
Cambridge University Press
978-1-108-47744-4 — Small Summaries for Big Data
Graham Cormode , Ke Yi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Introduction

“Space,” it says, “is big. Really big. You just won’t believe how vastly,

hugely, mindbogglingly big it is. I mean, you may think it’s a long

way down the road to the chemist’s, but that’s just peanuts to space,

listen. . . ”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

1.1 Small Summaries for Big Data

Data, to paraphrase Douglas Adams, is big. Really big. Moreover, it is getting

bigger, due to increased abilities to measure and capture more information.

Sources of big data are becoming increasingly common, while the resources to

deal with big data (chiefly, processor power, fast memory, and slower disk) are

growing at a slower pace. The consequence of this trend is that we need more

effort in order to capture and process data in applications. Careful planning

and scalable architectures are needed to fulfill the requirements of analysis

and information extraction on big data. While the “big” in big data can be

interpreted more broadly, to refer to the big potential of such data, or the wide

variety of data, the focus of this volume is primarily on the scale of data.

Some examples of applications that generate large volumes of data include

the following:

Physical Data. The growing development of sensors and sensor deployments

has led to settings where measurements of the physical world are available at

very high dimensionality and at a great rate. Scientific measurements are the

cutting edge of this trend. Astronomy data gathered from modern telescopes

can easily generate terabytes of data in a single night. Aggregating large

quantities of astronomical data provides a substantial big data challenge to

1

www.cambridge.org/9781108477444
www.cambridge.org

Cambridge University Press
978-1-108-47744-4 — Small Summaries for Big Data
Graham Cormode , Ke Yi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 1 Introduction

support the study and discovery of new phenomena. The volume of data from

particle physics experiments is also enormous: each experiment can generate

many terabytes of readings, which can dwarf what is economically feasible to

store for later comparison and investigation.

Medical Data. It is increasingly feasible to sequence entire genomes. A single

genome is not so large – it can be represented in under a gigabyte – but

considering the entire genetic data of a large population represents a big data

challenge. This may be accompanied by increasing growth in other forms of

medical data, based on monitoring multiple vital signs for many patients at

fine granularity. Collectively, this leads to the area of data-driven medicine,

seeking better understanding of disease, and leading to new treatments and

interventions, personalized for each individual patient.

Activity Data. We commonly capture large amounts of human activity data.

Online social networks record not just friendship relations but interactions,

messages, photos, and interests. Location datasets are also more available, due

to mobile devices that can obtain GPS information. Other electronic activities,

such as patterns of website visits, email messages, and phone calls, can be

collected and analyzed. Collectively, this provides ever-larger collections of

activity information. Service providers who can collect such data seek to make

sense of it in order to identify patterns of behavior or signals of behavioral

change, and opportunities for advertising and marketing.

Business Data. Businesses are increasingly able to capture more and complex

data about their customers. Online stores can track millions of customers as

they explore their site, and seek patterns in purchasing and interest, with the

aim of providing better service and anticipating future needs. The detail level

of data is getting finer and finer. Previously, data would be limited to just the

items purchased, but now extends to more detailed shopping and comparison

activity, tracking the whole path to purchase.

Across all of these disparate settings, certain common themes emerge. The

datasets in question are large, and growing. The applications seek to extract

patterns, trends, or descriptions of the data. Scalability and timeliness of

response are vital in many of these applications.

In response to these needs, new computational paradigms are being adopted

to deal with the challenge of big data. Large-scale distributed computation is

a central piece: the scope of the computation can exceed what is feasible on a

single machine, and so clusters of machines work together in parallel. On top of

www.cambridge.org/9781108477444
www.cambridge.org

Cambridge University Press
978-1-108-47744-4 — Small Summaries for Big Data
Graham Cormode , Ke Yi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Small Summaries for Big Data 3

these architectures, parallel algorithms are designed that can take the complex

task and break it into independent pieces suitable for distribution over multiple

machines.

A central challenge within any such system is how to compute and represent

complex features of big data in a way that can be processed by many single

machines in parallel. One answer is to be able to build and manipulate a

compact summary of a large amount of data, modeled as a mathematical object.

This notion of a small summary is the subject of study of this work. The idea

of a summary is a natural and familiar one. It should represent something large

and complex in a compact fashion. Inevitably, a summary must dispense with

some of the detail and nuance of the object that it is summarizing. However, it

should also preserve some key features of the object in an accurate fashion.

There is no single summary that accurately captures all properties of a

dataset, even approximately. Thus, at the heart of the study of small summaries

are the questions of what should be preserved and how accurately can it be

preserved. The answer to the first question determines which of many different

possible summary types may be appropriate, or indeed whether any compact

summary even exists. The answer to the second question can determine the

size and processing cost of working with the summary in question.

Another important question about summaries for big data is how they

can be constructed and maintained as new data items arrive. Given that it

is typically not feasible to load all the data into memory on one machine,

we need summaries that can be constructed incrementally. That is, we seek

summaries that can be built by observing each individual data item in turn,

and updating the partial summary. Or, more strongly, we seek summaries such

that summaries of different subsets of data built on different machines can be

combined together to obtain a single summary that accurately represents the

full dataset.

Note that the notion of summarization is distinct from that of compression.

In general, lossless compression is concerned with identifying regularity and

redundancy in datasets to provide a more compact exact representation of the

data. This is done for the purpose of compactly storing the data, or reducing the

data transmission time. However, in general, there is no guarantee of significant

size reduction from compression. The compressed form is also typically

difficult to analyze, and decompression is required in order to work with

the data. In contrast, summarization is intended to provide a very significant

reduction in the size of the data (sometimes several orders of magnitude),

but does not promise to reconstruct the original data, only to capture certain

key properties. Lossy compression methods fall in between, as they can

provide guaranteed size reductions. They also aim to allow an approximate

www.cambridge.org/9781108477444
www.cambridge.org

Cambridge University Press
978-1-108-47744-4 — Small Summaries for Big Data
Graham Cormode , Ke Yi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 1 Introduction

reconstruction of the original data with some limited loss of fidelity: typically,

based on the human perception of multimedia data, such as audio or video.

Summarization aims to provide only small loss of fidelity, but measured along

other dimensions; summaries do not necessarily provide a way to reconstruct

even an approximation of the original input.

As a first example of summarization, consider a data set consisting of a large

collection of temperature readings over time. A suitable summary might be to

keep the sum of all the temperatures seen, and the count. From this summary

given by two numbers, we can extract the average temperature. This summary

is easy to update incrementally, and can also be combined with a corresponding

summary of different data by computing the overall sum and count. A different

summary retains only the maximum and minimum temperature observed so

far. From this, we can extract the range of temperatures observed. This too is

straightforward to maintain under updates, and to merge across multiple sub-

sets. However, neither summary is good at retrieving the median temperature,

or some other properties of the statistical distribution of temperatures. Instead,

more complex summaries and maintenance procedures are required.

This work aims to describe and explain the summaries that have been

developed to deal with big data, and to compare summaries for similar goals

in terms of the forms of data that they accept, and their flexibility of use.

It follows a fairly technical approach, describing each summary in turn.

It lists the type of data that can be summarized, and what operations can

be performed on the summary to include more data in it, and to extract

information about the summarized data. We assume some familiarity with

mathematical and computer science concepts, but provide some necessary

background in subsequent sections.

1.2 Preliminaries

This section lays down some of the basics of working with summaries: the

kinds of data that they can take as inputs; the operations that may be performed

on the summaries during their use; and the types of guarantees they provide

over their output.

1.2.1 Data Models

In this volume, we focus on datasets that arise from the aggregation of many

small pieces of data. That is, the challenge arises from the scale of billions

or trillions of simple observations. This matches the motivating applications

www.cambridge.org/9781108477444
www.cambridge.org

Cambridge University Press
978-1-108-47744-4 — Small Summaries for Big Data
Graham Cormode , Ke Yi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Preliminaries 5

described previously: high-frequency sensor readings, social network activi-

ties, transactions, and so on all have a moderate number of different types,

but potentially huge quantities of each type. The summaries we describe will

operate on a large number of “tuples” of a common type, which collectively

describe a complex whole.

The types of data we consider are therefore each quite simple, and it is

their scale that presents the challenge for summarization. We describe the types

of data in somewhat abstract terms, with the understanding that these can be

mapped onto the specific applications when needed.

Set Data. The simplest form of data we consider is a set of items. That is,

the input forms a set A, as a subset of some universe of possible items U .

For example, U could be the set of 64-bit integers (denoting, perhaps, serial

numbers of items), and each item x in the data is then some particular 64-bit

integer.

A very basic summary over set data is a random sample. A random sample

is a quite general-purpose summary in the sense that it is useful for answering

many possible questions about the underlying set A, although the accuracy

may not be satisfactory. For example, a basic query that we may wish to pose

on a set A is whether a particular item x is present in A, i.e., a membership

query; or, for two sets A and B, how similar (the notion will be made more

precise later) they are. Random samples can be used in place of the full

datasets for answering these queries, but clearly will frequently make errors.

The majority of the work on data summarization is thus devoted to constructing

summaries targeted at certain specific queries, usually with (much) better

accuracies than random samples.

Problems on sets often get more challenging if the same item may be fed

into the summary multiple times, while A is still considered as a set, i.e.,

duplicates should be removed. In this case, even counting the cardinality of

A becomes nontrivial, if we do not want the summary to store every distinct

input item.

Multiset Data. With set data, we typically assume the semantics that

an item is either present or absent from the set. Under the multiset

semantics, each item has a multiplicity. That is, we count the number of

occurrences of each item. Again, the input is supported over a set U . Now,

queries of interest relate to the multiplicity of items: how many occurrences of

x are there in the data? Which items x occur most frequently?

It is sometimes convenient to think of multiset data as defining a vector

of values, v. Then vx denotes the multiplicity of item x in the input. Natural

www.cambridge.org/9781108477444
www.cambridge.org

Cambridge University Press
978-1-108-47744-4 — Small Summaries for Big Data
Graham Cormode , Ke Yi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 1 Introduction

queries over vectors include asking for the (Euclidean) norm of the vector, the

distance between a pair of vectors, or the inner-product between two vectors.

The accuracy of such estimators is often expressed in terms of the ℓp norm of

the vector, ‖v‖p, where

‖v‖p =

(

∑

i∈U

∣

∣vi

∣

∣

p

)1/p

.

Important special cases include the Euclidean norm, ‖v‖2, and the Man-

hattan norm, ‖v‖1 (the sum of absolute values). We may also abuse notation

and make reference to the ℓ0 norm, sometimes called the Hamming norm,

which is defined as ‖v‖0 = |{i : vi � 0}|. This counts the number of nonzero

entries in the vector v, i.e., the number of distinct items in the multiset. When

dealing with skewed data, that is, where a few items have much larger count

than others, we sometimes give bounds in terms of the residual ℓp norm. This

is denoted as ‖v‖
res(k)
p , where, if we reindex v so that vi is the ith largest

(absolute) value, then

‖v‖res(k)
p =

⎛

⎝

|U |
∑

i=k+1

|vi |
p

⎞

⎠

1/p

.

That is, the ℓp norm after removing the k largest entries of v.

Weighted Multiset Data. More generally, input describing a multiset may

arrive with corresponding weights. This can represent, for example, a customer

buying several instances of the same item in a single transaction. The multi-

plicity of the item across the whole input is the sum of all weights associated

with it. The vector representation of the multiset naturally models the weighted

case well, where vi is the sum of weights of item i processed by the summary.

The preceding queries all make sense over this style of input – to find the total

weight for a given item, or the items with the largest total weights. Guarantees

for summaries may be expressed in terms of vector norms such as ‖v‖2 or

‖v‖1. Different summaries can cope with different constraints on the weights:

whether the weights should be integral, or can be arbitrary.

Of some concern is whether a summary allows negative weights. A negative

weight corresponds to the removal of some copies of an item. Some summaries

only tolerate nonnegative weights (the positive weights case), while others

allow arbitrary positive and negative weights (which we call the general

weights case). Lastly, a few summaries work in the “strict” case, where

positive and negative weights are permitted, provided that the final weight

www.cambridge.org/9781108477444
www.cambridge.org

Cambridge University Press
978-1-108-47744-4 — Small Summaries for Big Data
Graham Cormode , Ke Yi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Preliminaries 7

of every item is nonnegative when the summary is interrogated. By contrast,

in the general case, we allow the multiplicity of an item to be negative. For

the positive weights and strict cases, guarantees may be given in terms of

W = ‖v‖1, the sum of the weights. Some summaries have guarantees in terms

of W res(k) = ‖v‖
res(k)
1 , the weight of the input (in the positive weight or strict

case) after removing the k heaviest weights.

Matrices. Going beyond vectors, we may have data that can be thought of

as many different vectors. These can be naturally collected together as large

matrices. We are typically interested in n × d matrices M where both n and d

are considerably large. In some cases, one or other of n and d is not so large, in

which case we have a “short, fat matrix” or a “tall, skinny matrix,” respectively.

As with the vector case, the constraints on the data can affect what is

possible. Are the entries in the matrix integer or real valued? Is each entry in the

matrix seen once only, or subject to multiple additive updates? Are entries seen

in any particular order (say, a row at time), or without any order? Guarantees

may be given in terms of a variety of matrix norms, including entrywise norms,

such as the Frobenius norm,

‖M‖F =

√

∑

i,j

M2
i,j,

or the p-norm, taken over unit norm vectors x,

‖M‖p = sup
‖x‖p=1

‖Mx‖p.

Ordered Data. When U has a total order – namely, given any two items, we

can compare them and determine which is the greater and which is the lesser

under the order – we can formulate additional queries. For example, how many

occurrences of items in a given range are there (range queries)?; what is the

median of the input?; and more generally, what does the data distribution look

like on U?

Some summaries manipulate items only by comparison, that is, given two

items, checking whether one is greater or less than the other, or the two are

equal. These summaries are said to be comparison based. They thus do not

need to assume a fixed universe U beforehand, which is useful when dealing

with, e.g., variable-length strings or user-defined data types.

Geometric Data. Multidimensional geometric data naturally arise in big data

analytics. Any point on earth is characterized by latitude and longitude; a point

www.cambridge.org/9781108477444
www.cambridge.org

Cambridge University Press
978-1-108-47744-4 — Small Summaries for Big Data
Graham Cormode , Ke Yi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 1 Introduction

in space has three coordinates. More importantly, many types of multidimen-

sional data can be interpreted and analyzed geometrically, although they are

not inherently geometric by nature. For example, we may see readings which

include temperature, pressure, and humidity. In data mining, various features

can be extracted from an object, which map it to a high-dimensional point.

Over such data, the summary may support range queries, which could

generalize one-dimensional ranges in different ways such as axis-parallel

rectangles, half-spaces, or simplexes. Moreover, one could ask for many

interesting geometric properties to be preserved by the summary, for example,

the diameter, the convex hull, the minimum enclosing ball, pairwise distances,

and various clusterings.

Graph Data. A graph represents a different kind of multidimensional data,

where each input item describes an edge in a graph. Typically, the set of

possible nodes V is known upfront, and each edge is a member of V × V .

However, in some cases V is defined implicitly from the set of edges that arrive.

Over graphs, typical queries supported by summaries may be to approximate

the distance between a pair of nodes, determine the number of connected

components in the graph, or count the number of a particular subgraph, such

as counting the number of triangles.

1.2.2 Operations on Summaries

For uniformity of presentation, each summary we describe typically supports

the same set of basic operations, although these have different meanings

for each summary. These basic operations are Initialize, Update, Merge,

and Query. Some summaries additionally have methods to Construct and

Compress them.

Initialize. The Initialize operation for a summary is to initialize a new

instance of the summary. Typically, this is quite simple, just creating empty

data structures for the summary to use. For summaries that use randomization,

this can also involve drawing the random values that will be used throughout

the operation of the summary.

Update. The Update operation takes a new data item, and updates the sum-

mary to reflect this. The time to do this Update should be quite fast, since we

want to process a large input formed of many data items. Ideally, this should

be faster than reading the whole summary. Since Update takes a single item

www.cambridge.org/9781108477444
www.cambridge.org

Cambridge University Press
978-1-108-47744-4 — Small Summaries for Big Data
Graham Cormode , Ke Yi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Preliminaries 9

at a time, the summary can process a stream of items one at a time, and only

retain the current state of the summary at each step.

Many summaries described in this book support not only adding a new item

to the summary, but also deleting a previously inserted item. To maintain

uniformity, we treat a deletion as an Update operation with a negative

multiplicity. Examples include the Count-Min Sketch (Section 3.4), Count

Sketch (Section 3.5), and the AMS Sketch (Section 3.6). This usually follows

from the fact the summary is a linear transformation of the multiplicity

vector representing the input, and such summaries are often called linear

sketches. This concept is discussed in more detail toward the end of the book

(Section 9.3.4).

Merge. When faced with a large amount of data to summarize, we would like

to distribute the computation over multiple machines. Performing a sequence

of Update operations does not guarantee that we can parallelize the action

of the summary, so we also need the ability to Merge together a pair of

summaries to obtain a summary of the union of their inputs. This is possible

in the majority of cases, although a few summaries only provide an Update

operation and not a Merge. Merge is often a generalization of Update:

applying Merge when one of the input summaries consists of just a single

item usually reduces to the Update operation. In general, a Merge operation

is slower than Update, since it requires reading through both summaries

in full.

Query. At various points, we want to use the summary to learn something

about the data that are summarized. We abstract this as Query, with the

understanding that the meaning of Query depends on the summary: different

summaries capture different properties of the data. In some cases, Query takes

parameters, while for other summaries, there is a single Query operation.

Some summaries can be used to answer several different types of query. In

this presentation, we typically pick one primary question to answer with the

Query operation, and then discuss the other ways in which the summary can

be used.

Construct. We can always construct a summary by adding items one by

one into the summary using the Update and Merge operations. However, for

a few summaries, Update is expensive, complicated, or even impossible. In

these cases, we will describe how to Construct the summary from the given

input in an offline setting.

www.cambridge.org/9781108477444
www.cambridge.org

Cambridge University Press
978-1-108-47744-4 — Small Summaries for Big Data
Graham Cormode , Ke Yi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 1 Introduction

Compress. Some summaries also provide an additional operation which

seeks to Compress the data structure. This is the case when the effect of

Update and Merge operations allows the size of the summary to grow. In

this case, Compress will aim to reduce the size of the summary as much as

possible, while retaining an accurate representation. However, since the time

cost for this operation may be higher than Update, it is not performed with

every Update operation, but on a slower schedule, say after some number of

Update operations have been performed.

A Simple Example: Counts, Sums, Means, Variances. We give an illus-

tration of how these operations apply to the simple case of keeping counts.

These give a first example of a summary allowing us to track the number of

events that have been observed. Counters also easily allow us to track the

sum of a sequence of weights, find their mean, and compute the observed

variance/standard deviation.

We will illustrate the use of a counter c, and a sum of weights w, as well as

a sum of squared weights s. The Initialize operation sets all of these to zero.

Given an update of an item i, with a possible weight wi , we can Update c by

incrementing it: c ← c + 1. The sum of weights is updated as w ← w + wi ,

and the sum of squared weights as s ← s + w2
i . To Merge together two

counter summaries, we can simply sum the corresponding values: the merge

of c1 and c2 is c1 +c2, the merge of w1 and w2 is w1 +w2, and the merge of s1

and s2 is s1 + s2. We can apply different Query operations to obtain different

aggregates: the total count of all the updates and the total sum of all the weights

are simply the final values of c and w, respectively. The mean weight is given

by w/c, and the variance of the weights is s/w − (w/c)2.

1.2.3 Models of Computation

Traditionally, computer science has focused on the random access machine

(RAM) model of computation to study algorithms and data structures. This

abstraction is a good match for single-threaded computation on a single

machine, but other models are required to fit computation on large volumes

of data. The summaries that we describe are flexible and can be implemented

in a variety of different settings.

The Streaming Model. The streaming model of computation considers data

that arrive as a massive sequence of discrete observations, which collectively

describe the data. For example, we might think of the data as describing a

www.cambridge.org/9781108477444
www.cambridge.org

