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String theory is a leading candidate for the unification of universal forces and matter,

and one of its most striking predictions is the existence of small additional dimen-

sions that have escaped detection so far. This book focuses on the geometry of these

dimensions, beginning with the basics of the theory, the mathematical properties of

spinors, and differential geometry. It further explores advanced techniques at the core

of current research, such as G-structures and generalized complex geometry. Many

significant classes of solutions to the theory’s equations are studied in detail, from

special holonomy and Sasaki–Einstein manifolds to their more recent generalizations

involving fluxes for form fields. Various explicit examples are discussed, of interest

to graduates and researchers.
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Preface

There are already several excellent references on string theory [1–11]. This book

focuses on one particular aspect: the geometry of the extra dimensions. Many

interesting techniques have been developed over the years to find and classify string

theory vacuum solutions, such as G-structures and pure spinors; I felt it would be

useful to collect these ideas in a single place.

The intended audience is mostly advanced graduate students, but I tried to make

the book interesting also to more experienced researchers who are not already

working on this subject. I assume the reader has basic knowledge of general

relativity, Lie groups, and algebras, and nodding acquaintance of the main ideas of

supersymmetry. Proficiency in quantum field theory is very welcome but not heavily

used. The basics of string theory and supergravity are recalled in Chapter 1, but

in a presentation skewed toward the needs of the rest of the book, and not meant

to give a complete picture of the field. Many details, such as the supersymmetry

transformations, are postponed to a later stage, after a long mathematical detour in

Chapters 2–7 allows us to present them with the appropriate level of sophistication.

Chapters 2 and 3 focus on the algebraic properties of spinors, and their deep

relationship with forms. Here spacetime is taken to be flat. With respect to other

introductions to these topics, I have emphasized the relation between a spinor and

its bilinear tensors, and reviewed how forms can be considered as spinors for a

doubled Clifford algebra; these are central to efforts in later chapters to rewrite

supersymmetry in terms of exterior algebra. I have also considered a wide range

of dimensions, both in Lorentzian and Euclidean signatures; this is perhaps a bit

more than is really needed in later chapters, but it might be useful for readers who

intend to go beyond the topics covered in the book. These chapters are also the most

technically detailed; the aim was to teach how to carry out these computations as

painlessly as possible – I have taken care to describe most steps, without resorting too

often to the magical sentence “it can be shown that” to hide inaccessible derivations.

Chapters 4–7 are dedicated to geometry, but I have tried to keep them focused

on physics needs. Chapter 4 is an introduction to differential geometry; these are

standard topics, but sometimes they give an occasion to put the techniques of the

earlier chapters to good use. In Chapter 5, we encounter G-structures, a well-known

geometrical concept that has become very useful in supersymmetry. It is a very

general framework, and I have discussed complex, Kähler, and Calabi–Yau geometry

from this point of view. Kähler manifolds are those where computations are easiest,

and so the entire Chapter 6 is devoted to them. Chapter 7 is devoted to manifolds

with special holonomy where the Ricci tensor vanishes, such as Calabi–Yau’s. This

includes a lengthy close-up on conical manifolds, which are important later for AdS

compactifications.

xiii
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xiv Preface

We get back to physics with Chapter 8. This is an elementary introduction to

compactifications with relatively little mathematics, in the simple settings of pure

gravity and string theory without flux fields. I have also provided here a quick review

of four-dimensional supergravity, for later use. Chapter 9 starts with Calabi–Yau

compactifications; these are not too realistic but are still the field’s gold standard for

rigor and depth. We later modify them by including D-branes and fluxes, covering in

particular the important F-theory and conformal Kähler classes of Minkowski vacua.

Chapter 10 is a more systematic investigation of vacuum solutions. Here we finally

introduce the supersymmetry transformation in full generality, and rewrite them in

terms of forms using G-structures, and more precisely their doubled variants using

pure forms from Chapter 3. This chapter is again rather technical at times, but the

result is a very general system of form equations, which we can then use to look

for supersymmetric solutions without having to consider spinors any more. Here and

elsewhere, parts marked by an asterisk are harder and can be skipped on first reading.

At the end of the chapter, we give a geometrical interpretation to this system in terms

of so-called generalized complex geometry. We then proceed in Chapter 11 to a more

detailed review of AdSd solutions in d ≥ 4, focusing on supersymmetric ones but

mentioning supersymmetry-breaking in various instances. In some cases, we can give

a complete classification of explicit solutions. We end in Chapter 12 with a quicker

review of efforts to obtain dS vacua and of the swampland program, and with some

final thoughts.

The book is not meant to be comprehensive. Notably, I have mostly focused on

vacuum solutions, perhaps not paying enough attention to the broader geometry of

reductions. After Chapter 1, I have devoted most attention to type II supergravity,

and perhaps not enough to M-theory and heterotic strings. In general, I almost

always avoided d < 4 vacua; and I have covered holography only superficially,

in Chapter 11. Several other important topics have not been given the space they

deserved. I hope readers disappointed by such omissions will forgive me after

checking the total page count, which is already testing my editors’ patience; I

was also wary of the danger of producing a soulless encyclopedia. In general, the

number of pages dedicated to a subject should not be construed as a judgment of its

importance. I have been lengthier on topics that I feel are less thoroughly covered in

other books, and sketchier on those where lots of great material is available already,

and which I am including for context and completeness. On controversial issues, I

have tried to represent all sides as fairly as I could; I have not tried to hide my opinion,

but I believe the proper place to articulate it is in research articles.

I have learned these topics from my teachers, my collaborators, and my students.

I am especially grateful to Loriano Bonora, Michael Douglas, Davide Gaiotto,

Mariana Graña, Shamit Kachru, Dario Martelli, Ruben Minasian, Michela Petrini,

and Alberto Zaffaroni. During the writing phase, I was helped by Bruno De Luca,

Suvendu Giri, Andrea Legramandi, Gabriele Lo Monaco, Luca Martucci, Achilleas

Passias, Vivek Saxena, and Riccardo Villa, and by the great staff at CUP. Special

thanks go to Francesca Baviera, Concetta Fratantonio, and Luciano Tomasiello,

although I am sorry the latter could not wait to see this finished. In spite of all

this help, I am of course aware that the final product will turn out to have lots of

typos, imprecisions, and outright mistakes; I will maintain a list of corrections on

my personal website.
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Conventions

• Lorentzian signature is “mostly plus.”

• The word “generic” means “for any choice except for a set of measure zero.”

• The antisymmetrizer of k indices is denoted by square brackets and includes a

1/k!; for example, v[mwn] =
1

2
(vmwn − vnwm). The symmetrizer is denoted by

round brackets, so v(mwn) =
1

2
(vmwn +vnwm). A vertical slash | is used to exclude

indices from these operations.

• The floor function ⌊x⌋ is the integer part of x or, in other words, the largest integer

n such that n ≤ x.

• The chiral matrix is γ = c γ0
. . . γd−1 (c γ1

. . . γd) for Lorentzian (Euclidean)

signature. The constant c is constrained by (2.1.20) so that γ2
= 1: notably, we

take c = i for d = 4 Lorentzian, c = −i for d = 6 Euclidean, c = 1 for d = 10

Lorentzian.

• The identity matrix in d dimensions is denoted by 1d or often simply by 1.

• d is most often the real dimension of a manifold; occasionally it denotes degree of

a polynomial. Complex dimension is sometimes denoted by N .

• When working in an index-free notation, we use the same symbol v for a vector

field with components vµ and its associated one-form gµνv
ν .

• Indices µ, ν . . . are for Lorentzian signature; m, n, . . . for Euclidean signature; i,

j . . . are holomorphic indices. An exception is d = 10 (and d = 26) Lorentzian,

where we use M , N . . . . Flat (vielbein) indices are a, b . . . . Indices α, β . . . are

usually spinorial.

• The vielbein ea = ea
m

dxm is an orthonormal basis of one-forms, so the line element

is ds2
= gmndxmdxn

= eaea. Its inverse is denoted by Ea = Em
a
∂m, an orthonormal

basis of vector fields. We also often need a holomorphic vielbein, defined by

(5.1.22), (5.1.35), and hence ds2
=

∑

d/2
a=1

ha h̄ā.

• The spinor covariant derivative is Dm = ∂m +
1

4
ωab

m
γab (Section 4.3.3).

• The components of a k-form are defined by αk =
1

k!
αm1...mk

dxm1 ∧ · · · ∧ dxmk .

The Clifford map associates to it a bispinor /αk ≡
1

k!
αm1...mk

γm1...mk , with

γm1...mk ≡ γ[m1 . . . γmk ]. For lengthy expressions, we also use the notation (αk )/

≡ /αk , but often we don’t use any symbol at all and denote by αk both a form and

the associated bispinor, with an abuse of language.

• A vector field acts on a spinor as v · η ≡ v
µγµη = vµγ

µη = /vη, or also just vη by

the previous point.

• vol = e1 ∧ . . . ∧ ed is the volume form, while the volume of a manifold M is

denoted by Vol(M).

• A chiral spinor η+ is said to be pure if it is annihilated by d/2 gamma matrices; in

flat space, this defines a notion of a (anti-)holomorphic index, for which we use the

convention γı̄η+ = 0xv
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xvi Conventions

• The complex conjugate of a complex number z is denoted by z∗ or z̄. For a complex

matrix M , M† ≡ (M∗)t . The conjugate of a spinor is ζc ≡ Bζ∗ (Section 2.3.1). In

Lorentzian signature, we also define ζ = ζ†γ0.

• We typically use the letter ζ for spinors in Lorentzian signature, and η for

Euclidean signature.

• Span{v1, . . . , vk } is the vector subspace of linear combinations of the va.
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Introduction

The idea that spacetime might have additional dimensions might seem preposterous

at first. It has come to the fore of current research in theoretical physics by two strands

of thought.

0.1 String theory

One comes from attempts at quantizing gravity. The problems one encounters in

general relativity at high energies suggest that it is superseded in that regime by a

different theory. A prominent candidate is string theory (to be reviewed in Chapter 1).

It describes interacting strings, which at low energies are seen as particles, some of

which behave as gravitons, thus reducing at low energies to a version of general

relativity (GR). The other particles behave in ways that look complicated enough to

accommodate the phenomena we see in particle physics. So string theory solves the

high-energy problems of GR, and gives a possible strategy to unify not only all forces

but also all matter. Remarkably, the theory is so constrained by various anomalies

that it has no free parameters. This is perhaps what one should expect from a unified

theory of all physics.

String theory does come, however, with a heavy conceptual framework. This

includes supersymmetry, which plays an important role in the theory’s internal

consistency; it could be broken spontaneously at Planck energies and be hidden

from observations for a long time. More importantly for us, string theory only

works in more than four dimensions. In its best-understood phase, six additional

dimensions are needed, with a seventh also sometimes emerging. To avoid conflict

with observations, we need to postulate that the compact space M6 they span is small

enough that current experiments have not revealed it yet. A compactification is a

spacetime that looks four-dimensional macroscopically, even if it actually has a larger

number of dimensions.

0.2 Kaluza–Klein reduction

This idea is natural enough that it had been considered long before string theory [12,

13]. The reason is that it gives a simpler, independent way to unify gravity with other

elementary forces. This was first noticed in GR with a single additional dimension,

wound up on a circle S1 with an extra coordinate x4. The various components of thexvii
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xviii Introduction

metric are viewed by a four-dimensional observer as fields of different spin: gµν as a

four-dimensional metric, gµ4 as a vector field, and g44 as a scalar. The first two can

be interpreted as describing gravity and electromagnetism in four dimensions.

The field dependence on the extra dimension x4 also gives rise to a “tower” of

massive spin-two fields with masses

mk =

2πk

L
, (0.2.1)

where L is the size of the S1. A similar phenomenon can be seen already with a free

scalar σ on R4 × S1: if we expand σ in a Fourier series with respect to x4 and plug

the expansion in the Klein–Gordon equation (∂µ∂
µ
+ ∂

2
4

)σ = 0, the term ∂2
4

gives a

mass (0.2.1) to the kth Fourier mode. With gravity, gµν , gµ4, and g44 all undergo the

same phenomenon: the massive spin-two fields then “eat” the massive modes of the

other components, in a version of the Brout–Englert–Higgs (BEH) mechanism. The

infinite sequence of masses (0.2.1) is called a KK tower, and the corresponding fields

are called KK modes.

As expected by dimensional analysis, (0.2.1) are inversely proportional to L; so

when L is small, these masses are large and might have avoided detection so far.

Even L ∼ 10−19m leads to mk ∼ O(TeV). We will review in more depth the physics

of this five-dimensional model in Section 8.1.1.

With d > 1 additional dimensions, one can consider more complicated spaces Md ,

which can now also realize Yang–Mills (YM) theories. The symmetry group of Md

becomes the YM gauge group. From this point of view, the idea of extra dimensions

is an evolution of that of “internal symmetry” in the world of elementary particles. It

is the postulate that those symmetries have a geometrical origin.

0.3 String compactiications

The topic of this book is the study of the “internal space” of string theory. While the

theory itself has no free parameters, the choice of M6 introduces a lot of freedom. As

we will see in Section 4.2.5, the possible topologies for a six-dimensional compact

space are classified by a few algebraic data (the dimensions of two vector spaces and

two polynomial functions). But the space of possible metrics for each given topology

is infinite dimensional.

Perhaps the simplest question we can ask is whether by compactifying on M6 we

can find at least a vacuum solution: namely, one where the macroscopic spacetime

is empty. This means that the stress energy tensor is zero, or consists at most of

a cosmological constant. Such a space should locally have as many symmetries as

flat Minkowski space, and is said to be maximally symmetric (MS) (Section 4.5); the

possibilities are Minkowski space itself, de Sitter (dS) space, and anti-de Sitter (AdS)

space, with a positive, zero, or negative cosmological constant Λ. We will argue in

Chapter 8 that for such a solution the line element for the ten-dimensional metric

reads

ds2
10 = e2Ads2

MS4
+ ds2

M6
. (0.3.1)
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xix Introduction

A = A(y) is called the warping function of the coordinates y
m on M6, and this form

of the metric is called warped product.

The question of which M6 lead to vacuum solutions is already rather hard:

it involves solving the equations of motion, which reduce to partial differential

equations on M6. An easy case is when all of string theory’s fields have zero

expectation value except the metric; the equations of motion then say that RMN = 0.

These imply that the maximally symmetric MS4 = Mink4, and that M6 is Ricci-flat

(Chapter 7). Many such spaces are the so-called Calabi–Yau manifolds. When the

other fields are also present, finding and classifying solutions is much harder. This is

one of the main topics of this book.

After finding a vacuum solution, one would like a description of the physics one

would observe in it. Here one faces a choice between precision and broadness. At

one extreme, the KK spectrum is the information about all the particle masses and

spins for a single given vacuum, but without any information about their interactions.

At the other extreme, one focuses on a small subset of fields, but with complete

information about their interactions, and in particular about the potential for the

scalars. Such an action S4 might describe many vacua at once. As usual, we call it an

effective theory if the scalars we kept span a “valley” with a relatively mild potential

Veff, much smaller than the potential for the scalars we discarded. Sometimes in

string theory we are forced to work without such a scale separation; one calls this

a nonlinear reduction, and we then want at least that its vacua correspond to vacuum

solutions of fully fledged string theory. We will give a longer introduction to these

ideas in Section 8.3, and then see several examples in later parts of the book.

Sometimes one reverses this procedure, and one uses an effective theory or non-

linear reduction to find new vacuum solutions rather than to describe the physics of

one that was previously found. Some of the theory’s most celebrated solutions have

been found this way. However, our focus will be on techniques to find vacua directly

in ten (or eleven) dimensions.

0.4 Supersymmetric vacua and geometry

To find vacuum solutions, it proves easier to start from those where supersymmetry

is partially preserved and to break it later, rather than trying to solve string theory’s

equations of motion in general. Technically, preserved supersymmetry gives a

first-order system of equations, which partially implies the second-order equations

of motion. More importantly, supersymmetry helps finding solutions because it

naturally invokes several deep geometrical ideas.

We cannot cover the internal M6 with a single coordinate system; we have to

use several, related by coordinate changes called transition functions, in general

valued in the group GL(6,R) of invertible matrices. A G-structure on M6 is a choice

of transition functions valued in a smaller group G (Chapter 5). The infinitesimal

parameters for supersymmetry are spinors η; they naturally define a G-structure,

with G = Stab(η) their little group (or stabilizer), the group of rotations that keep η

invariant. This helps trading η with other, nonspinorial geometrical objects on M6;

often antisymmetric tensors, or forms.
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xx Introduction

For example, a single η on M6 defines an SU(3)-structure, which can also be

defined by the metric and a complex three-form (an antisymmetric tensor with three

indices) Ω. It is further possible to trade even the metric for a real two-form J. The

G-structure techniques allow one to recast the supersymmetry equations, originally

involving η, directly in terms of J and Ω. Often one then recognizes a well-known

mathematical concept, and this helps finding solutions. This procedure is also natural

because most of the string theory fields beyond the metric are themselves forms,

analogues with many indices of the electromagnetic field-strength Fµν .

Some of the most interesting vacua are in type II, where there are two ηa. In

this case, it proves more fruitful to work with a doubled, or generalized, version of

the rotation group. Again, the upshot is that we may trade the data of the ηa and

of the metric with forms, this time a pair Φ± of them with an algebraic property

called purity (Chapters 2 and 3). In this language, the supersymmetry equations

become particularly elegant, making contact with generalized complex geometry

(Chapter 10).

The fact that the metric is included in this trade-off with forms is particularly

intriguing. It is reminiscent of previous attempts to reformulate GR such as [14, 15].

0.5 The cosmological constant

The observed cosmological constant is positive, so one would like to focus on the

case MS4 = dS4. These are actually the hardest solutions to obtain. To see why,

consider a general gravitational theory with an Einstein–Hilbert (EH) kinetic term

[16–18]. The equations of motion read RMN −
1

2
gMN R = 8πGNTMN , where as

usual GN is Newton’s constant, RMN is the Ricci tensor, R its trace, and TMN the

stress–energy tensor of various matter fields; the indices M , N = 0, . . . , 3 + d. The

“trace-reversed” Einstein equations are

RMN = 8πGN

(

TMN −
1

2 + d
gMNTP

P

)

. (0.5.1)

For a warped product metric as in (0.3.1) (generalizing M6 → Md),

Rµν =

(

Λ −
1

4
e−2A∇2e4A

)

g
4
µν , (0.5.2)

where g
4
µν are the components of the metric of the external MS4 space, Λ its

cosmological constant (normalized as R4
µν = Λg

4
µν), and ∇ the internal covariant

derivative. (We will derive (0.5.2) in an exercise in Chapter 4.) In coordinates where

g
4
00
= −1, the time components of (0.5.1) give

− e2A
Λ +

1

4
∇2e4A

= 8πGNe2A

(

T00 −
1

2 + d
g00TP

P

)

. (0.5.3)

The parenthesis on the right-hand side is nonnegative if the higher-dimensional

theory obeys the strong energy condition. This is an assumption often made in

general relativity, for example in proving singularity theorems for black holes and

cosmology; see, for example, the discussions in [19, 4.3;8.2] and [20, chap. 9].
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xxi Introduction

Supposing it holds, we integrate (0.5.3) on the compact M6; the second term on

the left-hand side is a total derivative and gives no contribution, so

Λ ≤ 0 . (0.5.4)

We conclude that a theory with an EH kinetic term obeying the strong energy

condition has no de Sitter compactifications. Even Minkowski compactifications are

only marginally allowed, requiring the parenthesis in (0.5.3) to vanish.

Does this apply to string theory? We mentioned that it reduces at low energies to

a version of GR, which due to supersymmetry is called supergravity. In this regime,

the graviton has an EH kinetic term, coupled to various other fields and to certain

localized sources. All the fields satisfy the strong energy condition, except for a term

called Romans mass. But this possible loophole in the argument was closed in [18]

(Section 10.3.1).

For localized sources, violating the strong energy condition requires negative

tension, leading to repulsive gravity, and usually to instabilities for dynamical

objects. The sources in string theory are of two types, called D-branes and O-planes

(Sections 1.3 and 1.4.4). The first are defined as spacetime defects on which strings

can end; this makes them dynamical. The second arise after quotienting string theory

by a parity-like symmetry, and arise at its fixed loci; so they are not dynamical. Some

of them have indeed negative tension, and so they do invalidate (0.5.3).

The conclusion is that, in the regime where string theory is described by super-

gravity, de Sitter compactifications require O-planes. Minkowski compactifications

also need them, unless all the fields except gravity are turned off.

0.6 Beyond supergravity

Let us consider now a d = 10 effective field theory S10. This is useful in a regime

of energies high enough to see the extra dimensions, but low enough to see strings

as particles; it is not to be confused with the d = 4 effective action S4, relevant at

lower energies where we cannot resolve the extra dimensions. In S10, supergravity is

the collection of the most relevant operators at energies well below the Planck scale,

which in turn is related to a new fundamental length scale ls , the “typical length” of

strings. But supergravity is not renormalizable; this manifests itself in the presence

of higher-derivative corrections, which become relevant at high energies, or when

the curvature gets large. These are not known completely, but there is no reason to

expect that the result (0.5.4) still holds when they are introduced. For example, one

famous leading correction has the form
∫

d10x(Riemann)4. So not even the metric

appears simply through an EH kinetic term, as in supergravity. Unfortunately, only

the first few terms have been computed.

This introduces other challenges. These corrections will contribute to the potential

of the d = 4 effective action S4 (Chapter 8), whose vacua should approximate

string theory’s vacuum solutions as defined earlier. Very naively, suppressing the

dependence on other fields, we will see that the EH term and the (Riemann)4 term

give two contributions to the potential:
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V4 ∼ ar−2
+ br−8 , (0.6.1)

where r ≡ R/ls is the length scale of the internal space M6, in units of the string

length. If a and b have opposite sign, this has an extremum at r = (−4b/a)1/6; but if

a, b ∼ O(1), also r ∼ O(1), and R ∼ ls. But in this regime, other (Riemann)k , k > 4

corrections would also be relevant, contributing further terms r−2k to (0.6.1); so we

cannot trust our extremum. This illustrates a general issue: if we find a solution by

using one string correction to supergravity, we can expect it to be in a regime where

all string corrections are relevant, where we in fact cannot compute anything. This is

the Dine–Seiberg problem [21].

Fortunately, not all the terms in the d = 4 effective potential are ∼O(1). The afore-

mentioned form fields have to satisfy a certain Dirac quantization; this introduces

integers, which can be taken to be large, introducing a hierarchy that eventually

makes R ≫ ls. From the point of view of S4, this is behind the existence of most

vacua, but usually the terms that compete originate from the leading supergravity

approximation. (For the Calabi–Yau vacua, the leading supergravity contribution

vanishes; we will see in Chapter 9 a more delicate argument to show that the

corrections don’t destroy the vacuum.)

0.7 Overview of vacua

The argument (0.5.4) indicates that finding vacua is easiest when the cosmological

constant is negative, which as we mentioned is contrary to observations. These

AdS vacua have found applications in holography, which relates them to quantum

field theory models with conformal invariance, or conformal field theories (CFTs).

Another reason not to discard them is that the supersymmetry-breaking procedure

sometimes also changes Λ. For these reasons, we dedicate Chapter 11 to a survey

of such vacua. Several classification results are available here, and several more are

likely to emerge in the near future, as techniques improve. For example, a list of all

supersymmetric AdS6 and AdS7 solutions has been achieved relatively recently.

Minkowski vacua are more tightly constrained. Relative to AdS, this is expected,

if nothing else because Λ = 0 is an equality, not an inequality. A priori the general

equations seem to allow for M6 of any curvature; but so far the vast majority

of known supersymmetric vacua are related to Calabi–Yau manifolds, one way or

another. For example, in a famous class in Chapter 9 the Calabi–Yau metric is only

modified by an overall function. Until recently, one might have thought this to be

an artifact of technical limitations in including O-planes, which as we have already

argued are necessary. However, many AdS vacua with O-planes have now been

constructed and seem to allow for a far greater variety of internal spaces.

Finally, for the de Sitter case, the situation gets even less clear (Chapter 12). One

additional complication is that supersymmetry is necessarily broken and cannot

guide us any more. Most models evade (0.5.4) by involving both O-planes and

quantum effects, which are harder to control. As a result, all of them have attracted

some objections.
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The first and most successful proposal, the KKLT model [22], again obtained by

modifying a Calabi–Yau metric on M6, generates a large quantity of dS vacua, with

numbers such as 10hundreds or even 10thousands often quoted. The resulting picture has

been dubbed the string theory landscape [23], borrowing a metaphor from protein-

folding research. Leaving aside for now any criticism of this and other models, the

possibility that a seemingly formidable obstacle such as the cosmological constant

could be overcome so easily has suggested that the number of vacua reproducing

all other observed features of our Universe could still be very large. This has

created much confusion in causal observers of the field. Perhaps string theory has

no predictive power?

This question appears misguided. First of all, the large numbers 10N arise from

discretizing an N-dimensional continuous space; in other words, from allowing

several discrete possibilities to a set of N free parameters. Conceptually, this is not

that different from the 19 (or more) free parameters in the standard model, which

prior to experiment has an ∞19 of possibilities. Rightly, no one complains about the

latter large number because, given enough experiments to fix the parameters within

a certain range, the standard model makes testable predictions about other experi-

ments. This would be true as well for string theory; the fact that such experiments

are beyond human capabilities for the foreseeable future is of course unfortunate, but

is in the nature of the problem of quantum gravity, whose characteristic scale is after

all mPlanck.

Even more importantly, string theory is a framework, within which there are

models with free parameters, such as the KKLT model. It would of course be

senseless to criticize quantum field theory because it cannot predict the standard

model of particle physics from first principles, or criticize quantum mechanics

because it does not predict the potential in the Schrödinger equation. Of course,

quantum field theory is a scientific theory, in the appropriate sense: given enough

experimental data, it can provide a model, such as the Standard Model, which makes

new experimental predictions.

An alternative point of view is to focus on the vacua that cannot be found in string

theory. The swampland program [24] looks for models that look consistent in field

theory but cannot be coupled to quantum gravity. While the inspiration often comes

from string theory, the aim is to find universal properties that are valid beyond it. In

recent years, this program has started to clash with many of the predictions of the

effective field theory approach, including the existence of dS vacua. Some of this

debate is covered in the final Chapter 12, with the unfortunate result of ending with

more questions than answers.
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