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Introduction to Spin, Magnetic  
Resonance and Polarization

In this chapter, we shall review the mathematical formalism required for the understanding 
of the spin physics of polarized targets. Particular focus is given to the problems treating 
the situations that are favorable for obtaining high polarizations: high magnetic ield and 
low lattice temperature.

In the following sections we shall irst discuss the concept of the spin and magnetic 
moment and work out in detail some standard quantum mechanical problems involving 
these variables. The quantum statistics of a system of spins is then overviewed, before 
briely introducing the thermodynamics of spin systems. Most of these can be found in 
well-known textbooks of quantum mechanics, such as those of Dicke and Wittke [1] and 
of Landau and Lifshitz [2], and of magnetic resonance, such as Abragam [3], Goldman [4], 
Abragam and Goldman [5] and Slichter [6]. The main justiication for presenting textbook 
material is that we need to make frequent reference to this basic formalism. Three further 
reasons are:

(1) to introduce a consistent notation and vocabulary;
(2) to refer uninitiated readers to the basic source literature for further reading; and
(3) to introduce the SI units.

There are differences in the way how some basic entities are deined in the textbooks, and 
therefore a consistent notation and vocabulary are useful in developing the theory of spin 
dynamics.

Magnetic resonance is one of the last ields of physics where the old Gaussian units are 
still commonly used, or they are mixed with the MkSA units, which is a subset of SI units. 
Because the SI units have been almost exclusively used for more than 25 years in most 
other ields of physics, we have made an effort to extend this to magnetic resonance. We 
shall also refer to Appendix A.1 where the SI unit system is compared with CGS Gaussian 
system (Tables A1.1 and A1.2). In the same appendix the fundamental physical quantities 
and variables, relevant for magnetic resonance, are deined in Table A.1.3, and the physical 
constants are listed in Table A.1.4, both in the SI system of units.

The basic results and terminology of this chapter will be used in Chapter 2 to describe 
various interactions of spin systems in general, and those of electron spin systems more 
speciically in Chapter 3. The basic groundwork is equally important for dynamic nuclear 
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2 Introduction to Spin, Magnetic Resonance and Polarization 

polarization (DNP) which is the subject of Chapter 4 and for nuclear magnetic resonance 
(NMR) that is discussed in Chapter 5.

1.1 Quantum Mechanics of Free Spin

1.1.1 Spin

The angular momentum vector J has the same units as the Planck constant ℏ and can there-
fore be expressed for a rigid body as

 = ℏJ I,  (1.1)

where the vector I is called spin. The components of I are unitless numbers in classical 
mechanics, whereas in quantum mechanics they are unitless operators performing rota-
tions about the three coordinate axes. Macroscopic rigid bodies can have a large spin, the 
components of which can be incremented or decremented in steps of 1 that is very small 
in comparison with the length of I, whereas elementary particles have a deinite maximum 
projection I of I on any coordinate axis. This maximum projection I is called the intrinsic 

spin, or briely the spin.
The concept of the intrinsic spin of an elementary particle was controversial until Dirac’s 

relativistic theory of electron became accepted after the experimental discoveries of the 
positron and of the creation and annihilation of electron-positron pairs. Since then spin has 
played a fundamental role in particle physics, proving and disproving many theories. The 
most famous proofs are probably those of the quantum electrodynamics (QED) based on 
the Lamb shift of atomic hydrogen and on the anomalous magnetic moment of the electron, 
and the tests of uniied electroweak theories based on the accurate measurements of parity 
violation parameters in atomic, nuclear and high-energy interactions.

It has been suggested that the intrinsic spin may have a still deeper meaning in physics 
through general relativity [7, 8], possibly explaining the existence of the three types of 
charged leptons, the electron e, the muon µ and the tau lepton .

For the main purpose of this book, we do not need to specify whether the spin of a 
particle is due to intrinsic angular momentum, or due to the motion of a complex compos-
ite system (such as quarks and gluons or partons in a hadron, or nucleons in a nucleus). 
Landau and Lifshitz [2] discuss this in the context of nonrelativistic quantum mechanics. 
They note that the law of conservation of angular momentum is a consequence of the 
isotropy of space in both classical and quantum mechanics. They remark, however, that 
in quantum mechanics the classical deinition of the angular momentum r×p of a particle 
has no direct signiicance owing to the fact that the position r and momentum p cannot be 
simultaneously measured. In other words, neither r nor p of the constituents has signii-
cance for observations of a complex system of particles, with a probe which does not break 
the structure.

Thus, a stable composite particle, in a deinite internal state with given internal energy, 
has also an angular momentum of deinite magnitude J, due to the motion of the constituent 
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 1.1 Quantum Mechanics of Free Spin 3

particles. This angular momentum can have 2 I + 1 orientations in space. With this under-
standing of the angular momentum, its origin becomes unimportant, and Landau and 
Lifshitz [2] thus arrive at the concept of an ‘intrinsic’ angular momentum which must be 
ascribed to a particle regardless of whether it is ‘composite’ or ‘elementary’.

When discussing the dynamics of a system made of these composite (in the sense 
described above) particles, such as nuclei or electrons in a solid lattice built of ions, atoms 
or molecules, the origin of the angular momentum of the stable composite becomes unim-
portant; however, a reserve must be made on electronic spins with regard to spin-lattice 
relaxation, for example.

This ‘intrinsic’ angular momentum which is not connected with the dynamics of the 
solid material is called the spin to distinguish it from the orbital angular momentum. 
Paramagnetic electrons in a solid are said to possess an effective spin when only the lowest 
magnetic states of the ground-state multiplet are populated; in this case the term ‘spin’ must 
be understood as a shorthand notation.

The complete wave function of a particle with a spin depends on the three coordinates 
of the particle and on the spin variable. The spin variable is a discrete one, and it gives the 
projection of the intrinsic angular momentum on a selected direction in space. The selec-
tion of this direction is often the key problem to be solved. only in a steady high magnetic 
ield, this direction is parallel or close to the ield vector.

1.1.2 Spin and Magnetic Dipole Moment

In classical electromagnetic theory, the magnetic moment1 µ
�

 of a volume containing cur-
rents with density j

m
 is (see, for example, Ref. [9] p. 130):

 ∫µ τ( )= ×
τ

�
dr j

1

2
,

m
 (1.2)

where r is the vector pointing to the volume element d . If the currents can be considered 
as charge densities ρ

e
 moving with a velocity u, the magnetic moment becomes

 dr u
1

2
.

e∫µ ρ τ( )= ×
τ

�  (1.3)

This resembles the mechanical angular momentum

 
dJ r u

m∫ ρ τ( )= ×
τ

 (1.4)

of mass densities ρ
m
 moving at a velocity u. If the system is composed of identical particles 

with mass m and charge e, the gyromagnetic ratio, , deined as

1 As discussed in Appendix A.1, in SI units the unit of magnetic moment is [ µ] = Am2; the magnetic energy of the dipole is then 
E = µ·B, magnetic ield being expressed in [B] = Vs/m2 = Tesla.
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4 Introduction to Spin, Magnetic Resonance and Polarization 

 γ
µ

=
J

, (1.5)

becomes

 γ =
e

m2
 (1.6)

for the case where µ and J are parallel.
In classical mechanics there is no general reason why these vectors should be paral-

lel, but in quantum mechanics this is the case for closed systems. However, when adding 
the quantum mechanical angular momentum vectors of the system, the resultant magnetic 
momentum vector does not generally align with the angular momentum vector. A way of 
understanding this is that because the magnetic moment component perpendicular to J 

cannot be determined simultaneously with that along J (it can be thought to undergo rapid 
rotation around the axis), the only observable is the projection of µ along J. This gives rise 
to the structural g-factor, which is particularly important in electron spin resonance.

In the case of a complex structure, the gyromagnetic ratio is written in the terms of the 
g-factor as

 
ge

m2
,γ =  (1.7)

where the factor g contains the entire description of the magnetic structure. For electrons 
we also often write

 
ℏ

g
,Bγ

µ
=  (1.8)

where we have introduced the fundamental constant Bohr magneton

 
e

m2
.

B

e

µ =
ℏ  (1.9)

We note here that for a negatively charged pointlike particle the gyromagnetic factor and 
the magnetic moment are always negative. In the literature the symbol  is often used for 
the Bohr magneton, but we reserve here this symbol for the inverse spin temperature.

Free pointlike charged particles (such as electron or muon) have the g-factor close to the 
Dirac value g = 2. The deviations are often given using an anomalous magnetic moment a 

deined by

 g a2(1 ).= +  (1.10)

The deviation can be measured to a high accuracy using a Penning trap for electrons or a 
storage ring for muons; comparisons with theoretical calculations have given important 
proofs of QED and QCD and restrained the limits of any substructure of the leptons [10].
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 1.1 Quantum Mechanics of Free Spin 5

As was discussed in the previous subsection, the spin angular momentum variable is a 
discrete one. Therefore, the magnetic moment projection on the axis of quantization also 
has only discrete values. This quantum mechanical fact, which will be discussed below in 
this chapter, is seen in a striking way in magnetic resonance measurements which are the 
basis of a large industry today.

The gyromagnetic ratio and the magnetic moment can be positive or negative, depend-
ing on not only the sign of the charge of the pointlike particle but also the structure of the 
complex system made of constituents. In this book we shall always assume, however, that 
the magnetic moment of the nucleus or electron is parallel or antiparallel to its spin angular 
momentum, depending on the sign of the gyromagnetic ratio:

 µ γ= Î,
�

ℏ�  (1.11)

where the vectors µ
��  and Î  now are taken as quantum mechanical operators. The three com-

ponents of these vectors can be mathematically represented by the so-called spin matrices, 
which will be discussed below.

1.1.3 Spin Operator Algebra

For simplicity, we shall eliminate here the vector notations but maintain the operator 
symbols with circumlex for a while in order to make the operators clearly distinct from 
constants. The spin operator Î  thus has the projections =I j x y zˆ ( , , )

j
 along the three coor-

dinate axes in the same way as the angular momentum operator = ℏJ Iˆ ˆ . The algebra with 
operators requires the knowledge of their commutation relations2 which, for the rotation 
operators, are obtained by considering ininitesimally small (elementary) rotations about 
the coordinate axes. For example, by performing a small rotation irst around the x-axis and 
then around the y-axis, and then rotations about the same axes in reverse order and direc-
tion, the net result is a small positive rotation about the z-axis. The same can be achieved 
by comparing small rotations around the x- and y-axes, with rotations made around y- and 
x-axes. The difference of these two is a small rotation about the z-axis. This can be mathe-
matically represented as a commutation relation

 − ≡ 



 =I I I I I I iIˆ ˆ ˆ ˆ ˆ , ˆ ˆ .

x y y x x y z

Cyclic permutation of the subscripts gives the following commutation relations for the spin 
operator components:

 





 =





 =





 =

I I iI

I I iI

I I iI

ˆ , ˆ ˆ ,

ˆ , ˆ ˆ ,

ˆ , ˆ ˆ .

x y z

y z x

z x y

 (1.12)

2 See, for example, Landau and Lifshitz [2] Chapters IV and VIII, and Dicke and Wittke [1] Chapters 9 and 12.
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6 Introduction to Spin, Magnetic Resonance and Polarization 

It is remarkable that these equations, based on the sole assumption that the space is isotro-
pic, result in all the physics of spin. Notably, because the spin components do not commute, 
only one of them can be measured at a time, and the remaining two being not simultane-
ously measurable. Some other immediate results are briely reviewed below.

The square of the ‘magnitude’ of Î

 I I I Iˆ ˆ ˆ ˆ
x y z

2 2 2 2
= + +  (1.13)

commutes with all three components of I as a consequence of Eq. 1.12:

 



 =I Iˆ , ˆ 0,

2  (1.14)

i.e. Î 2  and any one of the components of Î  are simultaneously measurable.
Instead of Î

x
 and Î

y
 it is often more convenient to use the complex combinations

 = ±
±
I I iIˆ ˆ ˆ ,

x y
 (1.15)

which satisfy, based on Eq. 1.12 directly, the relations

 



 =

+ −
I Iˆ , ˆ 0,  (1.16)

 I I Iˆ , ˆ ˆ ,
z





 = ±

± ±  (1.17)

and

 = − ±
± ∓
I I I I Iˆ ˆ ˆ ˆ ˆ .

z z

2 2  (1.18)

Let us assume that m is the eigenvalue of Î
z
:

 I mˆ .
z
ψ ψ=  (1.19)

The operators 
±

Î  are now seen to be ladder operators with respect to the eigenvalue m 

of Î
z
, because

 ψ ψ( )( )= +
+ +

I I m Iˆ ( ˆ ) 1 ˆ ,
z

 (1.20)

which can be obtained using Eq. 1.17 or Eq. 1.12 directly.
Because of relation 1.14, the eigenfunction ψ can be chosen so that it simultaneously 

satisies Eq. 1.19 and

 I aˆ ,2ψ ψ=  (1.21)

where a is the square of the magnitude (i.e. length squared) of the spin vector, which we 
shall evaluate now. Firstly, because both expectation values and their sum

 +I Iˆ ˆ
x y

2 2

must be positive, from Eq. 1.13 it is clear that the expectation values of Î 2  and Î
z
 satisfy

 ≥I Iˆ ˆ ,
z

2 2
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 1.1 Quantum Mechanics of Free Spin 7

which gives

 ≥a m .
2  (1.22)

As a consequence of Eq. 1.20, the difference 2I of the greatest (+I ) and least (–I ) possible 
eigenvalue m of Î

z
 must be an integer; I may take then any half-integer3 value 0, 1/2, 1, 

3/2, etc., and

 = − − + … −m I I I I, 1, 1, .  (1.23)

If m has its maximum value I, then ψ =
+

Î 0 , and, using Eq. 1.18,

 I I I I Iˆ ˆ 0 ˆ ˆ ˆ ;
z z

2 2ψ ψ( )= = − −
− +

 (1.24)

from this and Eq. 1.19 with m = I, we get

 a I I Iˆ 1 .2 ( )= = +  (1.25)

The eigenvalue of the operator Î 2  is therefore I(I + 1), where I is called the spin quan-
tum number and gives the maximum projection of the spin vector along an axis. Speaking 

of spin I therefore means speaking of a vector with magnitude ( )+I I 1  and maximum 
projection on any axis of I. For simplicity we shall use in the rest of the book, unless ambi-
guities or clarity require otherwise, the same symbol I to denote the spin vector operator Î  

and the spin quantum number I (or spin in short); possible confusions between these should 
become clariied by the context.

1.1.4 Matrix Representation of the Spin Operator

A quantum mechanical operator can be represented by a matrix acting upon a state vector 
which represents the wave function. The elements or components of these have a direct 
physical signiicance and can be related to the expectation values of the observables.

The wave function of a particle with spin I has 2I + 1 components; the squares of the 
magnitudes of these components give the probability of the magnetic states m. The spin 
operator in matrix representation has (2I + 1)·(2I + 1) elements

 

I I I m I m

I I
i

I m I m

I m

1

2
1 ,

2
1 ,

,

x m m x m m

y m m y m m

z m m

, 1 1,

, 1 1,

,

( ) ( )

( ) ( ) ( )( )

( )( )

( )

= = + − +

= − = + − +

=

− −

− −

 (1.26)

where m is the magnetic quantum number; the rest of the elements are zero.

3 The orbital angular momentum operator L can take only integer values of L
z
, which is the consequence of restricting the form 

of the wave function to represent simple orbital motion. This restriction is by no means valid for complex wave functions such 
as that of the nucleon, whose constituents undergo relativistic motion.
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8 Introduction to Spin, Magnetic Resonance and Polarization 

The most important case is spin I = 1/2, for which the matrix components of the spin 
vector operator of Eq. 1.26 are:

 

=












=
−











=
−











I

I
i

i

I

1

2

0 1

1 0
;

1

2

0

0
;

1

2

1 0

0 1
.

x

y

z

 (1.27)

These 2×2 matrices are called Pauli spin operators, often denoted by  ≡ 2I; their direct 
multiplication gives

 13 ,
2

σ = ⋅  (1.28)

where 1 is the unit matrix

 ≡








1

1 0

0 1
.

Equation 1.28 is clearly compatible with the value given by Eq. 1.25 for I. Moreover, sim-
ilar direct multiplication yields

 ia b a b a b,σ σ σ( )( )⋅ ⋅ = ⋅ + ⋅ ×  (1.29)

where a and b are any constant vectors. Furthermore, by replacing a and b by any unit 
vector e we get immediately

 σ( )⋅ =e 1
p2

 (1.30)

and

 σ σ( )⋅ = ⋅
+

e e.
p2 1

 (1.31)

According to relations 1.29–1.31, any scalar polynomial of the components of  can be 
reduced to terms independent of  and to a term linear in ; furthermore, any scalar function 
of  reduces to a linear function, if it can be expanded as a Taylor series. These relations will 
be used in calculating traces involving the density matrix, without resorting to the so-called 
high-temperature approximation. This is a very important property of the Pauli spin oper-
ator for the theory of DNP at low temperatures, where high polarizations can be obtained.

In the case of I = 1/2, both Eqs. 1.25 and 1.28 yield Î 3
4

2 = . If the spin is in a state 

where one of its components (say, in the z-direction) has its maximum value of =Î
1

2z
, 
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 1.1 Quantum Mechanics of Free Spin 9

then I
x
 and I

y
 have zero expectation values, but = =I Iˆ ˆ 1

4x y

2 2 . As will be seen 
in Section 1.1.6, this can be understood by the precession of the spin vector which 
makes the components perpendicular to the axis of quantization oscillate sinusoidally.

For spin I = 1 we get the matrix representations of the components:

 

I

I
i

I

1

2

0 1 0

1 0 1

0 1 0

;

2

0 1 0

1 0 1

0 1 0

;

1 0 0

0 0 0

0 0 1

.

x

y

z

=

















= −

−

















=

−

















 (1.32)

These will be used explicitly in an example in Chapter 5.

1.1.5 Magnetic Energy Levels

Let us now consider a particle with spin I in a magnetic ield B0, with the ield vector lying 
along the z-axis so that B0 = kB0. The spin is associated with the dipole moment Iˆ ˆℏµ γ= , 
where the gyromagnetic factor  is deined by Eq. 1.6. The magnetic energy of the particle 
is then (in operator form)

 H
�

ℏ
� B IBˆ ˆ ,

z0 0
µ γ= − ⋅ = −  (1.33)

and the Schrödinger equation

 Eˆψ ψ=H  (1.34)

has 2I + 1 eigenvalues

 γ= − ℏE m B ,
m 0

 (1.35)

because the eigenvalues of Î
z
 go from m = –I to m = +I, as was shown in Eq. 1.23. The 

magnetic energy level splitting is often visualized as shown by Figure 1.1a.

1.1.6 Larmor Precession

The time-dependent Schrödinger equation

 i
t

ˆψ
ψ

=
∂

∂
ℏH  (1.36)
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10 Introduction to Spin, Magnetic Resonance and Polarization 

Figure 1.1 (a) The magnetic energy levels for a free particle with spin I = 3/2 and gyromagnetic 
factor  in a steady magnetic ield B0. (b) The possible projections of the spin of a free particle in a 
steady ield along the z-axis of the ield and perpendicular to it, for spins I = 1/2, 1, 3/2 and 2. The 
perpendicular component rotates in its plane with undetermined phase angle
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