Dynamics of Multiphase Flows

Understand multiphase flows using multidisciplinary knowledge in physical principles, modeling theories, and engineering practices. This essential text methodically introduces the important concepts, governing mechanisms, and state-of-art theories, using numerous real-world applications, examples, and problems. It covers all major types of multiphase flows, including gas-solid, gas-liquid (sprays or bubbling), liquid-solid, and gas-solid-liquid flows. It introduces the volume-time-averaged transport theorems and associated Lagrangian-trajectory modeling and Eulerian–Eulerian multifluid modeling. It explains typical computational techniques, measurement methods, and four representative subjects of multiphase flow systems. Suitable as a reference for engineering students, researchers, and practitioners, this text explores and applies fundamental theories to the analysis of system performance using a case-based approach.

Chao Zhu is a Professor in the Department of Mechanical and Industrial Engineering at the New Jersey Institute of Technology. He co-authored *Principles of Gas–Solid Flows* (Cambridge, 1998) and is a Fellow of the American Society of Mechanical Engineers.

Liang-Shih Fan is a Distinguished University Professor and The C. John Easton Professor of Engineering in the Department of Chemical and Biomolecular Engineering at The Ohio State University. He is the Editor-in-Chief of *Powder Technology* and a Member of the U. S. National Academy of Engineering.

Zhao Yu was a postdoctoral researcher at The Ohio State University. He is now an Associate Senior Consultant Engineer in Bioproduct Research and Development at Eli Lilly and Company.

Cambridge University Press 978-1-108-47374-3 — Dynamics of Multiphase Flows Chao Zhu , Liang-Shih Fan , Zhao Yu Frontmatter <u>More Information</u>

Cambridge Series in Chemical Engineering

Series Editor Arvind Varma, Purdue University

Books in the Series

Editorial Board Juan de Pablo, University of Chicago Michael Doherty, University of California-Santa Barbara Ignacio Grossmann, Carnegie Mellon University Jim Yang Lee, National University of Singapore Antonios Mikos, Rice University

Baldea and Daoutidis, Dynamics and Nonlinear Control of Integrated Process Systems Chamberlin, Radioactive Aerosols Chau, Process Control: A First Course with MATLAB Cussler, Diffusion: Mass Transfer in Fluid Systems, Third Edition Cussler and Moggridge, Chemical Product Design, Second Edition De Pablo and Schieber, Molecular Engineering Thermodynamics Deen, Introduction to Chemical Engineering Fluid Mechanics Denn, Chemical Engineering: An Introduction Denn, Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer Dorfman and Daoutidis, Numerical Methods with Chemical Engineering Applications Duncan and Reimer, Chemical Engineering Design and Analysis: An Introduction 2EFan, Chemical Looping Partial Oxidation Gasification, Reforming, and Chemical Syntheses Fan and Zhu, Principles of Gas-Solid Flows Fox, Computational Models for Turbulent Reacting Flows Franses, Thermodynamics with Chemical Engineering Applications Grossmann, Advanced Optimization for Process Systems Engineering Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes Lim and Shin, Fed-Batch Cultures: Principles and Applications of Semi-Batch Bioreactors Litster, Design and Processing of Particulate Products Maravelias, Chemical Production Scheduling Marchisio and Fox, Computational Models for Polydisperse Particulate and Multiphase Systems Mewis and Wagner, Colloidal Suspension Rheology Morbidelli, Gavriilidis, and Varma, Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors, and Membranes

Cambridge University Press 978-1-108-47374-3 — Dynamics of Multiphase Flows Chao Zhu , Liang-Shih Fan , Zhao Yu Frontmatter <u>More Information</u>

> Nicoud, Chromatographic Processes Noble and Terry, Principles of Chemical Separations with Environmental Applications Orbey and Sandler, Modeling Vapor-Liquid Equilibria: Cubic Equations of State and their Mixing Rules Petyluk, Distillation Theory and Its Applications to Optimal Design of Separation Units Pfister, Nicoud, and Morbidelli, Continuous Biopharmaceutical Processes: Chromatography, Bioconjugation, and Protein Stability Ramkrishna and Song, Cybernetic Modeling for Bioreaction Engineering Rao and Nott, An Introduction to Granular Flow Russell, Robinson, and Wagner, Mass and Heat Transfer: Analysis of Mass Contactors and Heat Exchangers Schobert, Chemistry of Fossil Fuels and Biofuels Shell, Thermodynamics and Statistical Mechanics Sirkar, Separation of Molecules, Macromolecules and Particles: Principles, Phenomena and Processes Slattery, Advanced Transport Phenomena Varma, Morbidelli, and Wu, Parametric Sensitivity in Chemical Systems Vassiliadis et al., Optimization for Chemical and Biochemical Engineering Weatherley, Intensification of Liquid–Liquid Processes Wolf, Bielser, and Morbidelli, Perfusion Cell Culture Processes for Biopharmaceuticals Zhu, Fan, and Yu, Dynamics of Multiphase Flows

Dynamics of Multiphase Flows

CHAO ZHU New Jersey Institute of Technology

LIANG-SHIH FAN Ohio State University

ZHAO YU Ohio State University

Cambridge University Press 978-1-108-47374-3 — Dynamics of Multiphase Flows Chao Zhu , Liang-Shih Fan , Zhao Yu Frontmatter <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108473743 DOI: 10.1017/9781108679039

© Cambridge University Press 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-47374-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-108-47374-3 — Dynamics of Multiphase Flows Chao Zhu , Liang-Shih Fan , Zhao Yu Frontmatter <u>More Information</u>

Dedicated to

Anqi Zhou,

Cheng-Yuan Rao Fan,

and

Li An Bao and Ning Liu

Contents

Preface

page xix

Part I	Part I Principles			
1	Introduction to Multiphase Flows			
	1.1	Multiphase Flow Phenomena	3	
		1.1.1 Sedimentation in a Particulate Flow	3	
		1.1.2 Dispersion by Sprays or Multiphase Jets	6	
		1.1.3 Mixing and Material Processing	8	
		1.1.4 Pipeline Transport	11	
		1.1.5 Flows with Charged Particles	13	
		1.1.6 Flows with Chemical Reactions	14	
	1.2	Definition of Multiphase Flow	15	
		1.2.1 Multiphase Flows versus Multicomponent Flows	15	
		1.2.2 Dilute Phase versus Dense Phase	16	
	1.3	Modeling Approaches	17	
		1.3.1 Eulerian–Lagrangian Modeling	17	
		1.3.2 Eulerian–Eulerian Modeling	18	
	1.4	Case Studies: Peculiarities of Multiphase Flows	18	
		1.4.1 Bubble Acceleration	19	
		1.4.2 Pressure Drop Reduction in Pneumatic Transport	20	
		1.4.3 Acceleration of Solids in a Dense Gas–Solid Riser	21	
		1.4.4 Cluster Formation and Instability	22	
		1.4.5 Wake-Induced Phenomena	24	
		1.4.6 Particle Trajectories in a Cyclone Separator	25	
	1.5	Summary	26	
	Nom	nenclature	27	
	Prob	plems	27	
	Refe	erences	29	
2	Cont	tinuum Modeling of Single-Phase Flows	31	
	2.1	Introduction	31	
	2.2	Flow of a Viscous Fluid	32	
		2.2.1 Constitutive Relation of a Viscous Fluid	33	
		2.2.2 General Transport Theorem	34	

Х	Contents	
	2.2.3 Governing Equations of Viscous Flows	35
	2.2.4 Interfacial Phenomena and Boundary Conditions	37
	2.2.5 Theory Simplifications and Limitations	41
	2.3 Turbulence	43
	2.3.1 Turbulent Flows	43
	2.3.2 Length Scales in Turbulence	45
	2.3.3 Reynolds-Averaged Navier–Stokes Equations	46
	2.3.4 Turbulence Modeling	48
	2.3.5 Large Eddy Simulation	53
	2.4 Flows in Porous Media	55
	2.4.1 Darcy's Law	55
	2.4.2 Ergun's Equation	56
	2.4.3 Brinkman Equation	58
	2.5 Kinetic Theory of Collision-Dominated Granular Flows	60
	2.5.1 Regimes of Granular Flows	61
	2.5.2 Transport Theorem of Collision-Dominated Granular	(2)
	Particles	62
	2.5.3 Governing Equations	64
	2.5.4 Constitutive Relations	66
	2.5.5 Advancement in Kinetic Theory for Granular Flow	67
	2.6 Case Studies	68
	2.6.1 Model Closure of a Multicomponent Single-Phase Reacting Flow	ig 68
	2.6.2 Smallest Characteristic Length of a Continuum-Based CFI) 69
	2.6.3 Flow into a Spherical Cavity in an Infinite Porous Medium	
	2.6.4 Electroosmotic Flow	71
	2.7 Summary	72
	Nomenclature	73
	Problems	76
	References	78
3	Transport of Isolated Objects: Solid Particles, Droplets, and Bubbles	81
	3.1 Introduction	81
	3.2 Momentum Transfer	82
	3.2.1 Drag Force	84
	3.2.2 Basset Force and Carried Mass	90
	3.2.3 Saffman Force and Other Gradient-Related Forces	91
	3.2.4 Magnus Force	93
	3.2.5 Field Forces	93
	3.2.6 Coriolis Force	96
	3.3 Heat Transfer	96
	3.3.1 Heat Conduction of a Sphere in Quiescent Fluid	97
	3.3.2 Convective and Radiant Heat Transfer of a Sphere	99
	3.4 Mass Transfer	100

		Contents	Xİ
	3.4.1	Mass Fluxes in a Multicomponent Fluid	100
	3.4.2	Stefan Flux	101
	3.4.3	Evaporation of a Droplet	102
3.5	Equati	ion of Motion	105
	3.5.1	Basset-Boussinesq-Oseen Equation	105
	3.5.2		106
3.6		nced Topics	107
	3.6.1		107
	3.6.2		109
3.7	Case S		110
	3.7.1		110
	3.7.2	e	
		Plates	113
	3.7.3	Motion of a Parachuted Object from an Airplane	114
	3.7.4	Motion of an Evaporating Droplet	116
3.8	Summ		117
	enclatur	e	118
Prob			120
Refe	rences		123
		of Particles, Droplets, and Bubbles	126
4.1	Introd		126
4.2	-	port Properties of a Cloud of Particles	127
	4.2.1	Hydrodynamic Forces of a Pair of Spheres	127
	4.2.2		129
	4.2.3	1	131
	4.2.4		134
	4.2.5	6	125
1.2	A 11: 1	Interactions	135
4.3		ion of a Pair of Solid Spheres	136
	4.3.1	Hertzian Contact of Frictionless Spheres	137
		Frictional Contact of Spheres	138
	4.3.3	Normal Collision of Elastic Spheres	140
	4.3.4	Oblique and Rotational Collisions	142
	4.3.5	Collision of Inelastic Spheres	144
	4.3.6	Heat Transfer by Collision of Solids	146
4.4	4.3.7	Charge Transfer by Collision of Solids	147
4.4		Interaction Forces between Solid Particles	148
	4.4.1	Van der Waals Force	148
	4.4.2	Liquid–Bridge Force	149
4.5		ctions between Fluid Particles	149
	4.5.1	Droplet Impact on a Flat Solid Surface	150
	4.5.2	Binary Droplet Collision	152
	4.5.3	Breakup of Fluid Particles	153

xii	Conte	ents	
		4.5.4 Coalescence of Fluid Particles	155
	4.6	Case Studies	155
	1.0	4.6.1 Settling of Suspended Particles in Column	157
		4.6.2 Wake-Induced Motion of a Pair of Spheres	159
		4.6.3 Collision of Elastic Spheres in Fluid	161
		4.6.4 Leidenfrost Collision of a Drop with a Flat Surface	162
	4.7	Summary	165
	Nom	nenclature	165
		lems	167
	Refe	prences	170
5		inuum-Discrete Tracking Modeling of Multiphase Flows	172
	5.1	Introduction	172
	5.2	Lagrangian Trajectory Modeling	175
		5.2.1 Deterministic Trajectory Models5.2.2 Stochastic Trajectory Models	176 177
		5.2.2 Stochastic Trajectory Models5.2.3 Particle Cloud Tracking Models	177
	5.3	Discrete Element Method	179
	5.5	5.3.1 Hard-Sphere Model	182
		5.3.2 Soft-Sphere Model	185
	5.4	Coupling in Eulerian–Lagrangian Model	191
		5.4.1 Mass Coupling	192
		5.4.2 Momentum Coupling	193
		5.4.3 Energy Coupling	194
		5.4.4 Coupling due to Charge-Induced Electric Field	195
	5.5	Case Studies	196
		5.5.1 Flow over Airfoil in Rain	196
		5.5.2 Inhalation of Ultrafine Particulates	198
		5.5.3 Solar-Absorbing Particulate-Laden Flow	200
	5.6	5.5.4 Transport of Charged Particles in Chamber Summary	202 204
		henclature	204 204
		lems	204
		prences	211
6	Cont	inuum Modeling of Multiphase Flows	212
	6.1	Introduction	212
	6.2	Averages and Averaging Theorems	212
		6.2.1 Phase and Intrinsic Averaging	213
		6.2.2 Volume-Averaging Theorems	214
	6.3	Volume-Averaged Equations	216
		6.3.1 General Volume-Averaged Equations	217
		6.3.2 Volume-Averaged Continuity Equation	217
		6.3.3 Volume-Averaged Momentum Equation	218

		Contents	xiii
	() (010
6.4		Volume-Averaged Energy Equation	219 221
0.4	6.4.1	ne–Time-Averaged Equations Volume–Time Averages and Covariance	221
	6.4.2	-	222
	6.4.3	• • •	223
	6.4.4		224
	6.4.5		226
6.5		itutive Relations in Multifluid Model	229
0.0	6.5.1		229
	6.5.2	Molecular Fluxes	230
		Eddy Diffusivities	230
		Interfacial Transport	231
		Turbulence Modeling	233
6.6		itutive Relations for Fluid–Solid Flows	234
	6.6.1	Stresses of Solid Particles	234
	6.6.2	Turbulent Diffusion of Particulates	235
6.7	Adva	nced Topics	238
	6.7.1	Effect of Mesoscale Structures on Phase Interaction	238
	6.7.2	Particle Size Distribution and Interfacial Area Concentration	239
	6.7.3	Turbulence Modulation	242
6.8	Case	Studies	246
	6.8.1	Particle Suspension in a Stirred Tank	246
	6.8.2		248
	6.8.3		
		Fluidized Bed	250
	6.8.4		251
6.9	Sumn	5	254
	nenclatu	re	255
	blems		257
Ref	erences		258
		odeling and Simulation	261
7.1		luction	261
7.2		ral Procedure of Numerical Modeling and Simulation	262
7.3		erical Solutions of Partial Differential Equations	264
	7.3.1	Numerical Solution of General Transport Equation	265
	7.3.2	Numerical Methods for Single-Phase Flow	268
	7.3.3	Boundary Conditions	272
7.4		ved Interface Approach for Dispersed Phase Objects	272
	7.4.1	Conformal Mesh Methods	273
	7.4.2	Nonconformal Mesh Methods	276
7.5		ian–Lagrangian Algorithms for Multiphase Flows	285
	7.5.1	Governing Equations	286
	7.5.2	Continuous-Discrete Phase Coupling	287

xiv	Conte	ents	
		7.5.3 Particle–Particle Interactions	288
	7.6	Eulerian–Eulerian Algorithms for Multiphase Flows	289
		7.6.1 Calculation of Velocity and Pressure Field	290
		7.6.2 Volume Fraction	293
		7.6.3 Pressure and Volume Fraction for Dense Solid Phase	293
	7.7	Lattice Boltzmann Method	294
		7.7.1 LBM for Single-Phase Flows	294
		7.7.2 LBM for Particle Suspensions	297
		7.7.3 LBM with Two Fluid Phases	299
	7.8	Case Studies	302
		7.8.1 Particle–Fluid Force in LBM	302
		7.8.2 Modeling of Aerosol Delivery by a Powder Inhaler	303
		7.8.3 Air Entrainment in a Hydraulic Jump	305
		7.8.4 Evaluation of Sparger in Bubble Column	306
	7.9	Summary	308
	Nom	nenclature	308
	Prob	lems	310
	Refe	rences	312
8	Meas	surement Techniques	316
	8.1	Introduction	316
	8.2	Particle Size and Morphology Measurement	318
		8.2.1 Optical Visualization Methods	319
		8.2.2 Microscopy Methods	319
		8.2.3 Sieving Analysis	320
		8.2.4 Sedimentation Methods	321
		8.2.5 Cascade Impaction	324
		8.2.6 Phase Doppler Method	325
		8.2.7 Particle Size Distribution and Averaged Size	328
	8.3	Volume Fraction Measurement	331
		8.3.1 Beam Attenuation Method	331
		8.3.2 Permittivity Measurement Method	334
		8.3.3 Transmission Tomography	336
		8.3.4 Electrical Impedance Tomography	339
	8.4	Mass Flow Measurement	342
		8.4.1 Overall Mass Flow Measurement	342
		8.4.2 Isokinetic Sampling Method	344
		8.4.3 Ball Probe Method	346
	8.5	Velocity Measurement	348
		8.5.1 Cross-correlation Method	348
		8.5.2 Venturimeter	350
		8.5.3 Laser Doppler Velocimetry	352
		8.5.4 Corona Discharge Method	355
		8.5.5 Particle Image Velocimetry	356

			Contents	XV
	0.6			250
	8.6	-	e Measurement	358
		8.6.1		359
	07	8.6.2	Induction Probe	359
	8.7	8.7.1	Studies Partiala Size Distribution by Deconvolution Mathed	360 360
			Particle Size Distribution by Deconvolution Method Optical Measurement of Microbubbles and Droplets	362
		8.7.2 8.7.3		362 363
	00		Volume Fraction in a Pressurized Slurry-Bubble Column	365
	8.8 Nom	Sumn	•	
		enclatu	ie	366
	Probl			368
	Refei	rences		372
Part II	Applicati	ion-Bas	sed Analysis of Multiphase Flows	375
9	•		f Multiphase Flows	377
	9.1		luction	377
	9.2	Separ	ation by Phase Inertia	377
		9.2.1	Phase-Inertia Separation Methods	378
		9.2.2	Modeling Approaches	383
	9.3	Filtrat	tion	390
		9.3.1	Collection Efficiency of a Single Fiber or Granular Particle	390
		9.3.2	Collection Efficiency of a Filter	394
			Pressure Drop through a Filter	396
	9.4	Separ	ation by External Electric Field	397
		9.4.1	Electrostatic Precipitation	397
		9.4.2	Separation by Polarization of Dielectric Particles	402
	9.5	Case	Studies	406
		9.5.1	Cyclone Collection Efficiency for a Polydispersed	
			Particulate Flow	406
		9.5.2	Inertial Impaction-Dominated Fibrous Filtration of Fine	
			Particles	407
		9.5.3	Numerical Modeling of Gas-Solid Flow in a Cyclone	
			Separator	410
		9.5.4	Numerical Modeling of Particulate Removal by Electrostatic	
			Precipitator	412
	9.6	Sumn	nary	414
	Nom	enclatur	re	415
	Probl	lems		417
	Refe	rences		421
0	Fluid	ization		423
	10.1	Introd	luction	423
	10.2	Dense	Phase Gas–Solid Fluidized Beds	425
		10.2.1	Classifications of Particles for Fluidization	428

xvi	Conte	nts	
		10.2.2 Dense Phase Fluidization	429
		10.2.3 External Field Modulated Fluidization	438
		10.2.4 Fluidization of Nanoparticles	444
	10.3	Circulating Fluidized Beds	446
		10.3.1 Components of a Circulating Fluidized Bed	447
		10.3.2 Fast Fluidization Regime	447
		10.3.3 Fast Fluidization Structure and Transition to Choking	449
		10.3.4 Modeling of Flow in Fast Fluidization	451
	10.4	Gas–Liquid Bubbling Flows	452
		10.4.1 Bubble Formation and Shape Regime	452
		10.4.2 Bubble Wake Dynamics and Interaction	456
		10.4.3 Bubble Columns	457
	10.5	Gas-Liquid-Solid Fluidization	460
		10.5.1 Pressure Drop and Phase Holdup	461
		10.5.2 Incipient Fluidization and Flow Regimes	461
		10.5.3 Bed Contraction and Moving Packed Bed	463
	10.6	Case Studies	463
		10.6.1 Pressure Balance in CFB	463
		10.6.2 Energy Partitions in Riser Transport	465
		10.6.3 Kinetic Theory Model for Bubbling Fluidization	467
	10.7	Summary	470
	Nome	enclature	470
	Probl	ems	472
	Refer	rences	474
11	Pipe I	Flow	477
	11.1	Introduction	477
	11.2	Multiphase Flow Patterns in Pipeline Transport	477
		11.2.1 Flow Regimes in Horizontal Pneumatic Conveying	478
		11.2.2 Flow Regimes in Horizontal Slurry Pipe Flows	480
		11.2.3 Gas-Liquid Flow Regimes in Pipes	481
	11.3		483
		11.3.1 Critical Transport Velocity	483
		11.3.2 Pickup Velocity	485
	11.4	Pressure Drop	486
		11.4.1 Pressure Drop of a Fully Developed Suspension Flow	487
		11.4.2 Pressure Drop in Dilute Gas–Solid Flows	488
		11.4.3 Pressure Drop in Slurry Flows	488
		11.4.4 Pressure Drop in Gas–Liquid Flows	490
		11.4.5 Drag Reduction	491
	11.5	Phase Distributions of Suspended Pipe Flows	493
	11.5	11.5.1 Fully Developed Dilute Pipe Flows	493
		11.5.2 Effect of Electrostatic Charge on Phase Transport	494
		11.5.3 Dilute Transport in a Vertical Pipe	495
		11.5.5 Druce fransport in a vertical i ipe	т))

		Contents	xvii
	11.6	Stratified Flows in Pipes and Ducts	497
		11.6.1 Regional-Averaged Theories of Stratified Flows	498
		11.6.2 Stratified Gas–Liquid Flows	499
	11.7	11.6.3 Stratified Gas–Solids Flow	501
	11.7	Flows in Bends	503
		11.7.1 Single-Phase Flow in a Pipe Bend	503 505
		11.7.2 Particulate Flow in a Pipe Bend11.7.3 Bend Erosion by Particle Collision	505
	11.8	Case Studies	510
	11.0	11.8.1 Particle–Laden Gas Flow and Erosion in a Bend	510
		11.8.2 Modeling of Slurry Flow over a Bend	510
		11.8.3 Modeling of Transition of Stratified to Nonstratified Flow	512
		11.8.4 Modeling of Fully Suspended Slurry Pipe Flow	515
	11.9	Summary	515
		enclature	517
	Probl		520
	Refer	rences	523
12	Flows	s with Phase Changes and/or Reactions	526
	12.1	Introduction	526
	12.2	Boiling in Vapor–Liquid Flows	527
		12.2.1 Boiling in Stagnant Liquid	527
		12.2.2 Boiling in Liquid Pipe Flow	531
	12.3	Liquid Spray Dispersion and Evaporation	534
		12.3.1 Spray Atomization	535
		12.3.2 Evaporating Spray Jets	535
		12.3.3 Spray Drying	537
		12.3.4 Spray on a Heated Surface	540
		12.3.5 Evaporating Spray in Gas–Solid Flows	541
		12.3.6 Modeling of Spray Transport and Phase Interactions	543
	12.4	Bubbling Reactors in Liquid and Liquid–Solid Media	549
		12.4.1 Mass Transfer in Gas–Liquid Media	550
		12.4.2 Sparged Stirred Tank	550
		12.4.3 Fischer–Tropsch Synthesis in Slurry Bubble Column	551
	12.5	Reactive Flows in Gas–Solid Fluidized Beds	553
		12.5.1 Fluid Catalytic Cracking	553
		12.5.2 Vaporization and Reaction in a Riser	555
	10 (12.5.3 Gas Phase Polymerization	557
	12.6	Dispersed Fuel Combustion	561
		12.6.1 Combustion of a Fuel Droplet	562
	10 7	12.6.2 Combustion of a Solid Fuel Particle	564
	12.7	Case Studies	567
		12.7.1 Motion of a Condensing Bubble in a Solution	567
		12.7.2 Modeling of FCC Reacting Flow	568

xviii	Contents	
	12.7.3 Modeling of Fisher–Tropsch Slurry Bubble Reactor	570
	12.7.4 Modeling of Reacting Flow in Coal Gasifier	572
	12.8 Summary	575
	Nomenclature	575
	Problems	577
	References	580
	Index	584

Preface

Multiphase flows refer to the flows with distinctively different dynamic responses of each phase in the transport and phase interactions that impact the transport phenomena. Knowledge of multiphase flows is important for researchers, scientists, and engineers in various disciplines. Our motivation for writing this book was propelled by the rapidly expanding interest in the optimized design, operation, and applications in the field of multiphase flows and the ever-increasing needs of higher education in this field. Understanding multiphase flows requires both the multidisciplinary knowledge in inherent flow concepts and theories, and their associated engineering practices. There is indeed a considerable literature that is already available for students, researchers, and other readers who are interested in multiphase flows. This literature includes research articles on fundamental concepts or problems of an applied nature, edited books on the progress of specific topics of interest, monographs on focused subjects, special collections of an individual researcher's publications, and handbooks contributed by various topic experts that outline basic principles and design criteria or formulae. However, these monographs and edited books on multiphase flows tend to have a more narrowly focused scope of subject matter and are often concerned with advanced topics, making them a desirable reference source for researchers rather than a foundational, comprehensive, and systematic introductory guide to the fundamental theories of the field, particularly for beginners. While there are a number of books that do address some fundamental theories, they either lack exercise examples and homework problems that are essential to deep learning for students, or they are not accompanied by solution manuals for homework problems. Their pedagogical effectiveness is therefore limited as they cannot be conveniently adapted by instructors as textbooks for use in the classroom.

A unified textbook in the field that can methodically encompass a broad range of the important elements of knowledge in the multiphase flow field, along with sufficient theoretical and applied details in a manner suitable to both introductory and advanced level learning in an instructional setting would be a welcome addition. This book is conceived for just this purpose, serving as an educational, learning-oriented text that introduces multiphase flows to engineering students, advanced researchers, and other readers. This book may also be regarded, to some degree, as an expanded sequel to an earlier book published in 1998 by two of the current co-authors (Fan and

Cambridge University Press 978-1-108-47374-3 — Dynamics of Multiphase Flows Chao Zhu , Liang-Shih Fan , Zhao Yu Frontmatter <u>More Information</u>

xx Preface

Zhu), titled *Principles of Gas–Solids Flows* (Cambridge University Press). This earlier book was limited only to the gas–solid flows and did not include the other topics of multiphase flows such as gas–liquid flows (sprays or bubbling flows), liquid–solid flows (slurry flows), and gas–solid–liquid flows (sprays in gas–catalysts flows or catalysts in bubbly liquid reactors). Thus, this book seeks to more fully articulate the coherent linkages among, for example, hydrodynamics, phase changes (reactions, mass, and heat transfer), and electrostatic charges in multiphase flow applications, as well as provide an introduction to computational multiphase flow theories and basic measurement methods.

The book contains twelve chapters. The first eight chapters cover fundamentals, and the last four chapters are dedicated to the introduction of representative applications. Specifically, this book has the following characteristics:

- It provides a systematic introduction and review of multidisciplinary fundamentals critical to understanding multiphase flows (Part I, Chapters 2-6). Specifically, Chapter 2 offers a summarized review of various single-phase flows, including the turbulent modeling of Newtonian fluid flows, viscous flow through porous media, and inertia-dominated granular flows. Chapter 3 focuses on the introduction of phase transfer between an isolated object and a surrounding fluid flow, including various physical mechanisms and their representative formulations for momentum, heat, and mass transfer across the interface between the object and fluid with a relative motion. Chapter 4 discusses the impact of neighboring objects and their dynamic behaviors on the phase transfer mechanisms between the object of concern and its surrounding fluid flow. Such an impact can be affected by the noncontact interobject interactions via the intervening common fluid, by the direct contact (collisions) of the interacting objects, by the noncontact field interactions (such as electrostatic or electromagnetic fields), or by all three of the aforementioned scenarios. Chapter 5 and Chapter 6 introduce the two most popular methods in the modeling of multiphase flows. Chapter 5 is primarily focused on Eulerian-Lagrangian modeling where the Lagrangian equations are used to account for motions or trajectory tracking of individual objects and the Eulerian equations are used to describe the Eulerian field behavior of the fluid flow surrounding those objects. Chapter 6 presents Eulerian-Eulerian modeling (also known as continuum modeling) to yield field descriptions of individual component phases that constitute a multiphase flow. The key conceptual elements in continuum modeling include the constitution of each continuum phase that co-occupies a physical space, the continuum description of phase interactions or coupling, and the in-phase transport due to phase nonuniformity (hence the definition or formulation of transport coefficients).

– Part II of the book is concerned with the characteristics of four selected subjects of multiphase flow systems. They are introduced in the last four chapters. This part of the book is designed not only for readers who wish to explore important engineering applications involving multiphase flows, but also for those readers who wish to apply the fundamental knowledge gained from Part I in an integrated manner to the analysis of the performance of the systems with practical engineering relevance. It should be noted that the real multiphase flow systems can be complicated by such

Cambridge University Press 978-1-108-47374-3 — Dynamics of Multiphase Flows Chao Zhu , Liang-Shih Fan , Zhao Yu Frontmatter <u>More Information</u>

Preface

xxi

factors as irregular vessel geometry, varied flow regimes with complex interphase transport and phase change properties, and polydispersity of the size of the discrete phases. Such complexity is well beyond what the theoretical modeling based on the multiphase flow principles described in Part I can fully account for. However, it is expected that by following the flow principles presented in Part I while, over time, augmenting them with additional knowledge on model formulation and closure relationship, and the computing capabilities, the gap of the comparison between the model prediction and experimental data can significantly narrow down. Specifically, Chapter 9 introduces typical multiphase flow systems of phase separation, with highlighted fundamentals of separations by inertia, filtration, and electrostatic precipitation. Chapter 10 describes the basic principles of fluidization and typical fluidization systems including dense-phase fluidized beds and circulating fluidized beds. Fluidization is a major industrial practice applied not only for phase mixing and reactions but also for phase transport. Fluidization in vertical columns or pipes is also discussed in this chapter. Chapter 11 focuses on phase transport by multiphase flows through horizontal pipes. Chapter 12 explores some complex multiphase flow systems with strong coupling to physical phase changes and chemical reactions.

- The book also contains two chapters dedicated to the numerical methods and experimental techniques of multiphase flows. These chapters can be found between Part I and Part II. Chapter 7 provides a brief introduction to common numerical methods that can be used for solving coupled differential equations with boundary conditions in various types of multiphase flow models. Highlights include the methods for numerical treatments of interfacial phase transfer, the algorithm coupling equations of individual phases, and the multiscale behavior among various phases or transport properties. Chapter 8 summarizes some common measurement technologies in the experimental studies of multiphase flows. The sections in this chapter are organized according to the specific purposes of the measurements such as particle size or volumetric concentrations.

- Most established theories of multiphase flow are based on simple multiphase flows characterized by, for example, dispersed monosized rigid spheres of solids being transported in the laminar flows of Newtonian fluids. It is natural, therefore, that the core of the book is oriented toward the introduction of basic theories that are formulated for such idealized multiphase flows. Nevertheless, in order for the theories to be more applicable to practical situations, this book also aims to include more complex flows to which a simple theoretical treatment can be reasonably extended. Such treatments and situations can be exemplified by the mechanistic modifications associated with deformable particles (such as droplets and bubbles), porous or permeable particles, phase changes (such as vaporization and reactions), complex interfacial transfers (such as collision-induced phase transfers), turbulence, non-Newtonian fluid flow, and coupling with external fields (such as electric, electromagnetic, or acoustic fields).

- Throughout the book, the structure of each chapter is organized based on the following framework: (1) basic concept and formulation, and (2) examples or case studies with detailed explanation and analysis.

xxii Preface

- Homework problems are included in each chapter. These problems are designed to provide practice opportunities for readers to gauge and assess their progress. The companion solution manual for the end-of-chapter problems is available upon request for instructors from the publisher at cambridge.org/9781108473743. Some problems are open ended and are posed only with necessary conditions rather than the usual "sufficient and necessary conditions," which yield unique answers to the problems. Thus, for these open-ended problems, various possible solutions can result from the reasonable assumptions of additional conditions required to ensure problem closure or the uniqueness of the solution. Some homework problems are also designed to further explore relevant theories or applications, with the aid of references cited in the problems.

- References for each chapter are given at the end of each chapter. Throughout the book, most of the references adapted are classical in the field, which have endured years of validation. Some more recent publications are also referenced. They are associated more with case studies and advanced homework problems, typically in modeling and simulations, for readers who wish to keep pace with related advances, understandings, and emerging subjects.

This book should by no means be used to the exclusion of other published books devoted to multiphase flows. Rather, readers are encouraged to adopt an integrative approach, as a number of these books complement each other. Thus, using this book in conjunction with others will likely maximize the development of the reader's knowledge and understanding. Such books include, but are not limited to, the following:

- *Bubbles, Drops and Particles*, R. Clift, J. R. Grace, and M. E. Weber, Dover Publications, 1978.
- *Multiphase Flow in Porous Media: Mechanics, Mathematics, and Numerics,* M. B. Allen III, G. A. Behie, and J. A. Trangenstein, Springer, 1988.
- *Particulate and Continuum-Multiphase Fluid Dynamics*, S. L. Soo, CRC Press, 1989.
- Multiphase Fluid Dynamics, S. L. Soo, Science Press, 1990.
- *Boiling Heat Transfer and Two-Phase Flow*, L. S. Tong and Y. S. Tang, 2nd edition, CRC Press, 1997.
- *Principles of Gas-Solid Flows*, L.-S. Fan and C. Zhu, Cambridge University Press, 1998.
- Dynamics of Bubbles, Droplets and Rigid Particles, Z. Zapryanov and S. Tabakova, Springer, 1998.
- Fluid Dynamics and Transport of Droplets and Sprays, W. A. Sirignano, Cambridge University Press, 1999.
- *The Dynamics of Fluidized Particles*, R. Jackson, Cambridge University Press, 2000.
- Two-Phase Flow: Theory and Application, C. Kleinstruer, CRC Press, 2003.
- *Computational Models for Turbulent Reacting Flows*, R. O. Fox, Cambridge University Press, 2003.

Cambridge University Press 978-1-108-47374-3 — Dynamics of Multiphase Flows Chao Zhu , Liang-Shih Fan , Zhao Yu Frontmatter <u>More Information</u>

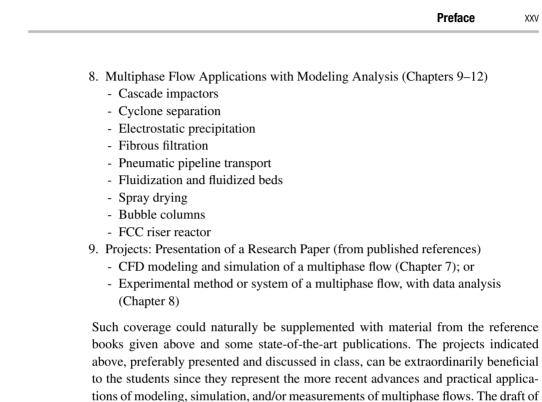
Preface

xxiii

- *Fundamentals of Multiphase Flow*, C. E. Brennen, Cambridge University Press, 2005.
- *Multiphase Flows with Droplets and Particles*, C. T. Crowe, J. D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji, 2nd edition, CRC Press, 2011.
- *Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows*, L. Zhou, Butterworth-Heinemann, 2018.
- *Essentials of Fluidization Technology*, Ed. J. R. Grace, X. T. Bi, and N. Ellis, Wiley-VCH, 2020.

Like our 1998 book, *Principles of Gas–Solid Flows*, this book can be used at the advanced undergraduate and graduate levels in courses related to mechanical and power engineering, chemical reaction engineering, pharmaceutical engineering, environmental engineering, and process system engineering. The pre-requisite subject knowledge for this book includes basic thermodynamics, fluid mechanics, and heat and mass transfer. To use this book in its entirety for teaching, a two-semester course sequence is ideal. For a 14-week or one-semester tech-elective course offered to undergraduate students, the following selective subjects taken from this book can be covered:

- 1. Introduction to Multiphase Flows (Chapter 1)
 - Basic concepts and definitions
 - Examples of multiphase flows in engineering applications
- 2. Single-Phase Flows (laminar flow of Newtonian fluids) (Chapter 2)
 - Flow over a sphere
 - Pipe flow
 - Jet flow
- 3. Phase Interaction with a Sphere (Chapters 3 and 4)
 - Drag force and other particle-fluid forces
 - Modification in presence of neighboring spheres
 - Momentum transfer by collisions
 - Heat and mass transfer
- 4. Lagrangian Trajectory Modeling (Chapter 5)
 - BBO equation
 - Deterministic Lagrangian trajectory modeling
 - Stochastic Lagrangian trajectory modeling
 - Collision-dominated trajectory modeling
- 5. Eulerian Continuum Modeling (Chapter 6)
 - Phase averages and averaging theorems
 - Volume-fraction-based equations
 - Time-fraction-based equations
- 6. Systems for Phase Separation (Chapter 9)
 - Sedimentation chamber
 - Cyclone
 - Impactor and scrubber
 - Granular and fibrous filters
 - Electrostatic precipitator


xxiv	Preface
	7. Systems for Phase Mixing (Chapter 10)
	- Fluidized beds
	- Jet mixer
	- Rotational blenders

- 8. Systems for Phase Transport (Chapter 11)
 - Pneumatic conveyers
 - Risers
 - Sprayers

For a 14-week or one-semester course offered to graduate students, the following selective subjects taken from this book can be covered:

- 1. Introduction to Multiphase Flows (Chapter 1)
 - Basic concepts and definitions
 - Examples of multiphase flows in engineering applications
- 2. Modeling of single-phase flows (Chapter 2)
 - Classification of viscous fluids
 - Laminar flows of Newtonian fluids
 - Turbulent flows of Newtonian fluids: RANS and turbulence modeling
 - Flow through porous media
 - Granular flows: kinetic theory modeling
- 3. Particle-Fluid Interactions (Chapters 3 and 4)
 - Momentum transfer: drag and other particle-fluid interaction forces
 - Heat transfer by conduction and convection
 - Mass transfer by diffusion and phase change
- 4. Collision of Solid Particles (Chapters 4 and 5)
 - Hard-sphere model
 - Normal collision characteristics of elastic objects
 - Oblique collision with tangential friction and torsional traction
 - Inelastic collisions and plastic deformation
 - Soft-sphere model
- 5. Formation and Interactions of Fluid Particles (Chapters 4, 6, 10, and 12)
 - Bubble formation and bubble column
 - Droplet formation and spray atomization
 - Breakup and coalescence of fluid particles
 - Population balance model
- 6. Continuum-Discrete Tracking Modeling of Multiphase Flows (Chapter 5)
 - Lagrangian Trajectory Modeling
 - Transport Coupling in Eulerian–Lagrangian Modeling
- 7. Continuum Modeling of Multiphase Flows (Chapter 6)
 - Phase averages and averaging theorems
 - Volume-averaged equations
 - Volume-time-averaged equations
 - Turbulence modulation

Cambridge University Press 978-1-108-47374-3 — Dynamics of Multiphase Flows Chao Zhu , Liang-Shih Fan , Zhao Yu Frontmatter <u>More Information</u>

this book had been used effectively in one- and/or two-semester formats for mechanical engineering and chemical engineering students, respectively, at the New Jersey Institute of Technology (NJIT) and the Ohio State University (OSU).

The feedback provided by students who took the multiphase flow course or related courses such as particle technology, particulates flows, and multiphase reaction engineering from both NJIT and OSU for the past two decades has been extraordinarily helpful in shaping the contents and the structure of the book in its present form. The authors are deeply thankful for this constructive feedback and the valuable insights of the students. Several colleagues, Professor Alissa Park, Dr. Teh C. Ho, Dr. Chao-Hsin Lin, and Professor Jonathan Fan have been very generous with their time in reading the book manuscript in full or in part during its preparation. They have provided invaluable comments that have been incorporated in this book, and the authors are very appreciative of their engagement. A final stage in the revision of part of the book manuscript was undertaken by Dr. Liang-Shih Fan during the spring semester 2019 when he took a sabbatical leave at ETH, Switzerland hosted by Professor Sotiris Pratsinis. Professor Pratsinis's thoughtful and supportive facilitation of LSF's work at this stage was invaluable, and the authors are indebted to him for his assistance. Gratitude is also extended to Dr. Dawei Wang, Dr. Pengfei He, Dr. Bo Zhang, and Mr. Soohwan Hwang for dedicated help on solution manual preparation; to Mr. Guangyu Guo and Ms. Hongling Deng for excellent figure drawings; and to Ms. Phoebe Del Boccio and Mr. Nicholas Almerini for outstanding editorial assistance. The financial support provided by the C. John Easton Professorship funds of the Ohio State University is gratefully acknowledged.