miscellaneous Euryarchaeal siderophile elements, 6-7 Group (SAGMEG), 534 Southwest Indian Ridge, 255-257 nitrogen as, 25 silicate, 4, 310. See also Bulk Silicate Earth spin transition, 77-78 diagram, 78-79 carbonate and, 142-143 silicate melt, 21-22 spot measurements, 195-196 carbonate melts and, 168-169 SRB. See sulfate-reducing bacteria extraction of, 148 stability fields, in incipient melting, 165-166 formation of, 143-144 stable isotope probing (SIP), 562-563 incipient melting of, 166-168 steady state pressure-temperature plot and, 144-145 in elemental cycling, 315-319 stability fields of, 147 transition to new, 321-322

668

Cambridge University Press 978-1-108-47749-9 — Deep Carbon Edited by Beth N. Orcutt , Isabelle Daniel , Rajdeep Dasgupta Index <u>More Information</u>

> steric effects ecology in, 536 pore diffusion and, 364-365 eukaryotes in, 535-536 surface diffusion and, 364-365 evolution of, 536 extreme cellular biophysics in, 570-572 Stromboli, 208 S-type asteroids, 7-9 extreme molecular biophysics in, 567-570 genetic potential of, 558-561 subaerial volcanic budget, 206-207 sub-arc depths, 133-134 global trends in study of, 533 subconduction zone habitable zones, 525-526 carbon in, 133 interactions in, 534-535 carbonate melts with, 132-134 isolates, 534-535 carbonatites in, 134 microbial metabolism in, 562-565 cross-section of, 134 of oceanic crust, 528 subduction, 215, 311 of other environments, 532-533 biological evolution and, 294 pH of, 537-538 pressure effects in, 567 carbon cycling, 276 salinity in, 538 cycle, 277 deep carbon, 288-289 sub-seafloor sediments, 527-528 flux, 334 temperature of, 538-539 sedimentary carbon, 280-281 of ultra-basic sites, 530-532 shelf carbon, 276-278 viruses in, 536 subduction zones, 300 of warm anoxic basement, 528-530 carbon cycle and, 416-417 subsurface lithoautotrophic microbial ecosystems (SLiMEs), 499-502 carbon flux and, 281 carbon neutrality of, 283-284 sulfate-reducing bacteria (SRB), 526-527 sulfide segregation carbon solubility and, 284-285 carbon transformation pathways in, 277-278 HSEs and, 16-18 carbon transport in, 289 post-core formation, 16-18 dissolution in, 285-287 sulfur models of, 310-312 abundance of, 100-101 pelagic carbonates in, 296-299 atmospheric recycling of, 100-102 P-T trajectories, 289-290 biotic recycling of, 100-102 redox processes in, 290-291 in BSE, 10-12 in D_c alloy/silicate 25 SiO₂ in, 291 sources and sinks, 279-280 fractionation of, 18-19 tectonic building blocks at, 292-293 isotope composition, 8 thermal anomalies in, 289 isotope measurements, 101 water in, 291-292 as magmatic volatile, 188 subduction/collision transition, carbon dynamics at, in mantle, 100-102 292-293 in planetary embryos, 26 sublithospheric diamonds, 89-90 solar nebula condensation temperature, 14 formation of, 90-91 sulfurization, abiotic, 483-484 inclusions in, 96 sulfide inclusions, 100 reduced mantle volatiles in, 94-96 S isotopic systematics in, 101 study of, 90-91 sulfides sub-seafloor sediments, subsurface biomes, 527-528 from OIB, 101-102 redox capacity of, 107-108 substitution reaction animation as, 430-433 supercontinent assembly, 621 deamination as, 430-433 carbon cycle and, 625-626 subsurface biome, 524-526, 572-573. See also of Rodinia, 623-625 continental subsurface; super-deep diamonds discovery of, 105 deep biosphere adaptations for survival in, 539, 568-569 DMGC on, 105 archaea in, 533-534 surface diffusion, steric effects and, 364-365 of cold oxic basement, 530 surface processes, carbon cycle and, 279-283 continental, 524-527 deep life in, 539-541 Taupo Volcanic Zone (TVZ), 201-204, 217 defining, 524-525 Tavurvur, 217

Index

diffusivity in, 537

TDLS. See tunable diode laser spectrometers

tectonic building blocks, 292	viruses, in subsurface biome, 536
at subduction zone, 292–293	viscosity-diffusion
tectonic carbon cycle, 279, 293–295	changes in, 172
temporal variability, 208-209	incipient melting, 171-172
of active volcanoes, 208-209	silicate melt and, 172
of calderas, 209	volatile elements. See life-essential volatile elements
C/S ratios and, 210–211	volatile gas solubility, in confined liquids, 370-372
of emissions, 208–209	volcanic arcs, 284
eruption forecasting and, 209-211	volcanic carbon
terrestrial building blocks, 6-7	carbon budget and, 216-217
tertiary alcohols, 436	flux of, 215
tetracarbonates, 80-81	geologic time and, 215
TGA. See thermogravimetric analyses	limits to knowledge about, 217–218
theoretical modeling, constraints from, 6-7	volcanic carbon dioxide, 190
thermal anomalies, in subduction zone, 289	advances in, 192-193
thermochronometer, 92	volcanic inputs, carbon flux, 328-329
thermodynamics	volcanoes and volcanism
equilibrium, 388–389	active, 194-197, 208-209, 216
graphite, 465	carbon outgassed from, 211-215
methane and, 388–389	closed-system, 209
predictions, 457, 465-466	DCO on, 189–190
thermogravimetric analyses (TGA), 451–452	DECADE on, 189-190
time, energy limits and, 606-607	defining, 188
Titan, 632	dormant, 198
titanium, 457–458	hydrothermal systems and, 204
transition zone, carbonated sediment in, 134-138	petit spot, 179, 238
Tropospheric Ozone Monitoring Instrument	small volcanic plumes, 198-201
(TROPOMI), 193	subaerial volcanic budget, 206–207
tunable diode laser spectrometers (TDLS), 192	
tunneling, 399–400	warm anoxic basement, subsurface biome of, 528–530
Turrialba Volcano, 209	water. See also dehydration
TVZ. See Taupo Volcanic Zone	deep, 105–106
	incipient melting and, 165–166, 170–171
UAVs. See unmanned aerial vehicles	as magmatic volatile, 188
ultra-basic sites, subsurface biome of, 530–532	melt density and, 170–171
ultramafic systems	recharge, 487–488
acetate in, 495	in subduction zone, 291–292
carbon in, 494	weathering
formate in, 495	carbonate, 330–331
methane in, 494–495	continental, 310
oceanic rocky subsurface and, 493–495	organic carbon, 330–331
United States Geological Survey (USGS), 623	seafloor weathering feedback, 338
unmanned aerial vehicles (UAVs), 192, 198	silicate, 331–338
upper mantle	wehrlite, 132
carbonate melts in, 129	whole-Earth carbon cycle
carbonated sediment in, 134–138	box model, 315–316
schematic representations of, 141	modeling, 338–341
silicate melt in, 143–144	World Energy Council, 204
ureilites, carbon in, 16	
Urey reaction, 284–285	xenoliths, 66–67
USGS. See United States Geological Survey	X-ray diffraction, 91–92
1 111 1 242	X-ray emission spectroscopy, 77
vapor bubble volumes, 242	X-ray microscope, scanning transmission, 485
vent emissions, 216	N II
Venus, 321	Yellowstone, 217
Vesuvio groundwater, 191–192 Vinet equation of state, 171	Zimbabwe 95
VIDELEURATION OF STATE. 171	A HILLIADWE, 9.1