Theory and Computation of Hydrodynamic Stability

The study of hydrodynamic stability is fundamental to many subjects, ranging from geophysics and meteorology through to engineering design. This treatise covers both classical and modern aspects of the subject, systematically developing it from the simplest physical problems, then progressing to the most complex, considering linear and nonlinear situations, and analyzing temporal and spatial stability. The authors examine each problem both analytically and numerically. Many relevant fluid flows are treated, including those where the fluid may be compressible, or those from geophysics, or those that require salient geometries for description. Details of initial-value problems are explored equally with those of stability.

The text includes copious illustrations and an extensive bibliography, making it suitable for courses on hydrodynamic stability or as an authoritative reference for researchers. In this second edition the opportunity has been taken to update the text and, most importantly, provide solutions to the numerous extended exercises.

W. O. Criminale is Professor Emeritus in the Department of Applied Mathematics at the University of Washington. His research focuses on the areas of initial-value problems in shear flows, large-scale oscillations in turbulent flows, mixing and nonlinear mechanics. Professor Criminale is the recipient of many honors, which include: the Alexander von Humboldt Senior Research Award; Fellow, American Physical Society; Guest Scientist, Stanford–Ames Turbulence Research Center; the Faculty Research Award, Battelle Pacific Northwest Laboratories; and Royal Society Fellow in the United Kingdom.

T. L. Jackson is a research professor in the Department of Mechanical and Aerospace Engineering at the University of Florida, Gainesville. He is currently a fellow of the American Physical Society (APS), a fellow of the American Society of Mechanical Engineers (ASME), an associate fellow of the American Institute of Aeronautics and Astronautics (AIAA) and a member of the Combustion Institute. He was previously an associate editor for the AIAA Journal, and he currently serves on the editorial advisory board for the AIAA Journal of Propulsion and Power. His expertise is in the area of basic fluid mechanics, combustion, stability, solid propellant combustion, energetic material modeling and the large-scale simulation thereof.

R. D. Joslin is a permanent program director in the Engineering Directorate at the US National Science Foundation in Alexandria, Virginia. He manages the Fluid Dynamics Program and other cross-Foundation programs. Dr. Joslin was previously a program manager at the Office of Naval Research, where he managed the Turbulence, Stratified Wakes, Submarine Maneuvering, Ocean Energy, Multi-Platform Interactions and Supercavitation Programs. He is a member of the APS, ASME and is an associate fellow in the AIAA. His areas of expertise include fundamental fluid mechanics, turbulence and transition, stability theory, DNS/LES/CFD, supercavitation and renewable energy.
Established in 1952, the Cambridge Monographs on Mechanics series has maintained a reputation for the publication of outstanding monographs, a number of which have been re-issued in paperback. The series covers such areas as wave propagation, fluid dynamics, theoretical geophysics, combustion, and the mechanics of solids. Authors are encouraged to write for a wide audience, and to balance mathematical analysis with physical interpretation and experimental data, where appropriate. Whilst the research literature is expected to be a major source for the content of the book, authors should aim to synthesize new results rather than just survey them.

A complete list of books in the series can be found at www.cambridge.org/mathematics.

RECENT TITLES IN THIS SERIES

Magnetoconvection
N. O. WEISS & M. R. E. PROCTOR

Waves and Mean Flows (Second Edition)
OLIVER BÜHLER

Turbulence, Coherent Structures, Dynamical Systems and Symmetry (Second Edition)
PHILIP HOLMES, JOHN L. LUMLEY, GAHL BERKOOZ & CLARENCE W. ROWLEY

Elastic Waves at High Frequencies
JOHN G. HARRIS

Gravity-Capillary Free-Surface Flows
JEAN-MARC VANDEN-BROECK

Lagrangian Fluid Dynamics
ANDREW F. BENNETT
Theory and Computation of Hydrodynamic Stability

SECOND EDITION

W. O. CRIMINALE
University of Washington

T. L. JACKSON
University of Florida

R. D. JOSLIN
National Science Foundation
Contents

Preface to the Second Edition page ix
Preface xi
1 Introduction and Problem Formulation 1
 1.1 History, Background and Rationale 1
 1.2 Initial-Value Concepts and Stability Bases 11
 1.3 Classical Treatment: Modal Expansions 14
 1.4 Transient Dynamics 18
 1.5 Asymptotic Behavior 20
 1.6 Role of Viscosity 21
 1.7 Geometries of Relevance 23
 1.8 Spatial Stability Bases 23
2 Temporal Stability of Inviscid Incompressible Flows 26
 2.1 General Equations 26
 2.2 Kelvin–Helmholtz Theory 41
 2.3 Piecewise Linear Profile 44
 2.4 Inviscid Temporal Theory 50
 2.5 Critical Layer Concept 57
 2.6 Continuous Profiles 61
 2.7 Exercises 69
3 Temporal Stability of Viscous Incompressible Flows 76
 3.1 Introduction 76
 3.2 Channel Flows 77
 3.3 Blasius Boundary Layer 83
 3.4 Falkner–Skan Flow Family 86
 3.5 Unbounded Flows 88
 3.6 Discrete and Continuous Spectra 90
 3.7 Exercises 94
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Spatial Stability of Incompressible Flows</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>4.1 Introduction</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>4.2 Gaster’s Transformation</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>4.3 Incompressible Inviscid Flow</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>4.4 Absolute and Convective Instabilities</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>4.5 Incompressible Viscous Flow</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>4.6 Discrete and Continuous Spectra</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>4.7 Exercises</td>
<td>126</td>
</tr>
<tr>
<td>5</td>
<td>Stability of Compressible Flows</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>5.1 Introduction</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>5.2 Compressible Mixing Layer</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>5.3 Compressible Boundary Layer</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>5.4 Exercises</td>
<td>165</td>
</tr>
<tr>
<td>6</td>
<td>Centrifugal Stability</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>6.1 Coordinate Systems</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>6.2 Taylor Problem</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>6.3 Görtler Vortices</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>6.4 Pipe Flow</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>6.5 Rotating Disk</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>6.6 Trailing Vortex</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>6.7 Round Jet</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>6.8 Exercises</td>
<td>190</td>
</tr>
<tr>
<td>7</td>
<td>Geophysical Flow</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>7.1 General Properties</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>7.2 Stratified Flow</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>7.3 Effects of Rotation</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>7.4 Baroclinic Flow</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>7.5 The Ekman Layer</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>7.6 Exercises</td>
<td>222</td>
</tr>
<tr>
<td>8</td>
<td>Transient Dynamics</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>8.1 The Initial-Value Problem</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>8.2 Laplace Transforms</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>8.3 Moving Coordinates and Exact Solutions</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>8.4 Multiple Scale, Multiple Time Analysis</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>8.5 Numerical Solution of Governing Partial Differential Equations</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>8.6 Optimizing Initial Conditions</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>8.7 Exercises</td>
<td>257</td>
</tr>
</tbody>
</table>
Contents

9 Nonlinear Stability 259
 9.1 Energy Equation 259
 9.2 Weakly Nonlinear Theory 261
 9.3 Secondary Instability Theory 263
 9.4 Resonant Wave Interactions 272
 9.5 PSE Theory 278
 9.6 Exercises 285

10 Transition and Receptivity 287
 10.1 Introduction 287
 10.2 Influence of Free Stream Turbulence and Receptivity 288
 10.3 Tollmien–Schlichting Breakdown 291
 10.4 Oblique Wave Breakdown 292
 10.5 Crossflow Vortex Breakdown 294
 10.6 Dean–Taylor–Görtler Vortex Breakdown 298
 10.7 Transition Prediction 301
 10.8 Exercises 315

11 Direct Numerical Simulation 316
 11.1 Introduction 316
 11.2 Governing Equations 317
 11.3 Temporal DNS Formulation 320
 11.4 Spatial DNS Formulation 321
 11.5 Large Eddy Simulation 332
 11.6 Applications 333
 11.7 Summary 346
 11.8 Exercises 348

12 Flow Control and Optimization 351
 12.1 Introduction 351
 12.2 Effects of Flexible Boundaries 352
 12.3 Wave Induced Forcing 367
 12.4 Feed-Forward and Feedback Control 368
 12.5 Optimal Control Theory 371
 12.6 Exercises 388

13 Investigating Hydrodynamic Instabilities with Experiments 389
 13.1 Experimental Facility 389
 13.2 Model Configuration 391
 13.3 Inducing Hydrodynamics Instabilities 392
 13.4 Measurement Instrumentation 393
 13.5 Signal Analysis 396
 13.6 Summary 397
viii

Contents

Appendix A Mathematical Formulas 399
Appendix B Numerical Methods 401
Appendix C Solutions to Exercises 413

References 517
Author Index 544
Subject Index 549
Preface to the Second Edition

This second edition started soon after the first printing because it was recognized that this specialty field involves significant mathematics and the exercises at the end of each chapter may prove challenging to many. Therefore, it was determined that providing solutions to the exercises may be more useful to the learning process, and a number of solutions to the exercise problems are provided in Appendix C. We have also taken the opportunity to move the discussion of all of the numerical algorithms to one place, namely Appendix B. Also, many thanks to M. R. Malik and H. C. Kuhlmann for the published reviews of the first edition. Although the authors caught most of the issues presented in the reviews in the preprint process, the final printed version failed to address some typos and some poor quality images. It is our hope that this second edition will be more useful to the readers, especially with the addition of solutions to the exercises.