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Introduction and Historical Notes

The aim of this book is to offer persuasive proof of several important ana-
lytical results about automorphic forms, among them spectral decompositions
of spaces of automorphic forms, discrete decompositions of spaces of cusp-
forms, meromorphic continuation of Eisenstein series, spectral synthesis of
automorphic forms, a Plancherel theorem, and various notions of convergence
of spectral expansions. Rather than assuming prior knowledge of the necessary
analysis or giving extensive external references, this text provides customized
discussions of that background, especially of ideas from 20th-century analysis
that are often neglected in the contemporary standard curriculum. Similarly, I
avoid assumptions of background that would certainly be useful in studying
automorphic forms but that beginners cannot be expected to have. Therefore, I
have kept external references to a minimum, treating the modern analysis and
other background as a significant part of the discussion.
Not only for reasons of space, the treatment of automorphic forms is delib-

erately neither systematic nor complete, but instead provides three families of
examples, in all cases aiming to illustrate aspects beyond the introductory case
of SL2(Z) and its congruence subgroups.
The first three chapters set up the three families of examples, proving essen-

tial preparatory results and many of the basic facts about automorphic forms,
while merely stating results whose proofs are more sophisticated or difficult.
The proofs of the more difficult results occupy the remainder of the book, as in
many cases the arguments require various ideas not visible in the statements.
The first family of examples is introduced in Chapter 1, consisting of wave-

forms on quotients having dimensions 2, 3, 4, 5 with a single cusp, which is
just a point. In the two-dimensional case, the space on which the functions
live is the usual quotient SL2(Z)\H of the complex upper half-plane H. The
three-dimensional case is related to SL2(Z[i]), and the four-dimensional and

ix
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x Introduction and Historical Notes

five-dimensional cases are similarly explicitly described. Basic discussion of
the physical spaces themselves involves explication of the groups acting on
them, and decompositions of these groups in terms of subgroups, as well as
the expression of the physical spaces as G/K for K a maximal compact sub-
group of G. There are natural invariant measures and integrals on G/K and on
Ŵ\G/K whose salient properties can be described quickly, with proofs deferred
to a later point. Similarly, a natural Laplace-Beltrami operator � on G/K and
Ŵ\G/K can be described easily, but with proofs deferred. The first serious result
specific to automorphic forms is about reduction theory, that is, determination
of a nice set in G/K that surjects to the quotient Ŵ\G/K, for specific discrete
subgroups Ŵ of G. The four examples in this simplest scenario all admit very
simple sets of representatives, called Siegel sets, in every case a product of a
ray and a box, with Fourier expansions possible along the box-coordinate, con-
sonant with a decomposition of part of the group G (Iwasawa decomposition).
This greatly simplifies both statements and proofs of fundamental theorems.
In the simplest family of examples, the space of cuspforms consists of those

functions on the quotient Ŵ\G/K with 0th Fourier coefficient identically 0.
The basic theorem, quite nontrivial to prove, is that the space of cuspforms
in L2(Ŵ\G/K) has a basis consisting of eigenfunctions for the invariant Lapla-
cian �. This result is one form of the discrete decomposition of cuspforms.
We delay its proof, which uses many ideas not apparent in the statement of the
theorem. The orthogonal complement to cuspforms in L2(Ŵ\G/K) is readily
characterized as the space of pseudo-Eisenstein series, parametrized here by
test functions on (0,+∞). However, these simple, explicit automorphic forms
are never eigenfunctions for �. Rather, via Euclidean Fourier-Mellin inver-
sion, they are expressible as integrals of (genuine) Eisenstein series, the latter
eigenfunctions for �, but unfortunately not in L2(Ŵ\G/K). Further, it turns out
that the best expression of pseudo-Eisenstein series in terms of genuine Eisen-
stein series Es involves the latter with complex parameter outside the region of
convergence of the defining series. Thus arises the need to meromorphically
continue the Eisenstein series in that complex parameter. Genuine proof of
meromorphic continuation, with control over the behavior of the meromorphi-
cally continued function, is another basic but nontrivial result, whose proof is
delayed. Granting those postponed proofs, a Plancherel theorem for the space
of pseudo-Eisenstein series follows from their expansion in terms of genuine
Eisenstein series, together with attention to integrals as vector-valued (rather
than merely numerical), with the important corollary that such integrals com-
mute with continuous operators on the vector space. This and other aspects of
vector-valued integrals are treated at length in an appendix. Then we obtain the
Plancherel theorem for the whole space of L2 waveforms. Even for the simplest
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Introduction and Historical Notes xi

examples, these few issues illustrate the goals of this book: discrete decompo-
sition of spaces of cuspforms, meromorphic continuation of Eisenstein series,
and a Plancherel theorem.
In Chapter 2 is the second family of examples, adele groups GL2 over num-

ber fields. These examples subsume classical examples of quotient Ŵ0(N)\H
with several cusps, reconstituting things so that operationally there is a single
cusp. Also, examples of Hilbert modular groups and Hilbert modular forms are
subsumed by rewriting things so that the vagaries of class numbers and unit
groups become irrelevant. Assuming some basic algebraic number theory, we
prove p-adic analogues of the group decomposition results proven earlier in
Chapter 1 for the purely archimedean examples. Integral operators made from
Coc functions on the p-adic factor groups, known asHecke operators, are reason-
able p-adic analogues of the archimedean factors’�, although the same integral
operators do make the same sense on archimedean factors. Again, the first seri-
ous result for these examples is that of reduction theory, namely, that there is a
single nice set, an adelic form of a Siegel set, again nearly the product of a ray
and a box, that surjects to the quotient Z+GL2(k)\GL2(A), where Z+ is itself a
ray in the center of the group. The first serious analytical result is again about
discrete decomposition of spaces of cuspforms, where now relevant operators
are both the invariant Laplacians and the Hecke operators. Again, the deferred
proof is much more substantial than the statement and needs ideas not visible in
the assertion itself. The orthogonal complement to cuspforms is again describ-
able as the L2 span of pseudo-Eisenstein series, now with a discrete parameter,
a Hecke character (grossencharacter) of the ground field, in addition to the test
function on (0,+∞). The pseudo-Eisenstein series are never eigenfunctions
for invariant Laplacians or for Hecke operators. Within each family, indexed
by Hecke characters, every pseudo-Eisenstein series again decomposes via
Euclidean Fourier-Mellin inversion as an integral of (genuine) Eisenstein series
with the same discrete parameter. The genuine Eisenstein series are eigenfunc-
tions for invariant Laplacians and are eigenfunctions for Hecke operators at
almost all finite places, but are not square-integrable. Again, the best assertion
of spectral decomposition requires a meromorphic continuation of the genuine
Eisenstein series in the continuous parameter. Then a Plancherel theorem for
pseudo-Eisenstein series for each discrete parameter value follows from the
integral representation in terms of genuine Eisenstein series and general prop-
erties of vector-valued integrals. These are assembled into a Plancherel theo-
rem for all L2 automorphic forms. An appendix computes periods of Eisenstein
series along copies ofGL1 (̃k) of quadratic field extensions k̃ of the ground field.

Chapter 3 treats the most complicated of the three families of examples,
including automorphic forms for SLn(Z), both purely archimedean and adelic.
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xii Introduction and Historical Notes

Again, some relatively elementary set-up regarding group decompositions is
necessary and carried out immediately. Identification of invariant differential
operators and Hecke operators at finite places is generally similar to that for
the previous example GL2. A significant change is the proliferation of types
of parabolic subgroups (essentially, subgroups conjugate to subgroups con-
taining upper-triangular matrices). This somewhat complicates the notion of
cuspform, although the general idea, that zeroth Fourier coefficients vanish, is
still correct, if suitably interpreted. Again, the space of square-integrable cusp-
forms decomposes discretely, although the complexity of the proof for these
examples increases significantly and is again delayed. The increased compli-
cation of parabolic subgroups also complicates the description of the orthog-
onal complement to cuspforms in terms of pseudo-Eisenstein series. For pur-
poses of spectral decomposition, the discrete parameters now become more
complicated than the GL2 situation: cuspforms on the Levi components (diag-
onal blocks) in the parabolics generalize the role of Hecke characters. Further,
the continuous complex parametrizations need to be over larger-dimensional
Euclidean spaces. Thus, I restrict attention to the two extreme cases: min-
imal parabolics (also called Borel subgroups), consisting exactly of upper-
triangular matrices, and maximal proper parabolics, which have exactly two
diagonal blocks. The minimal parabolics use no cuspidal data but for SLn(Z)
have an (n− 1)-dimensional complex parameter. The maximal proper parabol-
ics have just a one-dimensional complex parameter but typically need two cusp-
forms on smaller groups, one on each of the two diagonal blocks. The general
qualitative result that the L2 orthogonal complement to cuspforms is spanned
by pseudo-Eisenstein series of various types does still hold, and the various
types of pseudo-Eisenstein series are integrals of genuine Eisenstein series with
the same discrete parameters. Again, the best description of these integrals
requires the meromorphic continuation of the Eisenstein series. For nonmaxi-
mal parabolics, Bochner’s lemma (recalled and proven in an appendix) reduces
the problem of meromorphic continuation to the maximal proper parabolic
case, with cuspidal data on the Levi components. Elementary devices such as
Poisson summation, which suffice for meromorphic continuation for GL2, as
seen in the appendix to Chapter 2, are inadequate to prove meromorphic contin-
uation involving the nonelementary cuspidal data. I defer the proof. Plancherel
theorems for the spectral fragments follow from the integral representations in
terms of genuine Eisenstein series, together with properties of vector-valued
integrals.
The rest of the book gives proofs of those foundational analytical results,

discreteness of cuspforms and meromorphic continuation of Eisenstein series,
at various levels of complication and by various devices. Perhaps surprisingly,
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Introduction and Historical Notes xiii

the required analytical underpinnings are considerably more substantial than an
unsuspecting or innocent bystander might imagine. Further, not everyone inter-
ested in the truth of foundational analytical facts about automorphic forms will
necessarily care about their proofs, especially upon discovery that that burden
is greater than anticipated. These obvious points reasonably explain the com-
promises made in many sources. Nevertheless, rather than either gloss over
the analytical issues, refer to encyclopedic treatments of modern analysis on a
scope quite unnecessary for our immediate interests, or give suggestive but mis-
leading neoclassical heuristics masquerading as adequate arguments for what
is truly needed, the remaining bulk of the book aims to discuss analytical issues
at a technical level truly sufficient to convert appealing heuristics to persuasive,
genuine proofs. For that matter, one’s own lack of interest in the proofs might
provide all the more interest in knowing that things widely believed are in fact
provable by standard methods.
Chapter 4 explains enough Lie theory to understand the invariant differential

operators on the ambient archimedean groups G, both in the simplest small
examples and, more generally, determining the invariant Laplace-Beltrami
operators explicitly in coordinates on the four simplest examples.
Chapter 5 explains how to integrate on quotients, without concern for explicit

sets of representatives. Although in very simple situations, such as quotients
R/Z (the circle), it is easy to manipulate sets of representatives (the interval
[0, 1] for the circle), this eventually becomes infeasible, despite the traditional
example of the explicit fundamental domain for SL2(Z) acting on the upper
half-plane H. That is, much of the picturesque detail is actually inessential,
which is fortunate because that level of detail is also unsustainable in all but
the simplest examples.
Chapter 6 introduces natural actions of groups on spaces of functions on

physical spaces on which the groups act. In some contexts, one might make
a more elaborate representation theory formalism here, but it is possible to
reap many of the benefits of the ideas of representation theory without the
usual superstructure. That is, the idea of a linear action of a topological group
on a topological vector space of functions on a physical space is the benefi-
cial notion, with or without classification. It is true that at certain technical
moments, classification results are crucial, so although we do not prove either
the Borel-Casselman-Matsumoto classification in the p-adic case [Borel 1976],
[Matsumoto 1977], [Casselman 1980], nor the subrepresentation theorem [Cas-
selman 1978/1980], [Casselman-Miličić 1982] in the archimedean case, ideally
the roles of these results are made clear. Classification results per se, although
difficult and interesting problems, do not necessarily affect the foundational
analytic aspects of automorphic forms.
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xiv Introduction and Historical Notes

Chapter 7 proves the discreteness of spaces of cuspforms, in various senses,
in examples of varying complexity. Here, it becomes apparent that genuine
proofs, as opposed to heuristics, require some sophistication concerning topolo-
gies on natural function spaces, beyond the typical Hilbert, Banach, and Fréchet
spaces. Here again, there is a forward reference to the extended appendix on
function spaces and classes of topological vector spaces necessary for practical
analysis. Further, even less immediately apparent, but in fact already needed in
the discussion of decomposition of pseudo-Eisenstein series in terms of gen-
uine Eisenstein series, we need a coherent and effective theory of vector-valued
integrals, a complete, succinct form given in the corresponding appendix,
following Gelfand and Pettis, making explicit the most important corollaries
on uniqueness of invariant functions, differentiation under integral signs with
respect to parameters, and related.
Chapter 8 fills an unobvious need, proving that automorphic forms that are of

moderate growth and are eigenfunctions, for Laplacians have asymptotics given
by their constant terms. In the smaller examples, it is easy to make this precise.
For SLn with n ≥ 3, some effort is required for an accurate statement. As corol-
laries, L2 cuspforms that are eigenfunctions are of rapid decay, and Eisenstein
series have relatively simple asymptotics given by their constant terms. Thus,
we discover again the need to prove that Eisenstein series have vector-valued
meromorphic continuations, specifically as moderate-growth functions.
Chapter 9 carefully develops ideas concerning unbounded symmetric opera-

tors on Hilbert spaces, thinking especially of operators related to Laplacians�,
and especially those such that (� − λ)−1 is a compact-operator-valued mero-
morphic function of λ ∈ C. On one hand, even a naive conception of the gen-
eral behavior of Laplacians is fairly accurate, but this is due to a subtle fact
that needs proof, namely, the essential self-adjointness of Laplacians on natural
spaces such asRn, multi-torusesTn, spacesG/K, and even spacesŴ\G/K. This
has a precise sense: the (invariant) Laplacian restricted to test functions has a
unique self-adjoint extension, which then is necessarily its graph-closure. Thus,
the naive presumption, implicit or explicit, that the graph closure is a (maxi-
mal) self-adjoint extension is correct. On the other hand, the proof of meromor-
phic continuation of Eisenstein series in [Colin de Verdière 1981, 1982/1983]
makes essential use of some quite counterintuitive features of (Friedrichs’s)
self-adjoint extensions of restrictions of self-adjoint operators, which there-
fore merit careful attention. In this context, the basic examples are the usual
Sobolev spaces on T or R and the quantum harmonic oscillator −� + x2 on R.
An appendix recalls the proof of the spectral theorem for compact, self-adjoint
operators.
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Chapter 10 extends the idea from [Lax-Phillips 1976] to prove that larger
spaces than spaces of cuspforms decompose discretely under the action of self-
adjoint extensions �̃a of suitable restrictions �a of Laplacians. Namely, the
space of pseudo-cuspforms L2a at cutoff height a is specified, not by requiring
constant terms to vanish entirely, but by requiring that all constant terms vanish
above height a. The discrete decomposition is proven, as expected, by showing
that the resolvent (�̃a − λ)−1 is a meromorphic compact-operator-valued func-
tion of λ, and invoking the spectral theorem for self-adjoint compact operators.
The compactness of the resolvent is a Rellich-type compactness result, proven
by observing that (�̃a − λ)−1 maps L2a to a Sobolev-type spaceB

1
a with a finer

topology onB1
a than the subspace topology and that the inclusionB

1
a → L2a is

compact.
Chapter 11 uses the discretization results of Chapter 10 to prove meromor-

phic continuations and functional equations of a variety of Eisenstein series,
following [Colin de Verdière 1981, 1982/1983]’s application of the discrete-
ness result in [Lax-Phillips 1976]. This is carried out first for the four simple
examples, then for maximal proper parabolic Eisenstein series for SLn(Z), with
cuspidal data. In both the simplest cases and the higher-rank examples, we iden-
tify the exotic eigenfunctions as being certain truncated Eisenstein series.

Chapter 12 uses several of the analytical ideas and methods of the previous
chapters to reconsider automorphic Green’s functions, and solutions to other
differential equations in automorphic forms, by spectral methods. We prove
a pretrace formula in the simplest example, as an application of a compa-
rably simple instance of a subquotient theorem, which follows from asymp-
totics of solutions of second-order ordinary differential equations, recalled in
a later appendix. We recast the pretrace formula as a demonstration that an
automorphic Dirac δ-function lies in the expected global automorphic Sobolev
space. The same argument gives a corresponding result for any compact
automorphic period. Subquotient/subrepresentation theorems for groups such
as G = SO(n, 1) (rank-one groups with abelian unipotent radicals) appeared
in [Casselman-Osborne 1975], [Casselman-Osborne 1978]. For higher-rank
groups SLn(Z), the corresponding subrepresentation theorem is [Casselman
1978/1980], [Casselman-Miličić 1982]. Granting that, we obtain a correspond-
ing pretrace formula for a class of compactly supported automorphic distribu-
tions, showing that these distributions lie in the expected global automorphic
Sobolev spaces.
Chapter 13 is an extensive appendix with many examples of natural spaces

of functions and appropriate topologies on them. One point is that too-limited
types of topological vector spaces are inadequate to discuss natural function
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spaces arising in practice. We include essential standard arguments character-
izing locally convex topologies in terms of families of seminorms. We prove
the quasi-completeness of all natural function spaces, weak duals, and spaces
of maps between them. Notably, this includes spaces of distributions.
Chapter 14 proves existence of Gelfand-Pettis vector-valued integrals of

compactly supported continuous functions taking values in locally convex,
quasi-complete topological vector space. Conveniently, the previous chapter
showed that all function spaces of practical interest meet these requirements.
The fundamental property of Gelfand-Pettis integrals is that for V -valued f ,
T : V →W continuous linear,

T
( ∫

f
)

=

∫
T ◦ f

at least for f continuous, compactly supported, V -valued, where V is quasi-
complete and locally convex. That is, continuous linear operators pass inside
the integral. In suitably topologized natural function spaces, this situation
includes differentiationwith respect to a parameter. In this situation, as corollar-
ies we can easily prove uniqueness of invariant distributions, density of smooth
vectors, and similar.
Chapter 15 carefully discusses holomorphic V -valued functions, using the

Gelfand-Pettis integrals as well as a variant of the Banach-Steinhaus theo-
rem. That is, weak holomorphy implies (strong) holomorphy, and the expected
Cauchy integral formulas and Cauchy-Goursat theory apply almost verbatim in
the vector-valued situation. Similarly, we prove that for f a V -valued function
on an interval [a, b], λ ◦ f being Ck for all λ ∈ V ∗ implies that f itself is Ck−1

as a V -valued function.
Chapter 16 reviews basic results on asymptotic expansions of integrals and

of solutions to second-order ordinary differential equations. The methods are
deliberately general, rather than invoking specific features of special functions,
to illustrate methods that are applicable more broadly. The simple subrepresen-
tation theorem in Chapter 12 makes essential use of asymptotic expansions.
Our coverage of modern analysis does not aim to be either systematic or

complete but well-grounded and adequate for the aforementioned issues con-
cerning automorphic forms. In particular, several otherwise-apocryphal results
are treated carefully.Wewant a sufficient viewpoint so that attractive heuristics,
for example, from physics, can become succinct, genuine proofs. Similarly, we
do not presume familiarity with Lie theory, nor algebraic groups, nor repre-
sentation theory, nor algebraic geometry, and certainly not with classification
of representations of Lie groups or p-adic groups. All these are indeed use-
ful, in the long run, but it is unreasonable to demand mastery of these before
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thinking about analytical issues concerning automorphic forms. Thus, we
directly develop some essential ideas in these supporting topics, sufficient for
immediate purposes here. [Lang 1975] and [Iwaniec 2002] are examples of the
self-supporting exposition intended here.
Naturally, any novelty here is mostly in the presentation, rather than in the

facts themselves, most of which have been known for several decades. Sources
and origins can be most clearly described in a historical context, as follows.
The reduction theory in [1.5] is merely an imitation of the very classical treat-

ment for SL2(Z), including some modern ideas, as in [Borel 1997]. The subtler
versions in [2.2] and [3.3] are expanded versions of the first part of [Godement
1962–1964], a more adele-oriented reduction theory than [Borel 1965/1966b],
[Borel 1969], and [Borel-HarishChandra 1962]. Proofs [1.9.1], [2.8.6], [3.10.1-
2], [3.11.1] of convergence of Eisenstein series are due to Godement use sim-
ilar ideas, reproduced for real Lie groups in [Borel 1965/1966a]. Convergence
arguments on larger groups go back at least to [Braun 1939]’s treatment of con-
vergence of Siegel Eisenstein series. Holomorphic Hilbert-Blumenthal mod-
ular forms were studied by [Blumenthal 1903/1904]. What would now be
called degenerate Eisenstein series for GLn appeared in [Epstein 1903/1907].
[Picard 1882, 1883, 1884] was one of the earliest investigations beyond the
elliptic modular case. Our notion of truncation is from [Arthur 1978] and
[Arthur 1980].
Eigenfunction expansions and various notions of convergence are a perva-

sive theme here and have a long history. The idea that periodic functions should
be expressible in terms of sines and cosines is at latest from [Fourier 1822],
including what we now call the Dirichlet kernel, although [Dirichlet 1829]
came later. Somewhat more generally, eigenfunction expansions for Sturm-
Liouville problems appeared in [Sturm 1836] and [Sturm 1833a,b,1836a,b]
but were not made rigorous until [Bôcher 1898/1899] and [Steklov 1898]
(see [Lützen 1984]). Refinements of the spectral theory of ordinary differen-
tial equations continued in [Weyl 1910], [Kodaira 1949], and others, address-
ing issues of non-compactness and unboundedness echoing complications in
the behavior of Fourier transform and Fourier inversion on the line [Bochner
1932], [Wiener 1933]. Spectral theory and eigenfunction expansions for inte-
gral equations, which we would now call compact operators [9.A], were recog-
nized as more tractable than direct treatment of differential operators soon after
1900: [Schmidt 1907], [Myller-Lebedev 1907], [Riesz 1907], [Hilbert 1909],
[Riesz 1910], [Hilbert 1912]. Expansions in spherical harmonics were used
in the 18th century by S.P. Laplace and J.-L. Lagrange, and eventually sub-
sumed in the representation theory of compact Lie groups [Weyl 1925/1926],
and in eigenfunction expansions on Riemannian manifolds and Lie groups,
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as in [Minakshisundaram-Pleijel 1949], [Povzner 1953], [Avakumović 1956],
[Berezin 1956], and many others.
Spectral decomposition and synthesis of various types of automorphic forms

is more recent, beginning with [Maaß 1949], [Selberg 1956], and [Roel-
cke 1956a, 1956b]. The spectral decomposition for automorphic forms on
general reductive groups is more complicated than might have been antici-
pated by the earliest pioneers. Subtleties are already manifest in [Gelfand-
Fomin 1952], and then in [Gelfand-Graev 1959], [Harish-Chandra 1959],
[Gelfand-PiatetskiShapiro 1963], [Godement 1966b], [Harish-Chandra 1968],
[Langlands 1966], [Langlands 1967/1976], [Arthur 1978], [Arthur 1980],
[Jacquet 1982/1983], [Moeglin-Waldspurger 1989], [Moeglin-Waldspurger
1995], [Casselman 2005], [Shahidi 2010]. Despite various formalizations,
spectral synthesis of automorphic forms seems most clearly understood
in fairly limited scenarios: [Godement 1966a], [Faddeev 1967], [Venkov
1971], [Faddeev-Pavlov 1972], [Arthur 1978], [Venkov 1979], [Arthur 1980],
[Cogdell-PiatetskiShapiro 1990], largely due to issues of convergence, often
leaving discussions in an ambiguous realm of (nevertheless interesting)
heuristics.
Regarding meromorphic continuation of Eisenstein series: our proof [2.B]

for the case [2.9] of GL2 is an adaptation of the Poisson summation argu-
ment from [Godement 1966a]. The essential idea already occurred in [Rankin
1939] and [Selberg 1940]. [Elstrodt-Grunewald-Mennicke 1985] treated exam-
ples including our example SL2(Z[i]), and in that context [Elstrodt-Grunewald-
Mennicke 1987] treats special cases of the period computation of [2.C]. For
Eisenstein series in rank one groups, compare also [Cohen-Sarnak 1980], which
treats a somewhat larger family including our simplest four examples, and
then [Müller 1996]. The minimal-parabolic example in [3.12] using Bochner’s
lemma [3.A] essentially comes from an appendix in [Langlands 1967/1976].
The arguments for the broader class of examples in Chapter 11 are adapta-
tions of [Colin de Verdière 1981, 1982/1983], using discretization effects of
pseudo-Laplacians from Chapter 10, which adapts the idea of [Lax-Phillips
1976]. Certainly one should compare the arguments in [Harish-Chandra 1968],
[Langlands 1967/1976], [Wong 1990], and [Moeglin-Waldspurger 1995], the
last of which gives a version of Colin de Verdière’s idea due to H. Jacquet.
The discussion of group actions on function spaces in Chapter 6 is mostly

very standard. Apparently the first occurrence of the Gelfand-Kazhdan crite-
rion idea is in [Gelfand 1950]. An extension of that idea appeared in [Gelfand-
Kazhdan 1975].
The arguments for discrete decomposition of cuspforms in Chapter 11

are adaptations of [Godement 1966b]. The discrete decomposition examples
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for larger spaces of pseudo-cuspforms in Chapter 10 use the idea of [Lax-
Phillips 1976]. The idea of this decomposition perhaps goes back to [Gelfand-
Fomin 1952] and, as with many of these ideas, was elaborated on in
the iconic sources [Gelfand-Graev 1959], [Harish-Chandra 1959], [Gelfand-
PiatetskiShapiro 1963], [Godement 1966b], [Harish-Chandra 1968], [Lang-
lands 1967/1976], and [Moeglin-Waldspurger 1989].
Difficulties with pointwise convergence of Fourier series of continuous func-

tions, and problems in other otherwise-natural Banach spaces of functions,
were well appreciated in the late 19th century. There was a precedent for con-
structs avoiding strictly pointwise conceptions of functions in the very early
20th century, when B. Levi, G. Fubini, and D. Hilbert used Hilbert space
constructs to legitimize Dirichlet’s minimization principle, in essence that a
nonempty closed convex set should have a (unique) point nearest a given point
not in that set. The too-general form of this principle is false, in that both
existence and uniqueness easily fail in Banach spaces, in natural examples,
but the principle is correct in Hilbert spaces. Thus, natural Banach spaces of
pointwise-valued functions, such as continuous functions on a compact set with
sup norm, do not support this minimization principle. Instead, Hilbert-space
versions of continuity and differentiability are needed, as in [Levi 1906]. This
idea was systematically developed by [Sobolev 1937, 1938, 1950]. We recall
the L2 Sobolev spaces for circles in [9.5] and for lines in [9.7] and develop
various (global) automorphic versions of Sobolev spaces in Chapters 10, 11,
and 12.
For applications to analytic number theory, automorphic forms are often

constructed by winding up various simpler functions containing parame-
ters, forming Poincaré series [Cogdell-PiatetskiShapiro 1990] and [Cogdell-
PiatetskiShapiro-Sarnak 1991]. Spectral expansions are the standard device for
demonstration of meromorphic continuation in the parameters, if it exists at
all, which is a nontrivial issue [Estermann 1928], [Kurokawa 1985a,b]. For
the example of automorphic Green’s functions, namely, solutions to equations
(� − s(s− 1))u = δafc

w
with invariant Laplacian� onH and automorphic Dirac

δ on the right, [Huber 1955] had considered such matters in the context of
lattice-point problems in hyperbolic spaces, and, independently, [Selberg 1954]
had addressed this issue in lectures in Göttingen. [Neunhöffer 1973] carefully
considers the convergence and meromorphic continuation of a solution of that
equation formed by winding up. See also [Elstrodt 1973]. The complications
or failures of pointwise convergence of the spectral synthesis expressions can
often be avoided entirely by considering convergence in suitable global auto-
morphic Sobolev spaces described in Chapter 12. See [DeCelles 2012] and
[DeCelles 2016] for developments in this spirit.
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Because of the naturality of the issue and to exploit interesting idiosyn-
crasies, we pay considerable attention to invariant Laplace-Beltrami opera-
tors and their eigenfunctions. To have genuine proofs, rather than heuristics,
Chapter 9 attends to rigorous notions of unbounded operators on Hilbert spaces
[vonNeumann 1929], with motivation toward [vonNeumann 1931], [Stone
1929, 1932], [Friedrichs 1934/1935], [Krein 1945], [Krein 1947]. In fact,
[Friedrichs 1934/1935]’s special construction [9.2] has several useful idiosyn-
cracies, exploited in Chapters 10 and 11. Incidentally, the apparent fact that
the typically naive treatment of many natural Laplace-Beltrami operators with-
out boundary conditions does not lead to serious mistakes is a corollary of
their essential self-adjointness [9.9], [9.10]. That is, in many situations, the
naive form of the operator admits a unique self-adjoint extension, and this
extension is the graph closure of the original. Thus, in such situations, a
naive treatment is provably reasonable. However, the Lax-Phillips discretiza-
tion device, and Colin de Verdière’s use of it to prove meromorphic contin-
uation of Eisenstein series and also to convert certain inhomogeneous differ-
ential equations to homogeneous ones, illustrate the point that restrictions of
essentially self-adjoint operators need not remain essentially self-adjoint. With
hindsight, this possibility is already apparent in the context of Sturm-Liouville
problems [9.3].
The global automorphic Sobolev spaces of Chapter 12 already enter in

important auxiliary roles as the spaces B1, B1
a in Chapter 10’s proofs of dis-

crete decomposition of spaces of pseudo-cuspforms, and E1 and E1
a in [11.7-

11.11] proving meromorphic continuation of Eisenstein series. The basic esti-
mate called a pretrace formula occurred as a precursor to trace formulas, as in
[Selberg 1954], [Selberg 1956], [Hejhal 1976/1983], and [Iwaniec 2002]. The
notion of global automorphic Sobolev spaces provides a reasonable context
for discussion of automorphic Green’s functions, other automorphic distribu-
tions, and solutions of partial differential equations in automorphic forms. The
heuristics for Green’s functions [Green 1828], [Green 1837] had repeatedly
shown their utility in the 19th century. Differential equations (−� − λ)u = δ

related to Green’s functions had been used by physicists [Dirac 1928a/1928b,
1930], [Thomas 1935], [Bethe-Peierls 1935], with excellent corroboration by
physical experiments and are nowadays known as solvable models. At the time,
and currently, in physics contexts they are rewritten as ((−� + δ) − λ)u = 0,
viewing −� + δ as a perturbation of −� by a singular potential δ, a math-
ematical idealization of a very short-range force. This was treated rigorously
in [Berezin-Faddeev 1961]. The necessary systematic estimates on eigenval-
ues of integral operators use a subquotient theorem, which we prove for the
four simple examples, as in that case the issue is about asymptotics of solu-
tions of second-order differential equations, classically understood as recalled
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in an appendix (Chapter 16). The general result is the subrepresentation the-
orem from [Casselman 1978/1980], [Casselman-Miličić 1982], improving the
subquotient theorem of [HarishChandra 1954]. In [Varadarajan 1989] there are
related computations for SL2(R).

In the discussion of natural function spaces in Chapter 13, in preparation
for the vector-valued integrals of the following chapter, the notion of quasi-
completeness proves to be the correct general version of completeness. The
incompleteness of weak duals has been known at least since [Grothendieck
1950], which gives a systematic analysis of completeness of various types
of duals. This larger issue is systematically discussed in [Schaefer-Wolff
1966/1999], pp. 147–148 and following. The significance of the compactness
of the closure of the convex hull of a compact set appears, for example, in the
discussion of vector-valued integrals in [Rudin 1991], although the latter does
not make clear that this condition is fulfilled in more than Fréchet spaces and
does not mention quasi-completeness. To apply these ideas to distributions,
one might cast about for means to prove the compactness condition, eventu-
ally hitting on the hypothesis of quasi-completeness in conjunction with ideas
from the proof of the Banach-Alaoglu theorem. Indeed, in [Bourbaki 1987]
it is shown (by apparently different methods) that quasi-completeness implies
this compactness condition. The fact that a bounded subset of a countable strict
inductive limit of closed subspaces must actually be a bounded subset of one
of the subspaces, easy to prove once conceived, is attributed to Dieudonne and
Schwartz in [Horvath 1966]. See also [Bourbaki 1987], III.5 for this result.
Pathological behavior of uncountable colimits was evidently first exposed in
[Douady 1963].
In Chapter 14, rather than constructing vector-valued integrals as limits fol-

lowing [Bochner 1935], [Birkhoff 1935], et alia, we use the [Gelfand 1936]-
[Pettis 1938] characterization of integrals, which has good functorial proper-
ties and gives a forceful reason for uniqueness. The issue is existence. Density
of smooth vectors follows [Gårding 1947]. Another of application of holomor-
phic and meromorphic vector-valued functions is to generalized functions, as
in [Gelfand-Shilov 1964], studying holomorphically parametrized families of
distributions. A hint appears in the discussion of holomorphic vector-valued
functions in [Rudin 1991]. A variety of developmental episodes and results in
the Banach-space-valued case is surveyed in [Hildebrandt 1953]. Proofs and
application of many of these results are given in [Hille-Phillips 1957]. (The
first edition, authored by Hille alone, is sparser in this regard.) See also [Brooks
1969] to understand the viewpoint of those times.
Ideas about vector-valued holomorphic and differentiable functions, in

Chapter 15, appeared in [Schwartz 1950/1951], [Schwartz 1952], [Schwartz
1953/1954], and in [Grothendieck 1953a,1953b].
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The asymptotic expansion results of Chapter 16 are standard. [Blaustein-
Handelsman 1975] is a standard source for asymptotics of integrals. Watson’s
lemma and Laplace’s method for integrals have been used and rediscovered
repeatedly. Watson’s lemma dates from at latest [Watson 1918], and Laplace’s
method at latest from [Laplace 1774]. [Olver 1954] notes that Carlini [Green
1837] and [Liouville 1837] investigated relatively simple cases of asymptotics
at irregular singular points of ordinary differential equations, without complete
rigor. According to [Erdélyi 1956] p. 64, there are roughly two proofs that the
standard argument produces genuine asymptotic expansions for solutions of
the differential equation. Poincaré’s approach, elaborated by J. Horn, expresses
solutions as Laplace transforms and invokes Watson’s lemma to obtain asymp-
totics. G.D. Birkhoff and his students constructed auxiliary differential equa-
tions from partial sums of the asymptotic expansion, and compared these auxil-
iary equations to the original [Birkhoff 1908], [Birkhoff 1909], [Birkhoff 1913].
Volterra integral operators are important in both approaches, insofar as asymp-
totic expansions behave better under integration than under differentiation. Our
version of the Birkhoff argument is largely adapted from [Erdélyi 1956].
Many parts of this exposition are adapted and expanded from [Gar-

rett vignettes], [Garrett mfms-notes], [Garrett fun-notes], and [Garrett alg-noth-
notes]. As is surely usual in book writing, many of the issues here had plagued
me for decades.
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