Exploratory Social Network Analysis with Pajek

This is an extensively revised and expanded third edition of the successful textbook on analysis and visualization of social networks integrating theory, applications, and professional software for performing network analysis. The main structural concepts and their applications in social research are introduced with exercises. Pajek software and data sets are available, so readers can learn network analysis through application and case studies. In the end, readers will have the knowledge, skills, and tools to apply social network analysis across different disciplines. A fundamental redesign of the menu structure and the capability to analyze much larger networks required a new edition. This edition presents several new operations, e.g., community detection, generalized main paths searches, new network indices, advanced visualization approaches, and instructions for installing Pajek under MacOSX. This third edition is up-to-date with Pajek version 5 and it introduces PajekXXL for very large networks and Pajek3XL for huge networks.

Wouter de Nooy is Associate Professor in the Department of Communication Science at the University of Amsterdam, the Netherlands. He is a member of the Amsterdam School of Communication Research. His research interests include dynamic models for social networks and their application in culture and politics.

Andrej Mrvar is Professor of Social Science Informatics at the Faculty of Social Sciences, University of Ljubljana, Slovenia. He started developing the programs Pajek, PajekXXL, and Pajek3XL as part of his PhD dissertation at the Faculty of Computer and Information Science in 1996. Since then Pajek has been in constant development.

Vladimir Batagelj is Professor Emeritus of the University of Ljubljana, Slovenia. He is also a member of the Institute of Mathematics, Physics, and Mechanics (IMFM), Ljubljana, and of AMI, UP, Koper. His coauthored book Generalized Blockmodeling was awarded the 2007 Harrison White Outstanding Book Award by the Mathematical Sociology Section of the American Sociological Association. From the International Network for Social Network Analysis he was awarded the Georg Simmel Award (2007) and the Richards Software Award for the program Pajek (2013). In 2014 he coauthored a book entitled Understanding Large Temporal Networks and Spatial Networks.
Structural Analysis in the Social Sciences

Series Editor: Mark Granovetter

The series Structural Analysis in the Social Sciences presents studies that analyze social behavior and institutions by reference to relations among such concrete social entities as persons, organizations, and nations. Relational analysis contrasts on the one hand with reductionist methodological individualism and on the other with macro-level determinism, whether based on technology, material conditions, economic conflict, adaptive evolution, or functional imperatives. In this more intellectually flexible structural middle ground, analysts situate actors and their relations in a variety of contexts. Since the series began in 1987, its authors have variously focused on small groups, history, culture, politics, kinship, aesthetics, economics, and complex organizations, creatively theorizing how these shape and in turn are shaped by social relations. Their style and methods have ranged widely, from intense, long-term ethnographic observation to highly abstract mathematical models. Their disciplinary affiliations have included history, anthropology, sociology, political science, business, economics, mathematics, and computer science. Some have made explicit use of social network analysis, including many of the cutting-edge and standard works of that approach, whereas others have kept formal analysis in the background and used “networks” as a fruitful orienting metaphor. All have in common a sophisticated and revealing approach that forcefully illuminates our complex social world.

Recent Books in the Series

Darius Mehr, Iran Auto

Navid Hassanpour, Leading from the Periphery and Network Collective Action

Cheol-Sung Lee, When Solidarity Works (Second Edition)

Benjamin Cornwell, Social Sequence Analysis (Second Edition)

Mariela Szwarberg, Mobilizing Poor Voters (Second Edition)

Silvia Dominguez and Betina Hollstein, eds., Mixed Methods in Studying Social Networks (Second Edition)

Dean Lusher, Johan Koskinen, and Garry Robins, eds., Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications (Second Edition)

Sean F. Everton, Disrupting Dark Networks (Second Edition)

Wouter de Nooy, Andrej Mrvar, and Vladimir Batagelj, Exploratory Social Network Analysis with Pajek (First Edition)

(continued after the index)
Exploratory Social Network Analysis with Pajek

Revised and Expanded Edition for Updated Software. Third Edition

WOUTER DE NOOY
University of Amsterdam

ANDREJ MRVAR
University of Ljubljana

VLADIMIR BATAGELJ
University of Ljubljana
Contents

List of Figures xiii
List of Tables xix
Preface to the Third Edition xxi
Preface to the Second Edition xxiii
Preface to the First Edition xxv
Overview xxvi
Justification xxviii
Acknowledgments xxix

PART I FUNDAMENTALS

1 Looking for Social Structure 3
 1.1 Introduction 3
 1.2 Sociometry and Sociogram 3
 1.3 Exploratory Social Network Analysis 5
 1.3.1 Network Definition 6
 1.3.2 Manipulation 12
 1.3.3 Calculation 15
 1.3.4 Visualization 17
 1.4 Assembling a Social Network 27
 1.5 Summary 30
 1.6 Questions 31
 1.7 Assignment 32
 1.8 Further Reading 32
 1.9 Answers 33

2 Attributes and Relations 36
 2.1 Introduction 36
 2.2 Example: The World System 36
 2.3 Partitions 38
Contents

2.4 Reduction of a Network 45
2.4.1 Local View 46
2.4.2 Global View 48
2.4.3 Contextual View 51
2.5 Vectors and Coordinates 53
2.6 Network Analysis and Statistics 61
2.7 Summary 63
2.8 Questions 64
2.9 Assignment 65
2.10 Further Reading 65
2.11 Answers 66

PART II COHESION

3 Cohesive Subgroups 73
3.1 Introduction 73
3.2 Example 73
3.3 Density and Degree 75
3.4 Components 79
3.5 Cores 83
3.6 Cliques and Complete Subnetworks 86
3.7 Summary 92
3.8 Questions 94
3.9 Assignment 96
3.10 Further Reading 96
3.11 Answers 96

4 Sentiments and Friendship 99
4.1 Introduction 99
4.2 Balance Theory 99
4.3 Example 103
4.4 Detecting Structural Balance and Clusterability 103
4.5 Development in Time 109
4.6 Summary 113
4.7 Questions 113
4.8 Assignment 115
4.9 Further Reading 115
4.10 Answers 116

5 Affiliations 119
5.1 Introduction 119
5.2 Example 120
5.3 Two-Mode and One-Mode Networks 121
5.4 Islands 127
Contents

5.5 Communities 132
5.6 The Third Dimension 135
5.7 Summary 139
5.8 Questions 140
5.9 Assignment 141
5.10 Further Reading 141
5.11 Answers 142

Part III Brokerage

6 Center and Periphery 149
 6.1 Introduction 149
 6.2 Example 149
 6.3 Distance 151
 6.4 Betweenness 158
 6.5 Eigenvector Centrality 160
 6.6 Assortativity 162
 6.7 Summary 164
 6.8 Questions 165
 6.9 Assignment 166
 6.10 Further Reading 167
 6.11 Answers 167

7 Brokers and Bridges 170
 7.1 Introduction 170
 7.2 Example 171
 7.3 Bridges and Bi-Components 172
 7.4 Ego-Networks and Constraint 177
 7.5 Affiliations and Brokerage Roles 184
 7.6 Summary 189
 7.7 Questions 190
 7.8 Assignment 191
 7.9 Further Reading 193
 7.10 Answers 194

8 Diffusion 197
 8.1 Example 197
 8.2 Contagion 200
 8.3 Exposure and Thresholds 204
 8.4 Critical Mass 211
 8.5 Summary 216
 8.6 Questions 217
 8.7 Assignment 219
 8.8 Further Reading 219
 8.9 Answers 220
Contents

PART IV RANKING

9 Prestige
 9.1 Introduction 225
 9.2 Example 226
 9.3 Popularity and Indegree 227
 9.4 Correlation 229
 9.5 Domains 231
 9.6 Proximity Prestige 235
 9.7 Summary 238
 9.8 Questions 238
 9.9 Assignment 240
 9.10 Further Reading 241
 9.11 Answers 241

10 Ranking
 10.1 Introduction 244
 10.2 Example 245
 10.3 Triadic Analysis 245
 10.4 Acyclic Networks 253
 10.5 Symmetric-Acyclic Decomposition 256
 10.6 Summary 261
 10.7 Questions 263
 10.8 Assignment 265
 10.9 Further Reading 265
 10.10 Answers 266

11 Genealogies and Citations
 11.1 Introduction 269
 11.2 Example I: Genealogy of the Ragusan Nobility 269
 11.3 Family Trees 270
 11.4 Social Research on Genealogies 278
 11.5 Example II: Citations among Papers on Network Centrality 289
 11.6 Citations 291
 11.7 Summary 304
 11.8 Questions 304
 11.9 Assignment 1 306
 11.10 Assignment 2 306
 11.11 Further Reading 306
 11.12 Answers 307

PART V MODELING

12 Blockmodels
 12.1 Introduction 315

Contents

12.2 Matrices and Permutation 316
12.3 Roles and Positions: Equivalence 322
12.4 Blockmodeling 331
 12.4.1 Blockmodel 332
 12.4.2 Blockmodeling 333
 12.4.3 Regular Equivalence 338
12.5 Summary 343
12.6 Questions 345
12.7 Assignment 347
12.8 Further Reading 348
12.9 Answers 348

13 Random Graph Models 353
 13.1 Introduction 353
 13.2 Example 355
 13.3 Modeling Overall Network Structure 357
 13.3.1 Classic Uniform Models 358
 13.3.2 Small-World Models 362
 13.3.3 Preferential Attachment Models 366
 13.4 Monte Carlo Simulation 373
 13.5 Summary 377
 13.6 Questions 379
 13.7 Assignment 381
 13.8 Further Reading 381
 13.9 Answers 383

Appendix 1 Getting Started with Pajek 387
 A1.1 Installation 387
 A1.2 Network Data Formats 387
 A1.3 Creating Network Files for Pajek 389
 A1.3.1 Within Pajek 389
 A1.3.2 Helper Software 391
 A1.3.3 Word Processor 392
 A1.3.4 Relational Database 394
 A1.4 Limitations 400
 A1.5 PajekXXL and Pajek3XL 400
 A1.6 Updates of Pajek 402

Appendix 2 Exporting Visualizations 404
 A2.1 Export Formats 404
 A2.1.1 Bitmap and JPEG 404
 A2.1.2 Encapsulated PostScript 405
 A2.1.3 Scalable Vector Graphics 406
 A2.1.4 VOSviewer 408
 A2.1.5 Virtual Reality Modeling Language and X3D 409
Contents

A2.1.6 MDL MOL and Kinemages 410
A2.2 Layout Options 411
 A2.2.1 Top Frame on the Left: EPS/SVG
 Vertex Default 412
 A2.2.2 Bottom Frame on the Left: EPS/SVG
 Line Default 416
 A2.2.3 Top Frame on the Right 418
 A2.2.4 Middle Frame on the Right –
 Background Colors 419
 A2.2.5 Bottom Frame on the Right – EPS
 Border 420

Appendix 3 Installing Pajek on Mac OS X 421

Appendix 4 Shortcut Key Combinations 424
 A4.1 Main Screen 424
 A4.2 Hierarchy Edit Screen 425
 A4.3 Draw Screen 425

Glossary 427

Index of Pajek and R Commands 439

Subject Index 445
Figures

1 Dependencies between the chapters (for the second and third editions)
2 Sociogram of dining-table partners
3 Partial listing of a multiple relations network data file for Pajek
4 Pajek Main screen
5 Menu structure in Pajek
6 Dialog box in Pajek
7 Report screen in Pajek
8 Dialog box of Network > Info > General command
9 Draw screen in Pajek
10 Continue dialog box
11 A selected option in the Draw screen
12 Options menu of the Draw screen
13 Textual output from [Draw]Info > All Properties
14 A 3-D rendering of the dining-table partners network
15 Empty network
16 Edit Network screen
17 World trade of manufactures of metal and world system position
18 Edit screen with partition according to world system position
19 Vertex colors according to a partition in Pajek
20 Trade ties within South America
21 The Partitions menu
22 World system positions in South America: (2) semiperiphery and (3) periphery
23 Trade in manufactures of metal among continents (imports in thousands of US dollars)
List of Figures

24 Trade among continents in the Draw screen 51
25 Contextual view of trade in South America 52
26 Geographical view of world trade in manufactures of metal, ca. 1994 54
27 Vector>Info dialog box 55
28 Trade, position in the world system, and GDP per capita 58
29 Aggregate trade in manufactures of metal among world system positions 67
30 Contextual view of North American trade ties and (mean) GDP per capita 68
31 Visiting ties in Attiro 74
32 A simple unconnected directed network 79
33 Strong components (contours) and family–friendship groupings (vertex colors and numbers) in the network of Attiro 82
34 k-cores in the visiting network at Attiro 84
35 k-cores 85
36 Stacking or nesting of k-cores 85
37 The complete triad and an example 87
38 A hierarchy of cliques 89
39 Viewing a hierarchy in an Edit screen 90
40 Complete triads and family–friendship groupings (colors and numbers inside vertices) 91
41 Decision tree for the analysis of cohesive subgroups 93
42 A Person-Other-Object (X) triple 100
43 P–O–X triple as a signed digraph 100
44 A balanced network 102
45 First positive and negative choices between novices at T4 104
46 Output listing of a Doreian–Mrvar Method∗ command 108
47 Three solutions with one error 109
48 Partial listing of Sampson.net 110
49 Differences between two solutions with four classes 116
50 A fragment of the Scottish directorates network 122
51 One-mode network of firms created from the network in Figure 50 123
52 One-mode network of directors derived from Figure 50 124
53 Islands in the network of Scottish firms, 1904–1905 (contours added manually) 128
54 The islands in the network of Scottish firms (1904–1905) with industrial categories (class numbers) and capital (vertex size) 130
<table>
<thead>
<tr>
<th>List of Figures</th>
<th>xvi</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 Islands in three dimensions</td>
<td>136</td>
</tr>
<tr>
<td>56 Coordinate system of Pajek</td>
<td>136</td>
</tr>
<tr>
<td>57 A landscape of islands in the Scottish firms network</td>
<td>138</td>
</tr>
<tr>
<td>58 Communication ties within a sawmill</td>
<td>150</td>
</tr>
<tr>
<td>59 Star-network and line-network</td>
<td>152</td>
</tr>
<tr>
<td>60 Distances to or from Juan (vertex colors: Default GreyScale 1)</td>
<td>156</td>
</tr>
<tr>
<td>61 Geodesics between HP-1 and EM-4</td>
<td>157</td>
</tr>
<tr>
<td>62 Betweenness centrality in the sawmill</td>
<td>160</td>
</tr>
<tr>
<td>63 Communication network of striking employees</td>
<td>171</td>
</tr>
<tr>
<td>64 Cut-vertices (gray) and bi-components (manually circled) in the strike network</td>
<td>174</td>
</tr>
<tr>
<td>65 Hierarchy of bi-components and bridges in the strike network</td>
<td>177</td>
</tr>
<tr>
<td>66 Three connected triads</td>
<td>178</td>
</tr>
<tr>
<td>67 Alejandro’s ego-network</td>
<td>179</td>
</tr>
<tr>
<td>68 Proportional strength of ties around Alejandro</td>
<td>181</td>
</tr>
<tr>
<td>69 Constraints on Alejandro</td>
<td>181</td>
</tr>
<tr>
<td>70 Energized constraint network</td>
<td>183</td>
</tr>
<tr>
<td>71 Five brokerage roles of actor v</td>
<td>185</td>
</tr>
<tr>
<td>72 Bob’s ego-network</td>
<td>186</td>
</tr>
<tr>
<td>73 Constraint inside groups</td>
<td>188</td>
</tr>
<tr>
<td>74 Two overlapping cliques</td>
<td>192</td>
</tr>
<tr>
<td>75 Friendship ties among superintendents and year of adoption</td>
<td>199</td>
</tr>
<tr>
<td>76 Adoption of the modern math method: diffusion curve</td>
<td>201</td>
</tr>
<tr>
<td>77 Diffusion by contacts in a random network (N = 100; vertex numbers indicate the distance from the source vertex)</td>
<td>201</td>
</tr>
<tr>
<td>78 Diffusion from a central and a marginal vertex</td>
<td>202</td>
</tr>
<tr>
<td>79 Adoption (vertex color) and exposure (in brackets) at the end of 1959</td>
<td>205</td>
</tr>
<tr>
<td>80 Modern math network with arcs pointing toward later adopters</td>
<td>209</td>
</tr>
<tr>
<td>81 Visiting ties and prestige leaders in San Juan Sur</td>
<td>226</td>
</tr>
<tr>
<td>82 Partitions menu in Pajek</td>
<td>231</td>
</tr>
<tr>
<td>83 Distances to family 47 (represented by the numbers within the vertices)</td>
<td>233</td>
</tr>
<tr>
<td>84 Proximity prestige in a small network</td>
<td>237</td>
</tr>
<tr>
<td>85 Student government discussion network</td>
<td>245</td>
</tr>
<tr>
<td>86 An example of a network with ranks</td>
<td>246</td>
</tr>
<tr>
<td>87 Triad types with their sequential numbers in Pajek</td>
<td>247</td>
</tr>
<tr>
<td>88 Strong components in the student government discussion network</td>
<td>255</td>
</tr>
</tbody>
</table>
List of Figures

89 Acyclic network with shrunk components 255
90 Clusters of symmetric ties in the student government network 257
91 Discussion network shrunk according to symmetric clusters 257
92 Symmetric components in the (modified) student government discussion network 258
93 The order of symmetric clusters according to the depth partition (acyclic) 260
94 Ranks in the student government discussion network 261
95 Three generations of descendants to Petrus Gondola (years of birth) 271
96 Ore graph 272
97 Descendants of Petrus Gondola and Ana Goce 274
98 Shortest paths between Pauch and Margarita Gondola 275
99 Structural relinking in an Ore graph 280
100 P-graph 281
101 Structural relinking in a P-graph 282
102 Fragment of relinking grandchildren 285
103 Centrality literature network in layers according to year of publication 290
104 k-cores in the centrality literature network (without isolates) 292
105 Traversal weights in a citation network 293
106 Forward local and key-route local (top), standard global and key-route global (middle), and backward local (bottom) main paths in the centrality literature network 299
107 Main path component of the centrality literature network (not all names are shown here) 303
108 Communication lines among striking employees 316
109 The matrix of the strike network sorted by ethnic and age groups 318
110 A network and a permutation 319
111 Partial listing of the strike network as a binary matrix 320
112 The strike network permuted according to ethnic and age groups 321
113 Part of the permuted strike network displayed as a binary network 322
114 Hypothetical ties among two instructors (i) and three students (s) 322
List of Figures

115 A dendrogram of similarities 324
116 Imports of miscellaneous manufactures of metal and world system position in 1980 325
117 Hierarchical clustering of the world trade network 328
118 Hierarchical clustering of countries in the Hierarchy Edit screen 329
119 An ideal core-periphery structure 331
120 Image matrix and shrunk network 332
121 Error in the imperfect core-periphery matrix 334
122 Optimize Partition dialog box 336
123 Output of the Optimize Partition procedure 336
124 Random Start dialog box 338
125 Matrix of the student government network 339
126 Image matrix and error matrix for the student government network 340
127 Assembling a blockmodel in Pajek 342
128 Random versions of a small friendship network 354
129 Political blogosphere, United States, February 8, 2005 356
130 Small-world random graph generation: Ring of local lines (left) and rewired lines (right) 363
131 Log-log degree distributions of the blogs network, absolute frequencies (left) and cumulative proportions (right) 369
132 Read Network dialog box 388
133 A network in Pajek matrix format 389
134 Editing vertex labels 390
135 Edit Network screen 390
136 An empty network in Pajek Arcs/Edges format 392
137 A network in the Pajek Arcs/Edges format 393
138 A network in the Pajek matrix format 393
139 A two-mode network in the Pajek Arcs/Edges format 394
140 Four tables in the world trade database (MS Access 2010) 395
141 Contents of the Countries table (partial) 395
142 A Lookup to the Countries table 396
143 Export a report to plain text 397
144 Tables and relations in the database of Scottish companies 399
145 The Options screen 411
146 Layout of a vertex and its label 412
147 Bezier curves and different vertex shapes (man, woman, and house) 414
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>148</td>
<td>The x/y ratio of a vertex</td>
<td>414</td>
</tr>
<tr>
<td>149</td>
<td>Visualization with Unicode symbols</td>
<td>416</td>
</tr>
<tr>
<td>150</td>
<td>The position and orientation of a line label</td>
<td>417</td>
</tr>
<tr>
<td>151</td>
<td>Gradients in SVG export: linear (left) and radial (right)</td>
<td>419</td>
</tr>
<tr>
<td>152</td>
<td>XQuartz webpage</td>
<td>422</td>
</tr>
<tr>
<td>153</td>
<td>WineHQ webpage</td>
<td>422</td>
</tr>
<tr>
<td>154</td>
<td>Pajek webpage</td>
<td>423</td>
</tr>
<tr>
<td>155</td>
<td>Pajek running on Mac OS X</td>
<td>423</td>
</tr>
</tbody>
</table>
Tables

1. Tabular output of the command `Partition>Info` on page 41
2. Distribution of GNP per capita in classes page 56
3. Output of the `Info` command page 62
4. Cross-tabulation of world system positions (rows) and GDP per capita (columns) page 69
5. Frequency distribution of degree in the symmetrized network of visits page 78
6. Error score with all choices at different moments ($\alpha = .5$) page 112
7. Error score with first choices only ($\alpha = .5$) page 117
8. Line multiplicity in the one-mode network of firms page 126
9. Frequency tabulation of coordinator roles in the strike network page 188
10. Adoption in the modern math network page 203
11. Adoption rate and acceleration in the modern math diffusion curve page 212
12. Fragment of Table 11 page 215
13. Indegree listing in Pajek page 228
14. Input domain of f_4 page 234
15. Size of input domains in the visiting relations network page 235
16. Balance-theoretic models page 250
17. Triad census of the example network page 251
18. Triad census of the student government network page 252
19. Number of children of Petrus Gondola and his male descendants page 277
20. Size of sibling groups in 1200–1250 and 1300–1350 page 279
21. Birth cohorts among men and women page 287
22. Traversal weights in the centrality literature network page 297
23. Dissimilarity scores in the example network page 324
List of Tables

24 Cross-tabulation of initial (rows) and optimal partition (columns) 337
25 Final image matrix of the world trade network 338
26 Monte Carlo simulation results: confidence intervals for the simple undirected blogs network 374
27 Names of colors in Pajek 413
Preface to the Third Edition

Two major developments in program Pajek required a new edition of this book: a fundamental redesign of the menu structure and the capability to analyze much larger networks, containing billions of vertices. A proliferation of methods for analyzing a single network necessitated a reorganization of Pajek’s menu structure, in particular the former Net menu, now called the Network menu. The new Network menu contains submenus for commands that apply to a particular type of network: a two-mode network, multiple relations network, acyclic network, temporal network, and signed network. It is much easier now to find analyses for special networks. Because the Network menu is used most intensively, we had to adjust most of the commands in the Application sections of this book.

Pajek’s capability to analyze much larger networks is the second major development. As a result of changes in the Windows® operating system, Pajek can now handle networks with nearly one billion vertices. For even larger networks, PajekXXL and Pajek3XL have been developed, which can handle up to two and ten billion vertices respectively. PajekXXL and Pajek3XL have the same user interface as Pajek; if you can work with Pajek, you can also work with PajekXXL and Pajek3XL. What you need to know is that the latter two programs offer a very limited set of analyses to describe and partition huge networks. Subnetworks extracted from a huge network can be sent directly to (regular) Pajek for further analysis. Appendix A1.5 explains all of this.

Questions on how to install and use Pajek on Mac OS X have been asked repeatedly. This new edition brings an additional appendix (Appendix 3) containing detailed instructions on installing Pajek under Mac OS X. We hope that Mac users will find out that installing and running Pajek on Mac OS X is not a difficult technical problem: Installation takes only few additional minutes compared to installation under native Windows. When Pajek is installed, running Pajek under Mac OS X is the same as running it under Windows.
Preface to the Third Edition

Finally, we took the opportunity to include some analyses requested by Pajek users. Chapter 1 now includes Pivot MDS and VOS mapping for network layout as well as the correlation between layout coordinates and network geodesics as a measure of layout performance. Chapter 2 introduces partitions on vertex labels using regular expressions and marking partition clusters with Unicode symbols in the Draw screen. It also discusses interactive FishEye magnification and the Adjusted Rand Index. Relaxed balance is explained in Chapter 4; community detection (Louvain Method and VOS Clustering) and the E-I Index appear in Chapter 5. Chapter 6 includes (degree) assortativity and the assortativity coefficient. A collection of main path methods (including key-route searches) and preprint transformation are explained and applied in Chapter 11. Appendices A1 and A2 have been updated, now containing goodies such as dragging and dropping data to a Pajek window, sending Pajek objects to Excel®, defining colors and transparency of vertices and lines, using Unicode symbols and additional vertex shapes (e.g., man, woman, and house), tooltips for vertex labels, drawing curved lines, and so on. We hope that you will continue enjoying social network analysis with Pajek.

The webpage to the third edition of this book (http://mrvar.fdv.uni-lj.si/pajek/be3.htm, mirror http://mrvar2.fdv.uni-lj.si/pajek/be3.htm) contains the example data sets, helper programs, and other online documents referenced in this book.
Preface to the Second Edition

I go with him out in a shed in back and see he is selling a whole Harley machine in used parts, except for the frame, which the customer already has. He is selling them all for $125. Not a bad price at all.

Coming back I comment, “He’ll know something about motorcycles before he gets those together.”

Bill laughs. “And that’s the best way to learn, too.”

Robert M. Pirsig, *Zen and the Art of Motorcycle Maintenance*

To some of its readers, this book is an introduction to social network analysis; to other readers, it is a manual to Pajek software (http://mrvar.fdv.uni-lj.si/pajek). To us, it is both. As Patrick Doreian argued in his review of our book (In: *Social Networks* 28 [2006] 269–274), an understanding of social network analysis is required for proper use of Pajek and, vice versa, understanding the concepts and logic of Pajek fosters comprehension of network concepts. In this second edition, we have aimed to strengthen both aspects, updating the discussion of the Pajek interface and commands to include several capabilities that have been implemented since we submitted the text of the first edition, such as multiplex networks (Section 1.3.1), eigenvector centrality (Section 6.5), matrix multiplication (Section 11.3), and using Pajek output in R (Chapters 5 and 13). The new capabilities cover some important advances in social network analysis, including random graph models to which we have dedicated a new chapter.

We expanded the Further Reading sections with references to seminal, much cited texts. This should allow the reader to trace the literature on the selected topic in bibliographic and citation databases. For more comprehensive lists of literature, we refer to two other volumes in this series: S. Wasserman and K. Faust, *Social Network Analysis: Methods and Applications* (Cambridge: Cambridge University Press, 1994) and P. J. Carrington, J. Scott, and S. Wasserman, *Models and Methods in Social Network Analysis*.
Preface to the Second Edition

We hope that this second edition will continue to stimulate analysts to sharpen their understanding of social networks and expand their command of network analytic tools.
Preface to the First Edition

In the social sciences, social network analysis has become a powerful methodological tool alongside statistics. Network concepts have been defined, tested, and applied in research traditions throughout the social sciences, ranging from anthropology and sociology to business administration and history.

This book is the first textbook on social network analysis integrating theory, applications, and professional software for performing network analysis. It introduces structural concepts and their applications in social research with exercises to improve skills, questions to test the understanding, and case studies to practice network analysis. In the end, the reader has the knowledge, skills, and tools to apply social network analysis.

We stress learning by doing: Readers acquire a feel for network concepts by applying network analysis. To this end, we make ample use of professional computer software for network analysis and visualization: Pajek. This software, operating under Windows 95 and later, and all example data sets are provided on a Web site (http://vlado.fmf.uni-lj.si/pub/networks/book/) dedicated to this book. All the commands that are needed to produce the graphical and numerical results presented in this book are extensively discussed and illustrated. Step by step, the reader can perform the analyses presented in the book.

Note, however, that the graphical display on a computer screen will never exactly match the printed figures in this book. After all, a book is not a computer screen. Furthermore, newer versions of the software will appear, with features that may differ from the descriptions presented in this book. We strongly advise using the version of Pajek software supplied on the book’s Web site (http://vlado.fmf.uni-lj.si/pub/networks/book/) while studying this book and then updating to a newer version of Pajek afterward, which can be downloaded from http://vlado.fmf.uni-lj.si/pub/networks/pajek/default.htm.

xxv
Preface to the First Edition

Overview

This book contains five sections. The first section (Part I) presents the basic concepts of social network analysis. The next three sections present the three major research topics in social network analysis: cohesion (Part II), brokerage (Part III), and ranking (Part IV). We claim that all major applications of social network analysis in the social sciences relate to one or more of these three topics. The final section discusses an advanced technique (viz., blockmodeling), which integrates the three research topics (Part V).

The first section, titled Fundamentals, introduces the concept of a network, which is obviously the basic object of network analysis, and the concepts of a partition and a vector, which contain additional information on the network or store the results of analyses. In addition, this section helps the reader get started with Pajek software.

Part II on cohesion consists of three chapters, each of which presents measures of cohesion in a particular type of network: ordinary networks (Chapter 3), signed networks (Chapter 4), and valued networks (Chapter 5). Networks may contain different types of relations. The ordinary network just shows whether there is a tie between people, organizations, or countries. In contrast, signed networks are primarily used for storing relations that are either positive or negative such as affective relations: liking and disliking. Valued networks take into account the strength of ties, for example, the total value of the trade from one country to another or the number of directors shared by two companies.

Part III on brokerage focuses on social relations as channels of exchange. Certain positions within the network are heavily involved in the exchange and flow of information, goods, or services; whereas others are not. This is connected to the concepts of centrality and centralization (Chapter 6) or brokers and bridges (Chapter 7). Chapter 8 discusses an important application of these ideas, namely, the analysis of diffusion processes.

The direction of ties (e.g., who initiates the tie) is not very important in the section on brokerage, but it is central to ranking, presented in Part IV. Social ranking, it is assumed, is connected to asymmetric relations. In the case of positive relations, such as friendship nominations or advice seeking, people who receive many choices and reciprocate few choices are deemed as enjoying more prestige (Chapter 9). Patterns of asymmetric choices may reveal the stratification of a group or society into a hierarchy of layers (Chapter 10). Chapter 11 presents a particular type of asymmetry, namely, the asymmetry in social relations caused by time: genealogical descent and citation.
Preface to the First Edition

The final section, Part V, on roles concentrates on rather dense and small networks. This type of network can be visualized and stored efficiently by means of matrices. Blockmodeling is a suitable technique for analyzing cohesion, brokerage, and ranking in dense, small networks. It focuses on positions and social roles (Chapter 12).

The book is intended for researchers and managers who want to apply social network analysis and for courses on social network analysis in all social sciences as well as other disciplines using social methodology (e.g., history and business administration). Regardless of the context in which the book is used, Chapters 1, 2, and 3 must be studied to understand the topics of subsequent chapters and the logic of Pajek. Chapters 4 and 5 may be skipped if the researcher or student is not interested in networks with signed or valued relations, but we strongly advise including them to be familiar with these types of networks. In Parts III (Brokerage) and IV (Ranking), the first two chapters present basic concepts and the third chapter focuses on particular applications.

Figure 1 shows the dependencies among the chapters of this book. To study a particular chapter, all preceding chapters in this flowchart must have been studied before. Chapter 10, for instance, requires understanding of Chapters 1 through 4 and 9. Within the chapters, there are no sections that can be skipped.

In an undergraduate course, Part I and II should be included. A choice can be made between Part III and Part IV; or, alternatively, just the first chapter from each section may be selected. Part V on social roles and blockmodeling is quite advanced and more appropriate for a
Preface to the First Edition

postgraduate course. For managerial purposes, Part III is probably more interesting than Part IV.

Justification

This book offers an introduction to social network analysis, which implies that it covers a limited set of topics and techniques, which we feel a beginner must master to be able to find his or her way in the field of social network analysis. We have made many decisions about what to include and what to exclude, and we want to justify our choices now.

As reflected in the title of this book, we restrict ourselves to exploratory social network analysis. The testing of hypotheses by means of statistical models falls outside the scope of this book. In social network analysis, hypothesis testing is important but complicated; it deserves a book on its own. Aiming our book at people who are new to social network analysis, our first priority is to have them explore the structure of social networks to give them a feel for the concepts and applications of network analysis. Exploration involves visualization and manipulation of concrete networks, whereas hypothesis testing boils down to numbers representing abstract parameters and probabilities. In our view, exploration yields the intuitive understanding of networks and basic network concepts that are a prerequisite for well-considered hypothesis testing.

From the vast array of network analytic techniques and indices we discuss only a few. We have no intention of presenting a survey of all structural techniques and indices because we fear that the readers will not be able to see the forest for the trees. We focus on as few techniques and indices as are needed to present and measure the underlying concept. With respect to the concept of cohesion, for instance, many structural indices have been proposed for identifying cohesive groups: \(n \)-cliques, \(n \)-clans, \(n \)-clubs, \(m \)-cores, \(k \)-cores, \(k \)-plexes, lambda sets, and so on. We discuss only components, \(k \)-cores, 3-cliques, and \(m \)-slices (\(m \)-cores) because they suffice to explain the basic parameters involved: density, connectivity, and strength of relations within cohesive subgroups.

Our choice is influenced by the software that we use because we have decided to restrict our discussion to indices and techniques that are incorporated in this software. Pajek software is designed to handle very large networks (up to millions of vertices). Therefore, this software package concentrates on efficient routines, which are capable of dealing with large networks. Some analytical techniques and structural indices are known to be inefficient (e.g., the detection of \(n \)-cliques), and for others no efficient algorithm has yet been found or implemented. This limits our options; we present only the detection of small cliques (of size 3), and we cannot extensively discuss an important concept such as \(k \)-connectivity. In
Preface to the First Edition

Summary, this book is neither a complete catalogue of network analytic concepts and techniques nor an exhaustive manual to all commands of Pajek. It offers just enough concepts, techniques, and skills to understand and perform all major types of social network analysis.

In contrast to some other handbooks on social network analysis, we minimize mathematical notation and present all definitions verbatim. There are no mathematical formulae in the book. We assume that many students and researchers are interested in the application of social network analysis rather than in its mathematical properties. As a consequence, and this may be very surprising to seasoned network analysts, we do not introduce the matrix as a data format and display format for social networks until the end of the book.

Finally, there is a remark on the terminology used in the book. Social network analysis derives its basic concepts from mathematical graph theory. Unfortunately, different “vocabularies” exist within graph theory, using different concepts to refer to the same phenomena. Traditionally, social network analysts have used the terminology employed by Frank Harary, for example, in his book *Graph Theory* (Reading: Addison-Wesley, 1969). We choose, however, to follow the terminology that prevails in current textbooks on graph theory, for example, R. J. Wilson’s *Introduction to Graph Theory* (Edinburgh: Oliver and Boyd, 1972; published later by Wiley, New York). Thus, we hope to narrow the terminological gap between social network analysis and graph theory. As a result, we speak of a vertex instead of a node or a point, and some of our definitions and concepts differ from those proposed by Frank Harary.

Acknowledgments

The text of this book has benefited from the comments and suggestions from our students at the University of Ljubljana and the Erasmus University Rotterdam, who were the first to use it. In addition, Michael Frishkopf and his students of musicology at the University of Alberta gave us helpful comments. Mark Granovetter, who welcomed this book to his series, and his colleague Sean Farley Everton have carefully read and commented on the chapters. In many ways, they have helped us make the book more coherent and understandable to the reader. We are also very grateful to an anonymous reviewer, who carefully scrutinized the book and made many valuable suggestions for improvements. Ed Parsons (Cambridge University Press) and Nancy Hulan (TechBooks) helped us through the production process. Finally, we thank the participants of the workshops we conducted at the Sunbelt International Conference on Social Network Analysis in New Orleans (XXII) and Cancun (XXIII) for their encouraging reactions to our manuscript.
Preface to the First Edition

Most data sets that are used in this book have been created from sociograms or listings printed in scientific articles and books. Notwithstanding our conviction that reported scientific results should be used and distributed freely, we have tried to trace the authors of these articles and books and ask for their approval. We are grateful to have obtained explicit permission for using and distributing the data sets from them. Authors or their representatives whom we have not reached are invited...