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Introduction

Accurate reckoning. The entrance into the knowledge of all existing things and all

obscure secrets.

–The Ahmes–Rhind Papyrus

What is Combinatorics?

Combinatorics is a collection of techniques and a language for the study of (inite or

countably ininite) discrete structures. Given a set of elements (and possibly some structure

on that set), typical questions in combinatorics are:

• Does a speciic arrangement of the elements exist?

• How many such arrangements are there?

• What properties do these arrangements have?

• Which one of the arrangements is maximal, minimal, or optimal according to some

criterion?

Unlike many other areas of mathematics – e.g., analysis, algebra, topology – the core of

combinatorics is neither its subject matter nor a set of “fundamental” theorems. More than

anything else, combinatorics is a collection – some may say a hodgepodge – of techniques,

attitudes, and general principles for solving problems about discrete structures. For any given

problem, a combinatorist combines some of these techniques and principles – e.g., the

pigeonhole principle, the inclusion–exclusion principle, the marriage theorem, various

counting techniques, induction, recurrence relations, generating functions, probabilistic

arguments, asymptotic analysis – with (often clever) ad hoc arguments. The result is a fun

and dificult subject.

In today’s mathematical world, in no small part due to the power of digital computers,

most mathematicians ind much use for the tool box of combinatorics. In problems of pure

mathematics, often, after deciphering the layers of theory, you ind a combinatorics problem

at the core. Outside of mathematics, and as an example, combinatorial problems abound in

computer science.

Typical Problems

To whet your appetite, here is a preliminary sample of problems that we will encounter in the

course of this text.
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2 Introduction

• How many sequences a1,a2, . . . ,a12 are there consisting of four 0’s and eight 1’s, if no two

consecutive terms are both 0’s?

• Abakery has eight kinds of donuts, and a box holds one dozen donuts. Howmany different

boxes can you buy? How many different boxes are there that contain at least one of

each kind?

• Abakery sells seven kinds of donuts. Howmanyways are there to choose one dozen donuts

if no more than three donuts of any kind are used?

• Determine the number of n-digit numbers with all digits odd, such that 1 and 3 each occur

a positive even number of times.

• We are trying to reconstruct a word that is made from the lettersA, B,C,D, andR. We are

given a frequency table that shows the number of times a speciic triple occurs in the word:

triple frequency

ABR 2

ACA 1

ADA 1

BRA 2

CAD 1

DAB 1

RAC 1

For example, ABR occurs twice while ACA appears once. We want to know all words with

the same triples and with the same frequency table. The answer may be that there are no

such words. Note that by a word we mean an ordered collection of letters and we are not

concerned with meaning.

• A particular signaling network consists of six pieces of communications equipment:

x1,x2,y1,y2,z1,z2

We can choose various pairs of these and link each pair through an intermediate facility

(e.g., microwave towers, trunk groups). Intermediate facilities are expensive to build but

if one fails, then all the links through them become inoperative. So, if we build just one

intermediate facility and route all of our connections through it, then its failure will

disconnect everything. However, the design speciication requires that if one intermediate

facility fails, then there will remain at least one link between at least one of the x’s and one

of the y’s and between one of the x’s and one of the z’s, as well as between one of the y’s

and one of the z’s. What is the minimum number of facilities that we need and how should

the connections be designed?

• A soccer ball is usually tiled with 12 pentagons and 20 hexagons. Are any other combina-

tions of pentagons and hexagons possible?

How Do We “Count”?

Counting the number of conigurations of a certain type is an important part of combi-

natorics. In all of the examples in the previous section, it is clear what kind of an answer
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How Do We “Count”? 3

we are looking for. We want a speciic numerical answer or an example of a speciic

coniguration.

However, in many problems, it may be possible to present a solution that is satisfactory in

many ways but is not quite a direct answer. We look at several examples.

(a) Let [n] = {1,2, . . . ,n}, and let f (n) be the number of subsets of [n]. Then f (n) = 2n.

Proof. For any particular subset of [n], each element of [n] is either in that subset or not.

Thus, to construct a typical subset, we have to make one of two choices for each element

of [n]. Furthermore, these choices are independent of each other. Hence, the total number

of choices – and consequently the total number of subsets – is

2 × 2 × · · · × 2
︸ ︷︷ ︸

n

= 2n.
�

This proof gives a closed formula for the answer, and, in fact, gives more than was

asked. It also tells us how to construct all the subsets.

(b) Assume n people give their n hats to a hat-check person. Let f (n) be the number of ways

that the hats can be returned, so that everyone has one hat, but no one has their own hat.

If we list the hats on the left and their owners on the right, then the igure below shows

three ways of returning hats to four people so that none of them gets their own hat back.
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You should check that f (1) = 0, f (2) = 1, and f (3) = 2. You should also try to ind

f (4).

We will show in Section 8.3 that

f (n) = n!

n
∑

i=0

(−1)i

i!
.

This is a formula – and you should check your answers for n = 1, . . . ,4 using it – but

we would have preferred a “nice” closed formula. While you may not ind this formula

pleasing, it does work, and will become even more meaningful when we understand the

signiicance of each term in the sum.

It is also possible to show that f (n) is the nearest integer to n!
e
. This is, of course, easier

to use. But this formula may not have a combinatorial signiicance, and hence, it may be

argued, that it gives us less insight. It is, however, fascinating that in answering a question

about hats, the number e would make an appearance.

(c) Let [n] = {1, . . . ,n}. Let f (n) be the number of subsets of [n] that do not contain two

consecutive integers. For example, if n = 4, then the subsets of {1,2,3,4} that do not

contain two consecutive integers are

www.cambridge.org/9781108476546
www.cambridge.org


Cambridge University Press
978-1-108-47654-6 — An Invitation to Combinatorics
Shahriar Shahriari 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction

∅, {1}, {2}, {3}, {4}, {1,3}, {1,4}, {2,4}.

Thus f (4) = 8. You should also check that f (1) = 2, f (2) = 3, and f (3) = 5.

We will show in Example 1.18 (and again in Example 9.34) that

f (n) =
1

√
5
(τ n+2 − τ n+2), where τ =

1

2
(1 +

√
5), τ =

1

2
(1 −

√
5).

Again, it is unclear how irrational numbers got involved in counting a discrete

phenomenon. This formula can actually be used but seems to give little insight into the

problem. Sometimes, there are alternatives to inding a closed formula. For this problem,

we can prove the following recurrence relation:

CLAIM: f (n) = f (n− 1) + f (n− 2).

Proof. All “good” subsets of [n] either have n or don’t have n. The ones that don’t have

n are exactly the “good” subsets of [n − 1]. The “good” subsets of [n] that include n are

exactly the “good” subsets of [n− 2] together with n. Thus f (n) = f (n− 1) + f (n− 2). �

Seeing the recurrence relation, we know that the sequence f (1), f (2), . . . is the Piṅgala–

Fibonacci sequence (see Section 1.2.1), and we can use the recurrence relation to generate

as many values of f as we want. In fact, the closed formula quoted above can be derived

from this recurrence relation.

(d) We have a sequence a0 = 1, a1, a2, . . . such that, for all n ≥ 1,

n
∑

k=0

akan−k = 1.

We want to ind a47.

For example,

a0 = 1

a0a1 + a1a0 = 1 ⇒ a1 + a1 = 1 ⇒ a1 = 1/2

a0a2 + a1a1 + a2a0 = 1 ⇒ a2 +
(
1
2

)2
+ a2 = 1 ⇒ a2 = 3/8.

We see that we could continue and, step by step, calculate the terms of the sequence.

This is quite tedious. An alternative way to approach this problem is through generating

functions. If we want to ind a formula for some function f (n)where n is a natural number,

then we can form the generating function of f (n):
∑

n≥0

f (n)xn = f (0) + f (1)x+ f (2)x2 + · · · + f (n)xn + · · · .

Here we are concerned with formal power series, and questions of convergence do not

come up (at least for elementary applications). Sometimes this power series has a nice

closed form and then we can manipulate this function and get information about f (n).

So for our problem, let

F(x) = a0 + a1x+ a2x
2 + · · · .
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Now

F(x)F(x) = (a0 + a1x+ a2x
2 + · · · )(a0 + a1x+ a2x

2 + · · · )

= a20 + (a0a1 + a1a0)x+ (a0a2 + a1a1 + a2a0)x
2 + · · ·

= 1 + x+ x2 + · · ·

=
1

1 − x
.

We have (F(x))2 = 1
1−x and so

F(x) =
1

√
1 − x

.

Now an is the coeficient of x
n in the Taylor series expansion of F(x). So, we can use a

symbolic algebra software such as SageMath�, Maple�, or Mathematica� to ind any

desired value of an.

As an example, in Maple, we irst deine the function by > F := 1√
1−x , and

then get the coeficient of x47 in the Taylor polynomial expansion of F at x= 0 by

>coeftayl(F,x=0,47). We get

a47 =
50803160635786570329644235

618970019642690137449562112
.

It is amazing that calculus can help in solving such a discrete problem. In fact, the

generating function F(x) can actually be used to get

an =
1 · 3 · 5 · · · (2n− 1)

2nn!
.

However, it is not clear that this formula is any better than the generating function.

As the examples show, we will not only use a myriad of techniques for solving counting

problems, but we will also reine our sense of what a good solution should look like. This all

will (hopefully) become clear as we get our hands dirty and start solving problems.
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