Contents

Foreword

Preface

Preface to the first edition

1 **Historical Perspective**
 1.1 Three periods
 1.2 The state vector
 1.3 Other formalisms, field theory, path integrals

2 **Present Situation, Remaining Conceptual Difficulties**
 2.1 Von Neumann’s infinite regress/chain
 2.2 Schrödinger’s cat, measurements
 2.3 Wigner’s friend
 2.4 Negative and “interaction-free” measurements
 2.5 A variety of points of view
 2.6 Unconvincing arguments

3 **The Theorem of Einstein, Podolsky, and Rosen**
 3.1 A theorem
 3.2 Of peas, pods, and genes
 3.3 Transposition to physics
 3.4 Generalizations

4 **Bell Theorem**
 4.1 Bell inequalities
 4.2 Various derivations of the theorem
 4.3 Impact of the Bell theorem, loopholes

5 **Other Inequalities, Cirelson’s Limit, Signaling**
 5.1 Other inequalities
Contents

5.2 Cirelson’s theorem
5.3 Relativity, locality, field theory
5.4 No instantaneous signaling

6 More Theorems
6.1 Quantum properties of GHZ states
6.2 Cabello’s inequality
6.3 Hardy’s impossibilities
6.4 Bell–Kochen–Specker theorem, contextuality
6.5 Reality of the quantum state, \(\psi \)-ontology theorems

7 Quantum Entanglement
7.1 A purely quantum property
7.2 Characterizing entanglement
7.3 Creating and losing entanglement
7.4 Quantum dynamics of a subsystem

8 Applications of Quantum Entanglement
8.1 Two theorems
8.2 Quantum cryptography
8.3 Teleporting a quantum state
8.4 Quantum computation and simulation

9 Quantum Measurement
9.1 Direct measurements
9.2 Indirect measurements
9.3 Conditional and continuous measurements

10 Experiments: Quantum Reduction Seen in Real Time
10.1 Single ion in a trap
10.2 Single electron in a trap
10.3 Measuring the number of photons in a cavity
10.4 Spontaneous phase of Bose–Einstein condensates

11 Various Interpretations and Reconstructions of Quantum Mechanics
11.1 Pragmatism in laboratories
11.2 Ensemble interpretations
11.3 Relational interpretation, relative state vector
11.4 Logical, algebraic, and deductive approaches
11.5 Veiled reality
11.6 Contextual quantum reality
11.7 History interpretation
11.8 Additional (“hidden”) variables
Contents

11.9 Modal interpretation 368
11.10 Modified Schrödinger dynamics 371
11.11 Transactional interpretation 391
11.12 Everett interpretation 392

Conclusion 405

12 Annex: Basic Mathematical Tools of Quantum Mechanics 409
12.1 General physical system 409
12.2 Grouping several physical systems 421
12.3 Particles in a potential 425

Appendix A Mental Content of the State Vector 433
Appendix B Bell Inequalities in Nondeterministic Local Theories 435
Appendix C Attempting to Construct a “Separable” Quantum Theory 439
Appendix D Maximal Probability for a State 442
Appendix E The Influence of Pair Selection 443
Appendix F Impossibility of Superluminal Communication 447
Appendix G Quantum Measurements at Different Times 452
Appendix H Manipulating and Preparing Additional Variables 457
Appendix I Correlations and Trajectories in Bohmian Theory 460
Appendix J Models for Spontaneous Reduction of the State Vector 473
Appendix K Consistent Families of Histories 478
Appendix L Attractive Schrödinger Dynamics 481

References 489
Index 527