15° approximation, 289
15° equation, 290, 293
45° equation, 293
absorption, 94, 312
angle, 325
losses, 247
measurement, 330
spectral ratios, 330
vector, 325
acausality, 315
Achenbach, J.D., 51, 92, 154, 156, 312
acoustic impedance, 113
acoustic wave equation, 88
heterogeneous media, 218
advanced time, 288
advanced wavefield, 288
air-coupled ground roll, 183
Airy phase, 178
Aki, K., 51, 52, 92, 99, 129, 131, 145, 197, 199, 247, 312
aliasing, 283
amplitude spectrum, 36
Anundsen, L., 292
analytic signal, 239
Anderson, D.L., 322
anelastic medium, 64, 66, 87, 247, 312
1D equation of motion, 323
3D equation of motion, 324
particle motion, 328
reflection and transmission, 326
Snell’s law, 326
spring-dashpot models, 316
stress–strain, 316, 329
anisotropic medium, 65, 87, 294
anisotropically anisotropic, 303
elliptical anisotropy, 306
elliptical VTI, 302
group (ray) velocity, 306
HTI, 303
polarization vectors, 299
reflection coefficients, 303
slowness diagrams, 307
slowness surface, 306
Snell’s law, 304
Thomsen parameters, 301
transversely isotropic, 296
VTI, 296
weak anisotropy, 301
anticline, 208, 211
apparent slowness, 202
apparent velocities, 76, 102, 190, 233, 273
approximate reflection coefficients, 144
Arfken, G., 1
attenuation, 87
angle, 325
vector, 325
average velocity, 187
AVO gradient, 145
AVO, amplitude vs. offset, 144
Ball, V., 145
Bancroft, J.C., 260
Báth, M., 51
Ben-Menahem, A., 51, 247, 312
Benson, A.K., 205, 280, 284, 285, 288, 291, 292
Berkhout, A.J., 51
birefringence, 303
Bland, D.R., 312
Blangy, J.P., 145
body force density, 58
body forces, 57, 59
Bolt, B.A., 51
Boltzmann, L., 318
Borchert, R.D., 142, 247, 312, 328
Bouchon, M., 253
<table>
<thead>
<tr>
<th>Index</th>
<th>345</th>
</tr>
</thead>
<tbody>
<tr>
<td>boundary conditions, 112, 129</td>
<td>coordinate planes, 13</td>
</tr>
<tr>
<td>displacement discontinuity, 150</td>
<td>coordinate surfaces, 13</td>
</tr>
<tr>
<td>nonwelded contact, 131, 150</td>
<td>covariance, 30</td>
</tr>
<tr>
<td>welded contact, 123</td>
<td>Covey, J.D., 207</td>
</tr>
<tr>
<td>Bouzidi, Y., 139</td>
<td>creep function, 317</td>
</tr>
<tr>
<td>bow-tie effect, 208</td>
<td>critical angles, 133, 138</td>
</tr>
<tr>
<td>Brekhovskikh, L.M., 51</td>
<td>critical distance, 160</td>
</tr>
<tr>
<td>Brillouin, L., 203</td>
<td>cross product, 2</td>
</tr>
<tr>
<td>Brown, R.J., 120, 260</td>
<td>crossover distance, 161</td>
</tr>
<tr>
<td>Buchen, P.W., 328</td>
<td>CSEG, Canadian Society of Exploration Geophysicists, 260</td>
</tr>
<tr>
<td>Buforn, E., 51</td>
<td>Cui, X., 253</td>
</tr>
<tr>
<td>Buhl, P., 240</td>
<td>curl, 5</td>
</tr>
<tr>
<td>bulk modulus, 68</td>
<td>curvilinear coordinates, 12</td>
</tr>
<tr>
<td>Bulen, K.E., 51</td>
<td>gradient, divergence, curl, 15</td>
</tr>
<tr>
<td>Bunge, H.-P., 51</td>
<td>cylindrical coordinates, 16</td>
</tr>
<tr>
<td>Burge, H.-P., 51</td>
<td>Dahlen, F.A., 51</td>
</tr>
<tr>
<td>buried focus, 208</td>
<td>Dai, N., 253</td>
</tr>
<tr>
<td>Bystrický, E., 253</td>
<td>Daley, P.F., 304, 327</td>
</tr>
<tr>
<td>Carcione, J.M., 51, 247, 253, 312, 327</td>
<td>data transformations, 230</td>
</tr>
<tr>
<td>Cartesian tensors, 29</td>
<td>delta function, 37</td>
</tr>
<tr>
<td>Cauchy principal value, 239, 241</td>
<td>depth migration, 275, 291</td>
</tr>
<tr>
<td>Červený, V., 51, 92, 133, 159, 163, 207, 239, 247, 253, 312, 328</td>
<td>determinant, 153, 169</td>
</tr>
<tr>
<td>Chabot, L., 260</td>
<td>Dettmer, J., 139</td>
</tr>
<tr>
<td>Chaisri, S., 132</td>
<td>deviatoric strain tensor, 68</td>
</tr>
<tr>
<td>Chapman, C.H., 51</td>
<td>deviatoric stress tensor, 68</td>
</tr>
<tr>
<td>characteristic equation, 295</td>
<td>Diebold, J.B., 236, 240</td>
</tr>
<tr>
<td>characteristic values, 176</td>
<td>differentials, 5</td>
</tr>
<tr>
<td>Christensen, R.M., 312</td>
<td>diffraction, 163, 208, 212</td>
</tr>
<tr>
<td>Chun, J.H., 285</td>
<td>amplitude, phase, 214</td>
</tr>
<tr>
<td>ϵ_{ijkl}, 63</td>
<td>bent reflector, 217</td>
</tr>
<tr>
<td>ϵ_{ij}, 64</td>
<td>continuous reflector, 216</td>
</tr>
<tr>
<td>circulation, 11</td>
<td>moveout, 213</td>
</tr>
<tr>
<td>CMP gather, 208</td>
<td>terminating reflector, 215</td>
</tr>
<tr>
<td>CMP stack section, 208, 214, 271, 277</td>
<td>dilatation, 57, 68, 114</td>
</tr>
<tr>
<td>common midpoint gather (CMP), 208</td>
<td>dilatational waves, 71</td>
</tr>
<tr>
<td>complex exponentials, 74</td>
<td>dipping reflector, 271</td>
</tr>
<tr>
<td>complex modulus, 313, 319</td>
<td>Dirac delta function, 37</td>
</tr>
<tr>
<td>complex slowness, 313</td>
<td>directed point force, 91</td>
</tr>
<tr>
<td>complex wave speed, 313</td>
<td>direction cosine, 21</td>
</tr>
<tr>
<td>complex wavenumber, 313</td>
<td>directional derivatives, 7</td>
</tr>
<tr>
<td>compliance, specific, 132</td>
<td>dispersion, 87, 164</td>
</tr>
<tr>
<td>compression, 114</td>
<td>anelastic, 313</td>
</tr>
<tr>
<td>compression modulus, 68</td>
<td>anomalous, 167</td>
</tr>
<tr>
<td>compressional waves, 71, 78</td>
<td>normal, 167</td>
</tr>
<tr>
<td>conservation of energy, 60, 61, 65</td>
<td>velocity, 248, 315</td>
</tr>
<tr>
<td>conservative vector field, 11</td>
<td>dispersion relation, 166, 169</td>
</tr>
<tr>
<td>constant Q, 331</td>
<td>VTI medium, 301</td>
</tr>
<tr>
<td>constitutive relation, 63</td>
<td>dispersive waves, 154</td>
</tr>
<tr>
<td>constructive interference, 171</td>
<td>displacement diagram, 96, 102</td>
</tr>
<tr>
<td>continuous velocity log, 197</td>
<td>displacement potentials, 79</td>
</tr>
<tr>
<td>converted waves, 251</td>
<td>dissipative medium, 64, 66, 312</td>
</tr>
<tr>
<td>convolution, 39, 42</td>
<td>divergence, 5</td>
</tr>
<tr>
<td>convolutional model, 244</td>
<td>Dix, C.H., 191</td>
</tr>
<tr>
<td>Cook, E.E., 207</td>
<td>Dix equation, 191</td>
</tr>
</tbody>
</table>
Index

Dobrin, M.B., 183, 217
Dosso, S.E., 139
dot product, 1
double couple, 97
downward continuation, 277
earthquake waves, 97
Eaton, D.W.S., 253
eigenvalue problem, 176, 295
eikonal equation, 205, 206, 220
elastic constants, 64, 69, 72
elastic-viscoelastic correspondence principle, 320
elliptical anisotropy, 306
elliptical VTI, 302
Elmore, W.C., 51
Emmerich, H., 253, 322
energy density, 62
energy flux vector, 61
energy reflection and transmission, 139
envelope, 271
epicentral angle, 194, 199
epicalentral distance, 199
equation of continuity, 62
equation of motion, 57, 70, 323, 324
equation of motion, 1D, 71
equation of motion, 3D, solutions, 76
Euler angles, 24, 41
Euler approach, 59
evanescent waves, 134, 153
Ewing, W.M., 51, 183
exploding reflector model, 276
explosion, spherically symmetric, 97, 102
explosive charge, 88
extrapolation, 277
far-field P wave term, 93
far-field S wave term, 93
far-field waves, 83
Faraday’s law, 12
Fermat’s principle, 126
finite difference method, 253, 285
backward differences, 286
central differences, 286
forward differences, 286
finite element method, 253
first motion, 114
flux, 9
force couple, 98
forward method, 197
Fourier series, 35
Fourier transform
fast, FFT, 280
Fourier transforms, 35, 230
amplitude spectrum, 36, 230
of derivatives, 41, 231
frequency spectrum, 36, 230
phase spectrum, 36, 230
free surface, 118, 132
free-surface effect, 133
French, A.P., 133
French, W.S., 291
frequency, 74
angular, 74
circular, 74
radial, 74
frequency domain, 230
frequency spectrum, 36
frequency-wavenumber domain, 232
frequency-wavenumber spectrum, 233
full-wave methods, 253
fundamental mode, 169, 178
Fung, Y.C., 51, 312, 322
Galis, M., 253
Gassman, F., 304
Gauss’ divergence theorem, 9
Gaussian function, 230
Gazdag, J., 285
Gei, D., 327
Geldart, L.P., 159, 160, 207
general plane waves, 325
phase velocity, 329
generalized standard linear solid, 321
generalized plane waves, 325
geometrical optics approximation, 204
geometrical spreading factor, 246
guided waves, 168, 170, 261
head waves, 159
geophone, 115
ghost reflection, 119
Gibson, B.S., 292
gradient, 5
Grant, F.S., 89, 156, 161, 172, 197, 201
Graud, J.M., 207
ground roll, 155
group velocity, 164, 301, 306
measurement, 180
Guevara, S.E., 260
Harmonic waves, 74
Hatto, L., 292
head waves, 159
Heald, M.A., 51
heat density, 62
heat flux, 62
Helmholtz decomposition, 79
Helmholtz equations, 82
Henley, D.C., 260
Herglotz–Wiechert method, 197
Herglotz–Wiechert method, 197
heterogeneous medium, 87, 187
high frequency approximation, 204
Hilbert transform, 239, 240
Hilterman, F.J., 207, 214, 216, 218
Index

Hoeber, H.C., 213
Holland, C.W., 139
Holliger, K., 327
homogeneous plane wave, 325
 phase velocity, 329
Hooke’s law, 63
horizontal slowness, 125, 190
Hron, F., 207, 249, 304
Hsu, I-C., 292
Hubral, P., 292
Hudson, J.A., 51, 52, 247, 312
Huygens’ principle, 158, 277
hydrophone, 115
hydrostatic stress, 67
Ikelle, L.T., 292
image ray, 292
incompressibility, 68
inhomogeneous medium, 87
inhomogeneous plane wave, 325
inhomogeneous wave, 134
Inman, K., 145, 327
instantaneous velocity, 196
intensity, 61
intercept time \(r\), 235
interface waves, 157
interference effects, 255
internal friction, 64, 247, 312
internally reflected waves, 171
interval velocity, 187
invariance, 26
inverse method, 197
inversion, seismic, 292
irrotational vector field, 9
isotropic medium, 65
isotropy, 66
 stress–strain relation, 66
Jacewitz, C.A., 285
Jacobian determinant, 14
Jardetzky, W.S., 51, 183
Jeffreys, H., 203
Kanamori, H., 322
Kanasewicz, E., 253
Kay, L., 253
Kennett, B.I.L., 51
Keys, D.A., 160
kinetic energy density, 60
Kirchoff migration, 291
Kjartansson, E., 331
Klem-Musatov, K., 213
Knott equations, 131
Koehler, F., 191
Korn, M., 253, 322
Kramers, H.A., 203
Krebes, E.S., 132, 142, 249, 253, 260, 322, 327, 328
Kristek, J., 253
Kronecker delta, 25
Lagrange approach, 59
Lamé constants, 66
Lamé’s theorem, 82
Laplacian, 6, 73
Laplacian of a vector, 19
Larner, K.L., 292
Lawrence, P.L., 183
Lawton, D.C., 120
Lay, T., 51, 92, 183
Le, L.H.T., 328
Lenz’ law, 12
Levander, A.R., 260
Levin, S.A., 282, 285
 line integrals, 10
linear slip interface, 150
Liner, C., 292
Lines, L., 253, 327
liquid–liquid interface, 144
liquid–solid interface, 144
Liu, H-P., 322
Loewenthal, D., 276
logs, 195, 254
Lomnitz, C., 318
longitudinal strains, 55
longitudinal waves, 71
loss factor \(1/Q\), 247, 312
Love waves, 172
Love, A.E.H., 172
Lu, L., 276
Luo, Y., 260
Margrave, G.F., 91
Mari, J.L., 177
Martinez Fernandez, P.E., 253
Mathews, J., 1
Maxwell solid, 316
generalized, 322
Maxwell’s equations, 6
May, B.T., 207
mean energy flux, reflected wave, 140
mean intensity, 85
mean intensity, reflected wave, 140
mean values, 84
migration, 208, 270
 \(1/2\), 275, 291
 aliasing, 283
 depth, 275, 291
diffraction summation, 274
finite difference, 285
frequency-wavenumber, 278
migrated depth section, 270, 280
migrated time section, 270
migration velocity, 271
migrator’s equation, 272
phase-shift, 280
Index

migration (cont)
 post-stack, 272
 seismic inversion, 292
 unmigrated depth section, 271
 unmigrated time section, 272
 wave equation, 276
 wavefront, 275
 Moczo, P., 253
 Molotkov, I.A., 207
 moment tensor, 97, 100
 Moradi, S., 145
 Moser, T.J., 213
 multiples, 251

 Narod, B.B., 213
 near-field term, 93
 near-field waves, 83
 Neidell, N.S., 207
 NMO, 188
 nonnormal incidence, 123
 nonuniform plane wave, 325
 nonwelded contact, 131
 normal equations, 223
 normal incidence, 112
 normal modes, 167
 acoustic, 186
 normal moveout, 188
 normal strains, 55
 normal stresses, 53
 Nyquist frequency, 283

 oblate spheroid, 47
 Officer, C.B., 183
 orthogonal coordinate system, 13
 orthogonal transformation, 25
 orthogonality condition, 25

 P waves, 71
 p-gather, 238
 parabolic approximation, 289
 pedestal effect, 331
 Pekeris, C.L., 179
 Pelissier, M.A., 213
 Peng, S., 253
 period, 74
 Petten, C.C., 91
 phantom diffraction, 208, 218
 phase change, 114
 phase function, 206
 phase of the wavefront, 73
 phase spectrum, 36
 phase velocity, 164
 measurement, 180
 phase-advance, 136
 phase-delay, 136
 phase-lag, 136
 phase-lead, 136
 phase-shift migration, 280

plane wave decomposition, 238
plane waves, 71
planes of constant amplitude, 325
planes of constant phase, 73, 325
point diffra ctor, 270
point reflector, 270
Poisson’s ratio, 69, 154
polarity reversal, 114, 118
polarization vector, 76
polarization vectors, P-SV, 127
potential energy density, 61, 66
potentials, displacement, 79
precursor, 331
Press, F., 51, 183
primary reflection, 187, 253
principal axes, 53
principal planes, 53
principal stresses, 53
prograde motion, 156
propagation angle, 325
propagation vector, 325
Pˇsenˇc´ık, I., 207, 328
pseudotensor, 33
pseudovector, 33
Pujol, J., 51
Q, 247, 312
constant, 331
typical values, 248
quality factor Q, 247, 312
constant, 331
Quiroga-Goode, G., 253, 322
quotient rule, 33, 64
radiation condition, 135
radiation patterns, 94
radius of curvature, 195
Radon transform, 239
rarefaction, 114
Ravindra, R., 133, 159, 163, 239, 253
ray equations, 220
ray parameter, 125, 188, 193
ray shooting, 252
ray theory, 159
Rayleigh wave, 153
Rayleigh wave particle motion, 155
Rayleigh’s equation, 153
rays, 73
reflection, 112, 120, 123
reflection and transmission
 P-SV, 126
 anelastic medium, 326
 SH, 124
reflection coefficient
 P-SV, 129
 displacement, SH, 113, 126
 energy, 139
 pressure, 117, 123
reflection losses, 244
reflection off a free surface, 132
reflectivity function, 244, 254
relative amplitude, 113
relaxation function, 317
relaxed modulus, 318
retrograde motion, 156
Richards, P.G., 51, 52, 92, 99, 129, 131, 145, 197, 199, 247, 312, 327
Ricker, N., 231
Ricker wavelet, 231, 242, 256, 258
right-hand rule, 2
rigid boundary, 144
RMS velocity, 187
Roberson, R., 276
Rocca, F., 282, 285
root-mean-square velocity, 187
rotation, 71
matrix, 23
of coordinates, 20
of vectors, 28
tensor, 56
Rothman, D.H., 282, 285
Ruud, B.O., 327
S waves, 71
scalar field, 4
scalar potential, 11
scalar product, 1
scale factors, 13
Schmitt, D.R., 139
Schneider, W.A., 291
Schultz, P.S., 240
Schuster, G.T., 260
SEG (Society of Exploration Geophysicists), 120, 292
seismic inversion, 292
seismic migration, 270
seismic waves, directed point force, 91
seismic waves, explosive charge, 88
Sengbush, R.L., 183, 259
Sguazzero, P., 285
SH waves, 72
shadow zone, 199
Sharpe, J.A., 90, 91
shear modulus, 67
shear strains, 55
shear stresses, 53
shear wave splitting, 303
shear waves, 71, 78
shear-horizontal, 72
shear-vertical, 72
Sherer, P.M., 51
Sheriff, R.E., 159, 160, 207
Sherwood, J.W.C., 276
Shuey, R.T., 145
Sidler, R., 327
Simon, R.F., 183
single shear, 67
Singh, S.J., 51, 247, 312
single couple, 97
slant-stacking, 238
Slawinski, M.A., 51
Slawinski, R., 253
slowness, 75
complex, 313
slowness diagrams, 307
slowness surface, 306
slowness vector, 75, 76, 120
slowness vectors, P-SV, 127
Snell’s law, 125, 127, 153, 159, 188
anisotropy, 304
spherical field, 10
Sondergeld, C., 327
sonic log, 197
spatial aliasing, 283, 284
spatial frequency, 74, 233
specific compliance, 132
spectral ratios, 330
spherical coordinates, 18
spherical divergence, 74
spherical polar coordinates, 16
spherical wave, 74
spherically symmetric explosion, 97, 102
Spiegel, M.R., 1
spring-dashpot models, 316
springing, 90
stacking velocity, 191
standard linear solid, 316
generalized, 321
standing waves, 170, 176
steady-state waves, 120
Stein, S., 51, 124, 183
Stewart, R.R., 120
stiffness tensor, 64
Stoffa, P.L., 236, 240
Stokes’ theorem, 12
Stolt, R.H., 205, 280, 284, 285, 288, 291, 292
Stoneley waves, 158
strain, 54
strain energy density, 61, 63, 65
strain relaxation time, 318
strain tensor, 55
stress, 51
stress relaxation time, 318
stress tensor, 52
stress vector, 51
stress–strain relation, 63
Strick, E., 331
subcritical incidence angles, 134
summation convention, 22
Sun, Y., 94
supercritical angles, 177
supercritical incidence angles, 134
surface conversion coefficients, 133
surface waves, 152
SV waves, 72
syncline, 208
synthetic seismograms, 242, 260
general case, 251
Taner, M.T., 191, 207
t-ρ domain, 235
telford, W.M., 160
tenorio, L., 145
tensors
Cartesian, 29
contraction, 32
covariance, 30
general, 33
contravariant, 33, 35
covariant, 33, 35
mixed, 35
inner product, 32
outer product, 31
pseudotensor, 33
quotient rule, 33
symmetric, 31
tensor density, 33
terminating reflector, 215
theoretical seismograms, 242
thomsen, L., 301, 303, 304
thomsen parameters, 301	
traction, 51, 57
translation of coordinates, 28
transmission, 112, 120, 123
transmission coefficient
displacement, 113
displacement, SH, 126
ergy, 139
pressure, 117, 123
transmission coefficients
P-SV, 129
transmission losses, 244
transport equation, 207, 220
transverse waves, 71
transversely isotropic medium, 296
travel time function, 206	
treitel, S., 251, 327
triplication, 199
tromp, J., 51
trorey, A.W., 214
tuning effect, 256
udías, A., 51
ulrych, T., 327
uniform plane wave, 325
unit vectors, 1
unrelaxed modulus, 318
ursin, B., 327
vafidis, A., 253
vasheghani, F., 327
vector field, 4
vector magnitude, 2
vector product, 2
vector rules, 5
velocity lens, 278
velocity pull-down, 212
velocity pull-up, 211
velocity survey, 195
vertically inhomogeneous medium, 187, 201
viscoelastic medium, 247, 312
viscoelasticity, theory of, 319
voigt solid, 316
generalized, 322
walker, R.L., 1
wallace, T.C., 51, 92, 183
wang, Y., 292
wave equation migration, 276
wave equation, 1D, 72
wave equation, 3D, 75
wave equation, acoustic, 88
wave equation, inhomogeneous, 80
wave equations, 70
wave group, 167
wave packet, 167
wavefronts, 73
waveguide, 168, 170, 172, 177
wavelength, 74
wavenumber, 74
angular, 74
circular, 74
complex, 313
radial, 74
weak anisotropy, 301
welded contact, 112
welded contact boundary conditions, 123
well surveys, 195
wentzel, G., 203
wenzel, F., 240
west, G.F., 89, 156, 161, 172, 197, 201
widess, M.B., 259
wiechert, E., 197
wiechert-herglotz method, 197
WKBJ method, 203
wong, J., 327
wyession, M., 51, 124, 183
xu, J., 260
yedlin, M.J., 213
yilmaz, O., 177, 240
young’s modulus, 69
zero-offset ray tracing, 207
Zoeppritz equations, 129