ENVIRONMENTAL CONTAMINATION FROM THE FUKUSHIMA NUCLEAR DISASTER

The 2011 accident at the Fukushima Daiichi Power Station led to serious radioactive contamination of the environment. Due to transportation by seasonal wind and ocean currents, these radioactive materials have now been observed in many places in the Northern Hemisphere. This book provides a unique summary of the environmental impact of the unprecedented accident. It covers how radioactive materials were transported through the atmosphere, oceans and land. The techniques used to investigate the deposition and migration processes are also discussed including atmospheric observation, soil mapping, forest and ecosystem investigations and numerical simulations. With chapters written by international experts, this is a crucial resource for researchers working on the dispersion and impact of radionuclides in the environment. It also provides essential knowledge for nuclear engineers, social scientists and policymakers to help develop suitable mitigation measures to prepare for similar large-scale natural hazards in the future.

Teruyuki Nakajima is an Emeritus Professor at the University of Tokyo. He is currently serving as Chief Scientist of the Earth Observation Research Center (EORC) at the Japan Aerospace Exploration Agency (JAXA). At the time of the Fukushima accident he was a member of the Science Council of Japan, Section President of Atmospheric and Hydrospheric Sciences at the Japan Geoscience Union and an executive member of the Japan Meteorological Society. In these roles, he helped investigate and organise the emergency response to the disaster. He is a fellow of the American Geophysical Union, and in 2017 he was awarded the 2017 Japan Purple Ribbon medal.

Toshimasa Ohara is Research Director of the Fukushima Branch at the National Institute for Environmental Studies (NIES). He leads the Environmental Emergency Research Program that contributes to environmental recovery and renovation in Fukushima. After the Fukushima accident, his group worked on atmospheric simulations of radionuclides from the disaster, and published the first result of temporal and spatial variations of deposition rates on a regional scale. He is President of the Japan Society for Atmospheric Environment and serves as a member of the Science Advisory Committee of the Acid Deposition Monitoring Network in East Asia (EANET).
MITSUO UEMATSU is Emeritus Professor and former Director of the Centre for International Collaboration at the Atmosphere and Ocean Research Institute at the University of Tokyo. His major research interests include the long-range transport of natural and anthropogenic substances over the ocean and the properties of marine aerosols, including their impact on the marine environment. He has received several awards from Japanese societies and international organisations. He has served as the president of the Oceanographic Society of Japan, a member of the Scientific Committee of the International Geosphere–Biosphere Programme (IGBP SC) and chair of the Japanese National Committee for Intergovernmental Oceanographic Commission (IOC) of UNESCO.

YUICHI ONDA is Chief Administrator of the Center for Research and Environmental Dynamics, and a professor at the Graduate School of Life and Environmental Sciences, both at the University of Tsukuba. He specialises in hydrogeomorphology and geomorphic development. After the Fukushima accident, he started an interdisciplinary research project on gamma-emitting radionuclides released into the environment in order to study the behaviour of radionuclides in terrestrial and marine environments. The results of the study are expected to contribute to the reconstruction of the contaminated environment.
CAMBRIDGE ENVIRONMENTAL CHEMISTRY SERIES

The Environmental Chemistry Series

This wide-ranging series covers all areas of environmental chemistry, placing emphasis on both basic scientific and pollution-orientated aspects. It comprises a central core of textbooks, suitable for those taking courses in environmental sciences, ecology and chemistry, as well as more advanced texts (authored or edited) presenting current research topics of interest to graduate students, researchers and professional scientists. Books cover atmospheric chemistry, chemical sedimentology, freshwater chemistry, marine chemistry, and soil chemistry.

Series editors

S. J. de Mora Plymouth Marine Laboratory, Plymouth, UK
P. G. C. Campbell Institut National de la Recherche Scientifique, Quebec, Canada
T. Lyons University of California, Riverside, USA
L. Sigg Eawag Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
P. Ariya McGill University, Montreal, Canada
R. Prince ExxonMobil Biomedical Sciences, New Jersey, USA

Recent books in the series

W. Davison, Diffusive Gradients in Thin-Films for Environmental Measurements
S. Roy, C. A. Llewellyn, E. S. Egeland and G. Johnsen, Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography
E. Tipping, Cation Binding by Humic Substances
D. Wright and P. Welbourn, Environmental Toxicology
S. J. de Mora, S. Demers and M. Vernet, The Effects of UV Radiation in the Marine Environment
T. D. Jickells and J. E. Rae, Biogeochemistry of Intertidal Sediment
ENVIRONMENTAL CONTAMINATION FROM THE FUKUSHIMA NUCLEAR DISASTER
Dispersion, Monitoring, Mitigation and Lessons Learned

Edited by

TERUYUKI NAKAJIMA
Japan Aerospace Exploration Agency, Japan

TOSHIMASA OHARA
National Institute for Environmental Studies, Japan

MITSUO UEMATSU
University of Tokyo, Japan

YUICHI ONDA
University of Tsukuba, Japan
Contents

Contributors page xiv
Preface xix
Acknowledgements xxii

Part I Transport of Radioactive Materials in the Environment 1

1 Introduction: Basic Concepts Regarding the Fukushima Accident and Radiation and Radioactivity 5

1.1 Overview of the Fukushima Accident
TERUYUKI NAKAJIMA, TOSHIMASA OHARA, MITSUO UEUMATSU AND YUICHI Onda
1.2 Radioactive Elements, Radioactive Nuclides and Radioactive Substances
MITSURO EBIHARA AND ATSUSHI SHINOHARA
1.3 Measurement of Radiation
MITSURO EBIHARA AND ATSUSHI SHINOHARA
1.4 Example of γ-Ray Spectrometry to Determine Accurate Radioactivity Values
MITSURO EBIHARA, ATSUSHI SHINOHARA AND YASUNORI HAMAJIMA
1.5 Radioactivity and Radiation Dose
MITSURO EBIHARA AND ATSUSHI SHINOHARA
1.6 Effects of Radioactive Substances on Humans
YASUHITO IGARASHI AND TATSUO AONO
1.7 Environmental Transfer of Radioactive Substances
YASUHITO IGARASHI
1.8 Temporal Trends of Radioactive Substances after and before the Fukushima Daiichi Nuclear Power Plant Accident: Quantitative Comparison
YASUHITO IGARASHI, MICHIO AOYAMA AND MASAYUKI TAKIGAWA
1.9 Characteristics of Anthropogenic Radionuclides in the Atmosphere after the Fukushima Daiichi Nuclear Power Plant Accident

YASUHITO Igarashi

1.10 Time-Dependent Change of Radiation Levels in the 80 km Zone for Five Years after the Fukushima Accident

KIMIAKI SAITO

References

2 Estimation of Environmental Releases of Radioactive Materials

2.1 Release of Radioactive Materials into the Atmosphere

MASAMICHI CHINO AND HARUYASU NAGAI

2.2 Reverse Estimation Method for the Source Term

MASAMICHI CHINO AND HARUYASU NAGAI

2.3 Release Rates of Radionuclides from the FDNPS

MASAMICHI CHINO AND HARUYASU NAGAI

2.4 Evaluation of the Release Rates

MASAMICHI CHINO AND HARUYASU NAGAI

2.5 Estimation of the Direct Release into the Ocean

DAISUKE TSUMUNE AND YUKIO MASUMOTO

References

3 Diffusion in the Atmosphere

3.1 The Atmospheric Transport Process for Radioactive Substances and the Effects of Meteorological Conditions

HISASHI NAKAMURA, YU MORINO AND MASAYUKI TAKIGAWA

3.2 Atmospheric Transportation and Deposition of the Radioactive Materials

YU MORINO, MASAYUKI TAKIGAWA AND HISASHI NAKAMURA

3.3 Atmospheric Dispersion of Releases

ANNE MATHIEU, OLIVIER SAUNIER, DENIS QUÉLO AND DAMIEN DIDIER

3.4 What Would Have Happened if This Accident Had Occurred in a Different Season or at a Different Power Plant?

HISASHI NAKAMURA, YU MORINO AND MASAYUKI TAKIGAWA

3.5 Factors Contributing to Uncertainty in Atmospheric Diffusion Models

MASAYUKI TAKIGAWA, YU MORINO AND HISASHI NAKAMURA

3.6 Behaviour of Radioactive Substances Based on Atmospheric Monitoring at Fukushima University

AKIRA WATANABE
Contents

3.7 Atmospheric Radionuclides Concentrations Just After the Fukushima Accident 91
HARUO TSURUTA, YASUJI OURA, MITSURU EBIHARA AND DAISUKE GOTO

3.8 Monitoring the Radioactivity of Atmospheric Aerosols and the Influence of Resuspension from the Ground 98
KAZUYUKI KITA AND MIZUO KAJINO

3.9 Characteristics of Radioactive Materials in Aerosols 103
YOSHIO TAKAHASHI AND NAOHIRO YOSHIDA

3.10 Sizes and Distributions of Metallic Particles Caused by Burning or Explosion 105
ISAO TANIHATA AND MAMORU FUJIWARA

References 106

4 Global Transport of Radioactive Materials 112

4.1 Global Observation of Radioactive Material 112
TAICHU YASUMICHI TANAKA, TOSHIHIKO TAKEMURA AND MICHIKO AOYAMA

4.2 Simulations of the Long-Range Transport of Radioactive Materials after the Accident 116
TAICHU YASUMICHI TANAKA, TOSHIHIKO TAKEMURA AND MICHIKO AOYAMA

4.3 Estimation of the Transport Pathway and Simulation of Radioactive Materials Using Global-Scale Models 117
TAICHU YASUMICHI TANAKA, TOSHIHIKO TAKEMURA AND MICHIKO AOYAMA

4.4 Inverse Estimation of Emission Fluxes Based on Global Observations and Numerical Simulations 120
TAICHU YASUMICHI TANAKA, TOSHIHIKO TAKEMURA AND MICHIKO AOYAMA

4.5 Future Issues in the Global Simulation of Radioactive Materials 123
TAICHU YASUMICHI TANAKA, TOSHIHIKO TAKEMURA AND MICHIKO AOYAMA

References 125

5 Ocean Transport of Radioactive Materials 128

5.1 Introduction 128
MICHIKO AOYAMA, MITSUO UEYATSU, SEIYA NAGAO, TAKASHI ISHIMARU, JOTA KANDA, TATSUO AONO, YUKIO MASUMOTO AND DAISUKE TSUMUNE
Contents

5.2 Measurement of Radioactive Materials Over the Marine Atmosphere 129
MITSUO UEMATSU

5.3 Behaviour of Radiocaesium from Rivers to the Coastal Marine Environment 131
SEIYA NAGAO

5.4 Transport of Radiocaesium in the North Pacific Ocean 134
MICHIKO AOYAMA

5.5 Dispersion Simulation and Estimation of the Total Amount of \(^{137}\)Cs Directly Discharged into the Ocean 138
YUKIO MASUMOTO AND DAISUKE TSUMUNE

5.6 Investigation of Radioactive Contamination of Marine Biota: A Chronicle 141
TAKASHI ISHMARU

5.7 Pollution in Coastal Environments: Seawater and Sediment 144
JOTA KANDA

5.8 Pollution of Marine Fish and Shellfish 148
TAKASHI ISHMARU AND TATSUO AONO

5.9 Transfer Mechanisms of Radionuclides in the Marine Ecosystem 154
JOTA KANDA AND TAKASHI ISHMARU

5.10 Radioactive Caesium from the Fukushima Nuclear Power Plant in Migratory Marine Animals 157
ZO菲IA BAUMANN, DANIEL J. MADIGAN AND NICHOLAS S. FISHER

References 162

6 Diffusion and Deposition of Radioactive Materials in the Terrestrial Environment 167

6.1 Overview of the Large-Scale Measurement of Radioactive Materials Deposited on Ground Surfaces 167
ISAO TANIHATA, MAMORU FUJIWARA AND YUICHI ONDA

6.2 Radionuclide Transfer from Forest Environments 176
YUICHI ONDA

6.3 Sediment and Radionuclide Transfer from the Land to the Ocean: International Research Perspectives 182
OLIVIER EVRARD AND J. PATRICK LACEBY

6.4 Distribution and Migration of Radioiodine in Terrestrial Environment 186
TETSUYA MATSUNAKA AND KIMIKAZU SASA

6.5 Understanding the Migration Behaviour of Radiocaesium at the Molecular Scale 191
YOSHIO TAKAHASHI, KAZUYA TANAKA AND AYA SAKAGUCHI
Contents xi

6.6 Effects on Agricultural Products and Wild Plants 197
CHISATO TAKENAKA

References 206

Part II Development and Future Issues for the Infrastructure of Disaster Prevention 213
Preliminary remarks 215

TOKUSHI SHIBATA

7 Monitoring System 219
7.1 Introduction 219
HIROMI YAMAZAWA

7.2 Radiation Monitoring Facilities 220
HIROMI YAMAZAWA

7.3 Information Necessary for Off-Site Countermeasures 224
HIROMI YAMAZAWA

7.4 Other Infrastructure 225
HIROMI YAMAZAWA

7.5 Monitoring of Rivers 228
YUICHI ONDA

References 228

8 Dispersion Modelling of Radioactive Materials 230
8.1 Overview of SPEEDI 230
HARUYASU NAGAI AND HIROMI YAMAZAWA

8.2 Role of SPEEDI in the Emergency Response Framework 233
HARUYASU NAGAI AND HIROMI YAMAZAWA

8.3 Response to the Fukushima Daiichi Nuclear Power Station Accident 235
HARUYASU NAGAI AND HIROMI YAMAZAWA

8.4 How Should We Have Utilised SPEEDI? 236
HARUYASU NAGAI AND HIROMI YAMAZAWA

8.5 Lessons and Tasks for SPEEDI from the Accident 238
HARUYASU NAGAI AND HIROMI YAMAZAWA

8.6 Recent Status of Atmospheric Dispersion Modelling 239
HARUYASU NAGAI AND HIROMI YAMAZAWA

References 241

9 Off-Site Decontamination 243
9.1 Concept of Decontamination and Its Application 243
YUICHI MORIGUCHI
xii

Contents

9.2 Decontamination Techniques Used at Contaminated Sites 245
 YUICHI MORIGUCHI

9.3 Timeline of the Decontamination-Related Events Following
 the Disaster 246
 YUICHI MORIGUCHI

9.4 Demonstration Tests and Demonstration Model Projects for
 Decontamination Technologies 249
 YUICHI MORIGUCHI

9.5 Contamination Levels Required to Trigger Intensive Survey
 for the Necessity of Decontamination Work and of the
 Goals of Decontamination 251
 YUICHI MORIGUCHI

9.6 Temporary and Interim Storage, Processing and the Final
 Disposal of Soil and Waste Generated by Decontamination 253
 YUICHI MORIGUCHI

9.7 Conclusion 255
 YUICHI MORIGUCHI

References 256

Part III Lessons and Future Issues from the
Fukushima Accident 257

10 Urgent Actions by Scientists 261

10.1 The Gathering and Distribution of Information Required
 for Applying Countermeasures at the Disaster Site 261
 TOKUSHI SHIBATA

10.2 The Need for Interdisciplinary Research 262
 TOSHIMASA OHARA

10.3 Explanation of Scientific Phenomena and Uncertainties:
 The Importance of Validation –Lessons from the IPCC 268
 TERUYUKI NAKAJIMA

10.4 Proposal for Group Voice: Going beyond the Limits of
 One Voice and Making Information Provided by Scientists
 Available to the Public in Emergency Situations 271
 HIROMI YOKOYAMA

10.5 The Autonomous Dissemination of Information from Scientists 277
 MASATOSHI IMADA

11 Emergency Actions and Messages Related to the Fukushima Accident 284

11.1 Reports from Fukushima University 284
 AKIRA WATANABE
Contents

11.2 Efforts of the Science Council of Japan and Scientific Societies and Unions 291
TERUYUKI NAKAJIMA, TOKUSHI SHIBATA AND TOMOYUKI TAKAHASHI

11.3 Urgent Atmospheric Measurements Under Collaboration between Geoscientists and Radiological Chemists 294
HARUO TSURUTA AND TERUYUKI NAKAJIMA

11.4 Urgent Survey for the Disaster at Sea 297
MITSUO UEMATSU, TAKESHI KAWANO AND ATSUSHI TSUDA

11.5 Participation of Nuclear Physicists in the Screening Survey 305
ISAO TANIHATA AND MAMORU FUJIWARA

11.6 Large-Scale Investigation of Deposited Radioactive Materials 309
TOKUSHI SHIBATA, ISAO TANIHATA, MAMORU FUJIWARA, TAKAHARU OTSUKA AND SUSUMU SHIMOURA

11.7 Scientists’ Contribution to the Study of Forests 323
YUICHI ONDA

11.8 Specific Characteristics of the Fukushima Accident 325
ANNE MATHIEU, DENIS QUÉLO, OLIVIER SAUNIER AND DAMIEN DIDIER

References 326

12 Recommendations for the Fukushima Project from Foreign Scientists 328

12.1 Emergency Response Improvements Following the Fukushima Nuclear Accident 328
ANNE MATHIEU, DENIS QUÉLO, OLIVIER SAUNIER AND DAMIEN DIDIER

12.2 Suggestions for Future Steps to be Taken by Japan 331
NICHOLAS S. FISHER

12.3 Recommendations to Japanese Researchers 333
OLIVIER EVRARD

References 334

Glossary 335

Names of Locations 351

Index 353

The colour plate section appears between pages 170 and 171.
Contributors

Aono, Tatsuo
National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan

Aoyama, Michio
Fukushima University, Fukushima, Japan

Baumann, Zofia
University of Connecticut, Groton, CT, USA

Chino, Masamichi
National Institutes for Quantum and Radiological Science and Technology, Takasaki, Japan

Didier, Damien
Institute for Radioprotection and Nuclear Safety (IRSN), Paris, France

Ebihara, Mitsuru
Waseda University, Tokyo, Japan

Elwood, James A.
Meiji University, Tokyo, Japan

Evrard, Olivier
Laboratoire des Sciences du Climat et de l’Environnement (LSCE/IPSL), Paris, France
Contributors

Fisher, Nicholas S.
Stony Brook University, Stony Brook, NY, USA

Fujiwara, Mamoru
Osaka University, Osaka, Japan

Goto, Daisuke
National Institute for Environmental Studies (NIES), Tsukuba, Japan

Hamajima, Yasunori
Kanazawa University, Kanazawa, Japan

Igarashi, Yasuhiro
Kyoto University, Kyoto, Japan

Imada, Masatoshi
University of Tokyo, Tokyo, Japan

Ishimaru, Takashi
Tokyo University of Marine Science and Technology, Tokyo, Japan

Kajino, Mizuo
Meteorological Research Institute, Tskuba, Japan

Kanda, Jota
University of Tokyo of Marine Science and Technology, Tokyo, Japan

Kawano, Takeshi
Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan

Kita, Kazuyuki
Ibaraki University, Mito, Japan

Laceby, J. Patrick
Alberta Environment and Parks, Calgary, Alberta, Canada

Madigan, Daniel J.
Harvard University, Cambridge, MA, USA
Contributors

Masumoto, Yukio
University of Tokyo, Tokyo, Japan

Mathieu, Anne
Institute for Radioprotection and Nuclear Safety (IRSN), Paris, France

Matsunaka, Tetsuya
Kanazawa University, Kanazawa, Japan

Moriguchi, Yuichi
University of Tokyo, Tokyo, Japan

Morino, Yu
National Institute for Environmental Studies (NIES), Tsukuba, Japan

Nagai, Haruyasu
Japan Atomic Energy Agency (JAEA), Tokai, Japan

Nagao, Seiya
Kanazawa University, Kanazawa, Japan

Nakajima, Teruyuki
Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan

Nakamura, Hisashi
University of Tokyo, Tokyo, Japan

Ohara, Toshimasa
National Institute for Environmental Studies (NIES), Tsukuba, Japan

Onda, Yuichi
University of Tsukuba, Tsukuba, Japan

Otsuka, Takaharu
University of Tokyo, Tokyo, Japan

Oura, Yasuji
Tokyo Metropolitan University, Tokyo, Japan
Contributors

Quélo, Denis
Institute for Radioprotection and Nuclear Safety (IRSN), Paris, France

Saito, Kimiaki
Japan Atomic Energy Agency (JA EA), Kashiwa, Japan

Sakaguchi, Aya
University of Tsukuba, Tsukuba, Japan

Sasa, Kimikazu
University of Tsukuba, Tsukuba, Japan

Saunier, Olivier
Institute for Radioprotection and Nuclear Safety (IRSN), Paris, France

Shibata, Tokushi
Chiyoda Technol Corporation, Tokyo, Japan

Shimoura, Susumu
University of Tokyo, Tokyo, Japan

Shinohara, Atsushi
Osaka University, Osaka, Japan

Takahashi, Tomoyuki
Kyoto University, Kyoto, Japan

Takahashi, Yoshio
University of Tokyo, Tokyo, Japan

Takemura, Toshihiko
Kyushu University, Fukuoka, Japan

Takenaka, Chisato
Nagoya University, Nagoya, Japan

Takigawa, Masayuki
Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
xviii

Contributors

Tanaka, Kazuya
Japan Atomic Energy Agency (JAEA), Tokai, Japan

Tanaka, Taichu Yasumichi
Meteorological Research Institute, Tsukuba, Japan

Tanihata, Isao
Osaka University, Osaka, Japan
Beihang University, Beijing, China

Tsuda, Atsushi
University of Tokyo, Kashiwa, Japan

Tsumune, Daisuke
Central Research Institute of Electric Power Industry, Chiba, Japan

Tsuruta, Haruo
Remote Sensing Technology Center of Japan, Tokyo, Japan

Uematsu, Mitsuo
University of Tokyo, Kashiwa, Japan

Watanabe, Akira
Fukushima University, Fukushima, Japan

Yamazawa, Hiromi
Nagoya University, Nagoya, Japan

Yokoyama, Hiromi
University of Tokyo, Kashiwa, Japan

Yoshida, Naohiro
Tokyo Institute of Technology, Yokohama, Japan
Preface

A large area that includes Fukushima Prefecture was seriously contaminated by radioactive materials emitted into the atmosphere and the ocean by the accident at the Fukushima Daiichi Nuclear Power Station (hereafter, FDNPS) of the Tokyo Electric Power Company, which was caused by the Tohoku Region Pacific Coast Earthquake in 2011. The emitted radioactive materials were transported by seasonal wind and ocean currents to a wide area of the globe and have been observed in various places in the Northern Hemisphere. These materials have also been detected in soil, forests, lakes, rivers and seas due to fallout and direct discharge, and continued movement in the environment.

Radioactive materials emitted by the accident were thus transported widely and exist in our environment in different forms. Various efforts have been made to accurately understand the material transport; such efforts are indispensable for determining suitable mitigation measures. However, the devastating accident related to the radioactive materials was their first experience of such for most scientists, and researchers have since fumbled with trial-and-error activities. This confusing situation also occurred in the actions taken by the government and related organisations, as manifested in the accident investigations by private, government and Diet committees that began in 2012. After more than seven years since the accident, it is important for long-term mitigation and impact assessment to reflect on the current and past, as well as to analyse what we did, what we understood and what was not sufficient.

This motivation drove the development of this publication. The original Japanese book was published in 2014, and the English edition was started shortly thereafter. Professionals in each scientific field drafted this book to summarise the scientific knowledge accumulated in the years since the event, as well as the trajectories of the research community’s activities. The main theme of the present

1 There are several other expressions, such as FDNPP. See also the Glossary.
book, which was drafted by groups of professionals specialising in the study of the atmosphere, ocean, land and radioactive materials, is the migration of the radioactive materials emitted into the environment by the FDNPS accident. Other books by professionals in the fields of nuclear power engineering and nuclear reactor physics should be consulted to understand the events that played out inside the power station.

This book comprises three parts. Part I discusses the migration of the radioactive materials in the environment. Chapter 1 summarises the basic concepts and fundamental knowledge regarding the environmental migration related to the accident. Chapter 2 estimates the amount of radioactive material emitted by the accident. Chapter 3 shows investigation results of radioactive material pollution in the atmosphere and simulation of atmospheric transport, and deposition using atmospheric transport models, while Chapter 4 presents global model simulation results. Chapter 5 describes investigation results in the ocean and marine ecosystem, and presents simulation analyses using ocean transport models. Chapter 6 treats deposition and migration processes of radioactive materials and describes investigations of soil mapping, forest investigation and migration of radioactive materials into the forest biosphere and agricultural products.

Part II examines the current status of the infrastructure for disaster prevention and discusses the problems and issues with improving the system. Chapter 7 introduces the current status of the monitoring system for nuclear power stations and discusses how this could be improved. It was found that numerical simulations are useful for investigating the wide area of contamination. In reality, there was confusion related to the governmental use of the emergency rapid radioactivity impact prediction network system (SPEEDI). Chapter 8 presents the thoughts of scientists related to the SPEEDI problem. Chapter 9 summarises the decontamination actions that are useful for reconstructing living areas.

Part III reflects on the thoughts and actions from the perspective of scientists related to the future, based on an analysis of inadequate activities. Chapter 10 discusses the method of dissemination of scientific knowledge that has the largest societal impact. Chapter 11 provides a detailed report of urgent activities that immediately followed the accident and cross-field research activities by volunteer researchers, with messages for future generations.

There were many instances of extremely sensitive care in the investigations and actions by the government and related organisations that were reflected in the psychological reaction to the radioactivity resulting from the disaster, which was akin to that of an atomic bomb. Difficult situations were encountered when attempting to distribute scientific facts and limit harmful rumours. Throughout the development of the accident investigations, the public wanted to receive information that would help them take actions of their own instead of being
Preface

Restricted. The disseminated information was also useful for efficient mitigation actions. Hence, we thought we should express frankly to the public what we thought as scientists. At the same time, we made notes for future generations based on our urgent actions and our thoughts regarding the large-scale environmental pollution. It will be important to prepare for similar large-scale disasters such as earthquakes, tsunami, torrential rain, volcanic eruptions and others. From this perspective, as scientists, we wrote our message to society and policymakers.

The role of scientists is to present accurate facts and disseminate information, but scientific investigations require much time. We should be persistent in solving problems. This effort is needed for the dissemination of important scientific knowledge to the public for long-term mitigation.

Important progress has been made in the last three years, following the publication of the first edition; namely, the establishment of action guidelines for emergent large-scale disasters by the Science Council of Japan (SCJ) and the Japan Academic Network for Disaster Reduction, which includes 56 academic societies. The SCJ guideline was invoked for the first time following the Kumamoto earthquake in 2015, when the SCJ collaborated with the academic network to provide well-prepared dissemination of scientific information to the public. We have incorporated these new events and scientific studies that were published after the publication of the Japanese edition. In addition, new international co-authors have provided their knowledge and recommendations from an international viewpoint, as presented in Chapter 12.

The cover images are the composite of the geographical and temporal changes of the air dose rate map on land (see Section 1.10) and the radiocaesium concentration of the coastal surface sediments off Fukushima (see Section 5.6) in the summer of 2011, the summer of 2012 and the winter of 2014–15. The images show the radionuclide migration from land to the coastal sea over time, with radioactive decay and dilution.
Acknowledgements

We are grateful to the people, groups and institutions who provided us with their data and knowledge necessary for drafting this book. We also acknowledge Hiromi Yamazawa, Yuichi Moriguchi, Haruo Tsuruta, Masayuki Takigawa, Yasuhito Igarashi, Tatsuo Aono, the late Yasuyuki Muramatsu, who passed away on 2 July 2016, and Daisuke Goto for their support in editing the entire manuscript and preparing the Glossary. We are also grateful to James Elwood, the chief English editor, for his contribution to the English edition.

We acknowledge that this translated version was financially supported by MEXT/KAKENHI/Innovative Areas 2409 (PI: Yuichi Onda), MOEJ/ERTDF/S-12 (PI: Teruyuki Nakajima) and MOEJ/ERTDF/5-1501 (PI: Yuichi Moriguchi).