Research from the neurosciences and behavioural sciences highlights the importance of individual differences in explaining human behaviour. Individual differences in core psychological constructs, such as intelligence or personality, account for meaningful variations in a vast range of responses and behaviours. Aspects of chess have been increasingly used in the past to evaluate a myriad of psychological theories, and several of these studies consider individual differences to be key constructs in their respective fields. This book summarizes the research surrounding the psychology of chess from an individual-differences perspective. The findings accumulated from nearly forty years' worth of research about chess and individual differences are brought together to show what is known – and still unknown – about the psychology of chess, with an emphasis on how people differ from one another.

Angel Blanch works in the Department of Psychology at the University of Lleida, Catalonia, Spain. His research focuses on individual differences, intellectual performance and data analyses in behavioural science. Angel also serves as an associate editor at Personality and Individual Differences, as well as advising on the editorial board for Psychological Assessment and Stress and Health.
CHESS AND INDIVIDUAL DIFFERENCES

ANGEL BLANCH

Universitat de Lleida
CONTENTS

List of Figures page vii
List of Tables x
Preface xii
Acknowledgements xiii

1 Introduction

1.1 A Very Brief Opening to the Game of Chess 1
1.2 Overview of This Book 4

2 Quantifying Chess Skill

2.1 Elo Rating Lists 10
2.2 Updating Mechanism and Basic Statistics of the Elo Rating 11
2.3 Alternatives to the Elo Rating of Chess Players 15
2.4 Overview of Studies Using the Elo Rating 17

3 Cognition

3.1 Perception 20
3.2 Memory 25
3.3 Thinking 30

4 Individual Differences

4.1 Characterization and Appraisal of Individual Differences 39
4.2 Individual Differences in Chess 45
4.3 Heredity versus Environment 51

5 Psychophysiology and Brain Functioning

5.1 Psychophysiology and Chess 58
5.2 Brain Basics 60
5.3 Electroencephalography (EEG) 62
5.4 Overview of Brain-Imaging Studies 65
5.5 Cerebral Cortex Areas 81
5.6 Hemispheric Specialization 83
5.7 Other Brain Areas and Anatomical Changes 85
5.8 Summarizing Findings about Brain Functioning and Chess 87
CONTENTS

6 Intelligence

6.1 Approaches to the Study of Intelligence 93
6.2 Individual Differences in Intelligence and Chess 97
6.3 Intelligence and Chess in Children 102
6.4 Intelligence and Chess in Adults 107
6.5 Summarizing Findings about Intelligence in Chess 110
6.6 Chess Skill versus Chess Motivation in Predicting Chess Performance 112

7 Personality

7.1 Approaches to the Study of Personality 120
7.2 Personality and Chess-Playing Style 124
7.3 Personality Factors Studied with Chess Players 126
7.4 Personality, Motivation, Emotional Regulation, and Chess Knowledge 130

8 Expertise

8.1 The Role of Practice 138
8.2 Talent versus Practice 146
8.3 Cognitive Decline in Chess 151

9 Sex Differences

9.1 Sex Differences in Intelligence and Personality 159
9.2 Sex Differences in Science, Technology, Engineering, and Mathematics (STEM) 162
9.3 Sex Differences in Participation Rates in Chess 164
9.4 Sex Differences in Chess Playing 169
9.5 Sex Differences in Chess Performance at Different Levels of Practice 171

10 Applications

10.1 Business 181
10.2 Health 184
10.3 Education and School 187
10.4 Transfer 194
10.5 Statistical Power 196

11 Concluding Remarks

Appendices 207
Glossary 249
References 254
Index 291
FIGURES

1.1 A chess game with all intervening pieces in action (left diagram); a chess problem with white to play and win (right diagram; taken from a game between Velimirovic and Csom in Amsterdam, 1974) page 2

2.1 Elo rating lists of the World (a), Spanish (b), and Catalan Chess Federations (c), and Elo rating list of top twenty-eight computer chess engines out of a list of 353 engines (d) 11

2.2 Density plot of the Elo rating with normal (continuous line) and logistic (dotted line) distributions 14

2.3 Density plots for the distribution of the Elo ratings in the age of participants (a), number of games (b), tournament outcome (c), and Elo rating (d) of four chess tournaments 15

3.1 The representation of a chess tree with 86 nodes begins in the black central node, which splits into three main variants (dotted lines); each successive node splits into three lower-level nodes, representing the alternative choices arising at each main variant 20

4.1 A structure of personality impressions from a multidimensional scaling approach (Rosenberg, Nelson, & Vivekananthan, 1968) 42

4.2 A simple classification of psychological traits into two broad dimensions: intelligence and personality 42

4.3 There are different levels of analysis and measurement in differential psychology; the levels of analyses (traits, processes, and biological) can be combined to analyse the variability in a given target behaviour 43

4.4 Cross-sectional, longitudinal, and sequential research designs to evaluate inter-individual variability 44

4.5 The PPIK theory applied to the chess domain (intelligence as process, personality, interests, intelligence as knowledge: Ackerman, 1996); Gf = fluid intelligence; Gc = crystallized intelligence; TIE = typical intellectual engagement 47
Sample items from the Amsterdam Chess Test in the choose-a-move, predict-a-move, and recall subtasks (van der Maas & Wagenmakers, 2005)

Diagram (a): the four main lobes of the human cerebral cortex: frontal, parietal, temporal, and occipital. The main functions of the cerebral cortex are (frontal lobes): motor skills, voluntary movement, speech, problem solving and judgement; (parietal lobes): sensory awareness, symbolic communication, and abstract reasoning; (occipital lobes): visual processing; (temporal lobes): visual memory, recognition of objects and faces, and verbal memory for the use of language (reproduced with permission from the American Psychological Association). Diagram (b): the 10–20 system for the recording of electroencephalograms (EEGs) in humans, showing the reference electrodes nasion (NZ) and inion (IZ), and electrodes corresponding to the cerebral cortex lobes, frontal (F), temporal (T), parietal (P), and occipital (O); the amount of electrodes can vary depending on the research aims and kind of equipment

The normal distribution with IQ scores compared with the approximate percentage of cases under the curve, and other scoring systems

Hierarchical (Carroll’s model) and non-hierarchical (Thurstone’s model) psychometric models of human intelligence; the squares in both models represent the specific tests used to measure each broad factor

Structural equation model evaluating the impact of chess skill (Elo rating) and motivation, on tactical (T), positional (P), and endgame (E) chess performance; observed variables are represented with squares, latent (unobserved) variables are represented with ellipses; one-headed arrows represent causal links, the two-headed arrow a correlation; there were twelve degrees of freedom for Model 1, and fifteen degrees of freedom for Models 2 and 3 (CFI = comparative fit index; TLI = Tucker–Lewis index; RMSEA = root mean squared error of approximation; AIC = Akaike information criterion)

Eysenck’s PEN (psychoticism–extraversion–neuroticism) and Gray’s RST (reinforcement sensitivity theory of personality) models of personality

Structural equation model with observed variables to predict the Elo rating, from age, verbal chess knowledge (openings, positional, endgame, visualization), personality factors (extraversion, neuroticism, psychoticism), chess motivation, and emotional regulation (cognitive reappraisal, expressive suppression); all correlation coefficients (double-headed arrows) were significant at the p < 0.05 level. The exogenous variable ε1 represents an error term

The power law in action in six information-processing tasks: mirror tracing, reading inverted text, scanning visual targets, sentence recognition, an online editing routine, and geometry proof justification. The Y axis shows the time (seconds) invested in completing the task, the X axis
represent 100 trials in each task. The empirical parameters (a and b) are those as suggested in the study by Newell and Rosenbloom (1981).

8.2 Association of age with the predicted Elo rating at three levels of expertise: FIDE masters (white colouring), international masters (grey), and grandmasters (black). Triangles represent men, and circles represent women (data: FIDE list, March 2014).

9.1 Female observed ranks (black dots) compared with the expected rank (straight line), discontinuous lines representing the 0.05 and 99.95 quantiles; male to female ratios (M:F) are shown next to each country name.

9.2 Discrepancy in actual and estimated sex differences in Elo rating points for twenty-four Eurasian countries: Azerbaijan, Belarus, Bulgaria, Croatia, the Czech Republic, England, France, Georgia, Germany, Greece, Hungary, Italy, Lithuania, the Netherlands, Poland, Portugal, Romania, Russia, Serbia, Slovakia, Slovenia, Spain, Turkey, Ukraine.

9.3 Elo ratings for men (black triangles) and women (white circles) at twelve, six, three, and two levels of practice; the horizontal dotted line represents 2000 Elo points.
TABLES

1.1 Overview of the two main approaches to psychological research

2.1 Example of the Elo rating updating in one chess game between players KS versus AB, and JP versus LQ

2.2 Descriptive statistics of the Elo ratings in four chess tournaments

3.1 Information-processing models to explain perceptual processes in chess (EPAM = elementary perceiver and memorizer; MAPP = memory-aided pattern perceiver)

3.2 Overview of theories addressing the role of expert memory in chess (LTM = long-term memory; SEEK = search, evaluation, knowledge) with the degree of supportive and unsupportive evidence (Gobet, 1998)

5.1 Studies in brain functioning in chess players (EEG = electroencephalography; MEG = magnetoencephalography; fMRI = functional magnetic resonance imaging; PET = positron emission tomography; SPECT = single-photon emission computerized tomography). In the N column, ‘M’ denotes that all participants were males, and ‘F’ denotes the number of females

6.1 Overview of some tests to evaluate cognitive abilities

6.2 Theories and approaches to the study of human intelligence

6.3 Unofficial and official world chess champions and additional intellectual activities

7.1 Factors (in boldface) and facets of the five-factor model (FFM) measured with the NEO-PI-R instrument

7.2 Comparison of verbal chess knowledge, chess motivation, personality factors, emotional regulation, and the Elo rating in chess players and in the general population (normative data for extraversion, neuroticism, and psychoticism: \(n = 527 \); normative data for verbal chess knowledge, chess motivation and Elo rating: \(n = 259 \); normative data for cognitive reappraisal and expressive suppression \(n = 1,483 \); chess players: \(n = 100 \))

8.1 Achievements and shortcomings of experts (Chi, 2006a), and good performance and poor performance of experts in accordance with task characteristics (Shanteau, 1992, 2015)
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2</td>
<td>Practice impact and determinants of individual differences in expert performance in accordance with the type of task (Ackerman, 2007). Differential effective strategies refer to tasks that can be completed successfully with different strategies. Inconsistent information processing refers to acquiring different skills to complete the same task. Closed tasks are bounded by a finite domain of knowledge, whereas open tasks are unbounded and cumulative</td>
<td>138</td>
</tr>
<tr>
<td>9.1</td>
<td>Cognitive tasks and tests showing sex differences (adapted from Halpern, 1997)</td>
<td>160</td>
</tr>
<tr>
<td>9.2</td>
<td>Means, standard deviations (Sd) and t-tests in number of games, and Elo ratings for 600 men and women chess players. Layer 1 has twelve levels with fifty men and fifty women; layer 2 has six levels with 100 men and 100 women; layer 3 has three levels of 200 men and 200 women; layer 4 has two levels of 300 men and 300 women</td>
<td>175</td>
</tr>
<tr>
<td>10.1</td>
<td>Overview of studies describing a chess instructional intervention for schoolchildren (M:F = male to female ratio)</td>
<td>190</td>
</tr>
<tr>
<td>10.2</td>
<td>Post-hoc analyses of statistical power (1 - β) of studies describing a chess instructional intervention for schoolchildren (d = 0.5 and 0.8, α = 0.05). The studies with only one sample size conducted comparisons of experimental and control groups of equal sample sizes</td>
<td>198</td>
</tr>
</tbody>
</table>
PREFACE

A considerable body of research within several fields of neurosciences and behavioural sciences has highlighted the crucial importance of individual differences in explaining human behaviour. Individual differences in core psychological constructs such as intelligence or personality account for meaningful variations in a vast diversity of responses and behaviours. Some aspects of the game of chess have been used in the past to evaluate a myriad of psychological theories. Several of these studies consider individual differences as key constructs in their respective fields of research. This book summarizes the latest research about the psychology of chess from an individual differences approach. The volume provides a comprehensive overview of the findings accumulated through nearly forty years of research into chess and individual differences. This volume, *Chess and Individual Differences*, organizes a complete perspective in terms of what is already known and what remains unknown about the psychology of chess, with an emphasis on individual differences.
ACKNOWLEDGEMENTS

Writing this book would have been impossible without the help of the Cambridge staff. In particular, I am gratefully indebted to Janka Romero, Emily Watton, and Jessica Norman for providing assistance throughout the process. Special thanks go to Guillermo Campitelli, who elaborated extensive and priceless feedback on an earlier draft of the manuscript. My greatest debt, however, is to my wife, Loles, and to my two-year-old daughter, Petra, who stoically withstood the time and effort spent on the book and gave me comfort in the meanwhile.