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1 String theory and supergravity

As stated in the Preface, this book assumes some rudimentary knowledge of string

theory, but it is a good idea to recall the basics. The field is notoriously vast and

complex, so this chapter should not be understood as a replacement for serious

study on one of the many great introductions [1–11]. In most of the book, we will

approximate string theory by supergravity, an effective theory of gravitons and other

fields; the presentation will be biased toward that.

In this chapter, we also assume knowledge of general relativity (GR) and some

acquaintance with spinors, but we will try to keep mathematical sophistication at a

minimum. We will develop some ideas, such as spinors and differential geometry, in

much greater detail in the next few chapters before we return to physics. Still, already

in this chapter we will pepper our presentation with occasional forward references to

those mathematically more advanced treatments, to whet the reader’s appetite.

1.1 Perturbative strings

A quantum field collects creation (and annihilation) operators for a representation

of the Poincaré group. Once one fixes the value of the momentum p of the created

state, the remaining degrees of freedom are a representation of the little group, or

stabilizer, of p, namely the subgroup Stab(p) ⊂ SO(d) of elements that leave p

invariant. This is

Stab(p) = SO(d −1) (p2
< 0) , Stab(p) = SO(d −2) ⋉Rd−2 (p2

= 0) , (1.1.1)

for the massive or massless case. (We will review the p2
= 0 case in Section 3.3.6.)

In the massless case, we would also have the possibility of selecting an infinite-

dimensional representation, but this is usually regarded as exotic; so we select

a finite-dimensional representation, ignoring the Rd−2 factor. Ordinary fields then

represent objects with finitely many degrees of freedom, which we call spin and

helicity for m2
> 0 and = 0, respectively. Moreover, we usually take these objects to

interact via terms of the type
∫

ddxφ1(x) . . . φ2(x): these allow the value of a field

to influence directly that of another only at the same point.

All these reasons make us think of the quanta of a field as point particles. To

describe a quantum theory of interacting extended objects, we need to change this

picture somehow. First of all, a string can have infinitely many vibration modes,

so a field that creates a string must be somehow a collection of infinitely many

ordinary fields. Second, extended objects can interact when their centers of mass

are not superimposed. So the interaction terms should be nonlocal.1
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2 String theory and supergravity

Such a string field theory (SFT) is fascinating but also just as complicated as

our description suggests. So in fact most studies of interacting strings focus on

an approach that is first-quantized: one first decides the Feynman diagram one

wants to consider, and then computes the amplitude associated with it. (A similar

approach is used sometimes in quantum field theory too, under the name of world-

line formalism.)

In this section, we will review quickly some aspects of this perturbative treatment

of string interactions. There are five possible consistent string models:

• Type IIA

• Type IIB

• Heterotic with gauge group E8 × E8

• Heterotic with gauge group SO(32)

• Type I

All these select d = 10 as spacetime dimension, in a sense we will clarify later in this

chapter. The last case, type I, can be viewed as a certain quotient procedure from IIB

strings, which we will introduce in Section 1.4.4. So in this section we will discuss

the other four. We will actually start our discussion from a model that has a tachyon,

namely a scalar with a negative mass, but whose discussion is simpler: the bosonic

string.

1.1.1 Bosonic strings

The action for a particle moving in a curved background is proportional to its “length

in spacetime,” namely, to the proper time measured along its world-line (its trajectory

γ in spacetime):

Spart = −m

∫

γ

dσ0

√

−gμν ẋμ ẋν , (1.1.2)

where xμ (σ0) are the coordinates of the point in spacetime as a function of the world-

line coordinate σ0, and ẋμ ≡ ∂0xμ. In flat space, this is indeed minimized on straight

lines in spacetime, which maximize proper time. For curved gμν , (1.1.2) is minimized

on geodesics. If we also have a Maxwell field and our particle is charged, we have to

add a term

Spart,EM = q

∫

γ

dσ0 Aμ∂0xμ, (1.1.3)

where q is the charge, and Aμ is the vector potential. In Section 4.1.4, we will see

that the integrand is an example of a natural operation called pull-back.

String action

By analogy with (1.1.2), the natural action for a string would seem to be the volume

of its two-dimensional world-sheet in spacetime. However, it is classically equivalent

to the Polyakov action, which is easier to quantize:

SF1,g = −
1

2
TF1

∫

Σ

d2σhαβ
√
−hgMN∂αxM

∂βx
N . (1.1.4)
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3 Perturbative strings

This type of action is also called a sigma model, for reasons going back to four-

dimensional models of mesons, or sometimes nonlinear sigma model when gMN is

not flat. The xM (σ0, σ1), M = 0, . . . , d −1, describe the embedding of Σ in physical

spacetime (often called target space), and h is a metric on Σ. The mass m in (1.1.2)

has been replaced by the mass/length ratio, or tension:

TF1 =
1

2πl2
s

. (1.1.5)

“F” stands for fundamental, to distinguish this string from other extended objects

that will appear later; 1 denotes the space extension of the string. The constant ls is

called string length. (We will always keep it explicit in this chapter, but later we will

often work in string units and set ls = 1.)

In this section, we are going to focus on strings that are closed or, in other words,

that have no boundary. A generic1 time slice is then a collection of several copies of

the circle S1. The time evolution of each of these for a finite time will be a cylinder;

then σ1 is a periodic coordinate, σ1 ∼ σ1
+π. These cylinders are then glued together

at some values of σ0 to obtain a general Σ.

Spectrum in lat space

Quantizing (1.1.4) is challenging for general gMN but relatively easy in Minkowski

space gMN = ηMN : superficially (1.1.4) then becomes a collection of free bosons,

with equations of motion ∂2xM
= 0. For a closed string, the slice at σ0

= constant

is an S1; there are then discrete Fourier modes for each xM . Since the equation of

motion is of second order, the states are in correspondence to the values of these

Fourier modes and their derivatives. Alternatively, we can write a solution of the

world-sheet equations of motion as xM
= xM (σ+) + xM (σ−), where σ± = σ1 ± σ0,

and introduce Fourier modes αM
i

, α̃M
i

for the left- and right-movers xM (σ±). The

only subtlety is that the world-sheet metric hαβ is a Lagrange multiplier, which gives

a constraint. This can be taken care of in many ways: by solving the constraint, or

by introducing Faddeev–Popov ghosts and the Becchi–Rouet–Stora–Tyutin (BRST)

method (the so-called covariant quantization). Skipping many interesting details,

here we will just give the results.

Even for a fixed momentum, the spectrum has infinitely many states, of the form

αN1

−i1 . . . α
Nn

−in α̃
Ñ1

−ı̃1 . . . α̃
Ñn

−ı̃n |0〉, (1.1.6)

where |0〉 is the world-sheet vacuum, and ik , jk ≥ 0 (possibly repeated). As we

mentioned, these correspond to the vibration modes of the string, and in a spacetime

picture they would require infinitely many ordinary quantum fields to create them.

Their masses are

m2
=

4

l2
s

(

2 − d

24
+ N

)

, (1.1.7)

where N =
∑

ik =
∑

ı̃k is a nonnegative integer. The identity between these two

expressions is called level matching and is the link between the left- and right-moving

sectors, which otherwise proceed on parallel tracks. If d > 2, we see that the lowest

1 The mathematical meaning of the word generically, which we will use in this book, is “for any choice

except for a set of measure zero.”
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4 String theory and supergravity

value of m2, for N = 0, is actually negative. Such a mode is usually called a tachyon

and signals an instability. For this reason, the bosonic string we are discussing in this

section is usually only considered a toy model.

Nevertheless, it already displays a very interesting feature. For the critical

dimension d = 26, the modes with n = 1 in (1.1.6) and (1.1.7) are massless. They

read

αM−1α̃
N
−1 |0〉 , (1.1.8)

and so they correspond to fields with two indices. Among these we thus find a

massless spin-two field hMN = δgMN . The action (1.1.4) can then be thought of

as a string moving in a condensate of such a field. This is a bit similar to expanding

a quantum field theory (QFT) around a vacuum where a field has acquired a nonzero

expectation value.

So we have found that in d = 26, the string modes include those that would

normally be associated with a graviton. Remarkably, the scattering amplitudes one

obtains with this formalism are finite. The string tension acts as a regulator: Taking

the limit ls → 0, the scattering amplitudes become divergent again. In this limit, the

theory becomes a local QFT model again, and a local theory of gravity has divergent

amplitudes.

Coupling to condensates of other ields

Among (1.1.8), we find other massless modes. Following (1.1.1), we need to consider

only the components of (1.1.8) in the d − 2 = 24 dimensions transverse to the

momentum p, which are 242. The physical components hMN of a graviton are

represented by a traceless 24 × 24 matrix; this is the generalization of the transverse

traceless (TT) gauge familiar from the treatment of gravitational waves in four

dimensions. The remaining modes are thus the antisymmetric part of (1.1.8) and

its trace. The fields that create these states are an antisymmetric Kalb–Ramond field

BMN = −BNM , and a scalar field φ called dilaton. So in total the massless fields of

the bosonic string are

gMN , BMN , φ . (1.1.9)

We can consider condensates of BMN and φ, too; this leads to the extra terms in

the action:

SF1,B,φ = −
1

2
TF1

∫

Σ

d2σ
[

ǫαβBMN∂αxM
∂βx

N
+ l2

s

√
−hR(2)φ

]

. (1.1.10)

Here R(2) is the scalar curvature of the world-sheet metric hαβ, and ǫ =
(

0 −1
1 0

)

. The

coupling with B is the natural generalization of the coupling (1.1.3). The coupling

with the dilaton is peculiar in that

1

4π

∫

Σ

√
−hR(2) = 2 − 2g , (1.1.11)

where g is the genus of the world-sheet Σ. This is the stringy analogue of the number

of loops, and can be intuitively described (when Σ has no boundary) as the number
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5 Perturbative strings

of handles; a more formal definition will be given in Section 4.1.10. Because of this,

the computation of all scattering amplitudes is organized in powers:

g
2g−2
s , gs ≡ eφ . (1.1.12)

We can think of gs as a string coupling constant: when it is small, the powers (1.1.12)

are smaller for Riemann surfaces Σ of increasing g, which can be thought of as the

stringy analogue of Feynman diagrams of increasing complexity.

The action

Sbos = SF1,g + SF1,B,φ (1.1.13)

is classically invariant under general coordinate transformation σα → σ′α (σ0, σ1),

if we also take care to transform the world-sheet metric hαβ. This is a gauge

invariance, in that it doesn’t affect the physical configuration, the image of the

world-sheet embedding xμ (σ), but only how we parameterize it. Equation (1.1.13)

is also invariant under Weyl rescaling hαβ → e f hαβ. In two dimensions, one can fix

the coordinate-change freedom by taking, for example, hαβ to have constant scalar

curvature. Even so, a residual invariance remains: coordinate transformations that

leave the metric invariant up to a Weyl transformation. These are called conformal

transformations.

Conformal invariance and efective action

It is crucial that this residual gauge invariance remains at the quantum level. It

decouples potentially harmful negative-norm states that would come from the fact

that x0 in (1.1.4) has a wrong-sign kinetic term. This is similar to what happens in

the quantization of the electromagnetic field, for example. Conformal invariance is

also behind the absence of high-energy divergences. Usually scattering amplitudes

become problematic when two particles collide at a small impact parameter. The

world-sheet of a string scattering is a non-compact Riemann surface with several

spikes si corresponding to the incoming and outgoing strings. Conformal invariance

means that the distance between two points on the world-sheet has no intrinsic

meaning: only ratios of distances do. So a small impact parameter might seem to

correspond to two such spikes s1 and s2 getting close, but that only means that they

are close relative to their distance from other external strings si . This corresponds to

a Riemann surface that develops a long neck, where the two si are both attached, far

from the others.

The Noether current associated to dilatations in a field theory is Tμν xν , where Tμν

is the stress–energy tensor. This is conserved if 0 = ∂μ (Tμν xν) = Tμνgμν = T
μ
μ .

Evaluating the expectation value 〈Tμμ 〉 of this trace is thus a way to check if there is a

Weyl anomaly.

From the point of view of the world-sheet, the spacetime fields (1.1.9) are really

couplings for the action of the fields xM (σ). So a Weyl anomaly can also be detected

by computing the beta functions of the action (1.1.13) for the couplings (1.1.9). This

can be obtained by the usual perturbative methods; the coupling for this computation

is given by l2
s , or rather the dimensionless combination l2

s× (spacetime curvature).

This results in the following three conditions:
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6 String theory and supergravity

RMN + 2∇M∂Nφ −
1

4
HMPQHN

PQ
+O(l2

s ) = 0 , (1.1.14a)

∇M (e−2φHM
NP) +O(l2

s ) = 0 , (1.1.14b)

2

3l2
s

(26 − d) + R − 1

2
|H |2 − 4eφ∇2e−φ +O(l2

s ) = 0 . (1.1.14c)

We have introduced

HMNP = ∂M BNP + ∂N BPM + ∂PBMN , |H |2 ≡ 1

6
HMNPHMNP . (1.1.15)

This can be considered as a field-strength for the potential BMN , similar to the

relation between FMN = ∂M AN −∂N AM and AM in electromagnetism. Indeed, there

is also a gauge transformation

BMN → BMN + ∂M λ̂N − ∂N λ̂M , (1.1.16)

under which (1.1.15) is invariant. The world-sheet action (1.1.10) is invariant too

under this, because the transformation adds a total derivative term.

From spacetime point of view, where (1.1.9) are fields, (1.1.14) are to be

interpreted as equations of motion. They can be obtained by extremizing2

Sbos =
1

2κ2
b

∫

ddx
√
−ge−2φ

(

2

3l2
s

(26 − d) + R + 4∂Mφ∂
Mφ − 1

2
|H |2 +O(l2

s )

)

(1.1.17)

with respect to (1.1.9). By dimensional reasons, κb has dimension l12
s . (The metric

coefficients have no dimension, while R contains two derivatives and has mass

dimension two.) In general, the Planck mass mP is defined as the mass scale entering

the Einstein–Hilbert action; the Planck length lP is its inverse, and (1.1.17) tells us

that it is proportional to ls.

As a consistency check, we see that flat space is a solution of (1.1.14) only if we

set d = 26, which is the value where we found the massless fields (1.1.9) in the

first place. More generally, to trust (1.1.14) we have to make sure that the expansion

parameter l2
s× (curvature) is small, so we better solve those equations of motion

separately at every order. This leads again to taking

d = 26 . (1.1.18)

It is conceptually possible to consider solutions where d � 26, and the first term

in (1.1.14c) competes with the others, but in that case we have to worry that the

other terms in the ls expansion become relevant too, and we have not given them

in (1.1.14). If, on the other hand, one is able to prove that a certain world-sheet

model is conformal exactly, without using the ls expansion at all, then d = 26 is

not necessary. There are not many such cases: one is the linear dilaton background,

where φ is linear in one of the coordinates. This leads to noncritical string theories,

which historically have been important toy models.

Another point of view on the critical dimension is this. We observed that (1.1.13)

has conformal invariance. Conformal transformations form a group; for flat space it

is SO(d − 2, 2) for d > 2, but for d = 2 it becomes infinite dimensional. Indeed,

2 This variation is a little more involved than the usual Einstein–Hilbert action variation because of the

prefactor e−2φ . More details will be given in Section 10.1.2.
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7 Perturbative strings

any transformation x± → x±′(x±) is conformal for any metric of the type ds2
=

e f dx+dx−. The generators Lm, m ∈ Z, of such transformations on the x+ obey the

Lie algebra

[Lm, Ln] = (m − n)Lm+n +
c

12
m(m2 − 1) δn+m,0 , (1.1.19)

called Virasoro algebra. The L0, L±1 form an SO(1, 2) subalgebra where c does

not appear. As usual, spacetime transformations are generated by the stress–energy

tensor, so these Lm are related to it. After a Wick rotation, x+ → z = σ1
+ iσ0, and

we can collect all the generators in

Tzz (z) =
∑

n

Lnz−n−2 . (1.1.20)

In a Lie algebra, the commutation relations should always be linear, so we need to

think of the second term in (1.1.19) as containing a new generator c, which commutes

with all the others, and thus lies in the center of the algebra; so c in (1.1.19) is called

central charge. The L̃m on the x− variable generate a second copy of the same algebra

(1.1.19), and they are collected in Tz̄z̄ .

This c is also a measure of the Weyl anomaly: for any QFT model that is conformal

on a flat (world-sheet) metric hαβ = ηαβ, a nonzero c tells us that conformal

invariance is broken for more general hαβ � ηαβ. A free boson contributes c = 1,

while the ghosts give −26. Thus if we quantize around flat space, where the xM (σ)

bosons are free, for quantum conformal invariance we need to take d = 26.

The fact that the action (1.1.17) exists at all is nontrivial from the point of view of

the world-sheet derivation we described. We can think of it as being an approximation

to the string field theory action SSFT, which would also contain the massive fields

creating all the states (1.1.6). We can call it an effective action, in the usual quantum

field theory sense: It reproduces the results one would obtain from SSFT, at energies

that are low, namely much smaller than l−1
s . Indeed, another way to compute (1.1.17)

is to compute string scattering amplitudes using the world-sheet approach, and then

guessing what spacetime action would reproduce them.

The diagrams leading to (1.1.17) have g = 0 in (1.1.12), leading to g
−2
s = e−2φ,

thus explaining the presence of that exponential. The higher powers of ls hidden

in (1.1.17) also receive contributions from higher values of g (and thus from

more complicated Feynman diagrams). So the effective action will have a double

expansion in powers of both:

S =
∑

j,k

Sj,k l
j
se

kφ . (1.1.21)

These higher-order corrections can in principle be computed; we will see some

examples for superstrings. When we first discover that GR is non-renormalizable

and needs (curvature)2 counterterms [25], we might perhaps hope that by adding

more and more such counterterms, with arbitrary powers (curvature)k , we might

eventually find a theory that has no divergence. Finding such a renormalizable theory

of gravity would be very hard without some sort of guidance: not only would we have

to find a fixed point of the renormalization group (RG) flow by going backward in

energy, but we would also have to worry about modes with wrong kinetic energy,

which in such theories generically abound. (Adding operators with higher numbers
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8 String theory and supergravity

of derivatives to a Lagrangian also adds propagating modes, each of which might be a

ghost.) String theory is renormalizable, and in principle we can reexpress it precisely

as such a sum of infinitely many corrections to (1.1.17).

This discussion seems, however, to assume that the effective action is analytic in

the parameters ls, eφ, or, in other words, that it coincides with its Taylor expansion

(1.1.21). In mathematics, we know many functions that are not analytic, and they

might also appear here. This is the reason we have put the word “perturbative” in the

title of this section; we will make amends in Section 1.4.

Some critics of string theory complain that the theory has not been proven to be

background independent. What they mean is that in the world-sheet approach based

on (1.1.13), we first have to fix a background configuration for the spacetime fields

(1.1.9), and then we can compute an action for the small fluctuations around it. A

priori, it might even be unclear if this procedure is describing a single theory or a

collection of theories that have nothing to do with each other. The emergence of

(1.1.17) should be reassuring in this respect: that effective action can be expanded

around any background, and matches the result of the world-sheet method around it.

A more satisfactory rebuttal is the proof at the level of string field theory in [26].

Torus compactiication

Finally, let us have a first taste of string compactifications, by supposing that the

theory lives on R25 × S1. Thus we declare one of the coordinates to be periodically

identified, say x25 ≡ x25
+2πR. Now x25(σ0, σ1) is no longer necessarily periodic as

a function of σ1, even for a closed string: rather, if we take σ1 ∼ σ1
+ π, we demand

x25(σ0, σ1
+ π) = x25(σ0, σ1) + 2πwR . (1.1.22)

This represents a string that winds w ∈ Z times around the S1. Another new effect

is familiar from quantum mechanics: the overall momentum of the string in the S1

direction is now not continuous but quantized: p25
=

q

R
, q ∈ Z.

The mass spectrum in R25 is now modified from (1.1.7) to

m2
=

4

l2
s

(−1 + N ) +

(

q

R
− w R

l2
s

)2

=

4

l2
s

(−1 + Ñ ) +

(

q

R
+ w

R

l2
s

)2

, (1.1.23)

where now N =
∑

ik and Ñ =
∑

k ı̃k are no longer necessarily equal (as they were in

(1.1.7)); comparing the two expressions, we have N − Ñ = wq.

For a generic value of R, the massless spectrum is still (1.1.8) and (1.1.9); but now

it should be reinterpreted. The components

gM 25 , BM 25 (1.1.24)

are now two vector fields in R25; g25 25 is a scalar. The remaining components of

(1.1.9) then give a metric, a Kalb–Ramond field, and a scalar in R25.

From (1.1.23), however, we also see another option: if
q

R
− w

R

l2
s

= ± 2

ls
, then we

have a new massless state for N = 0. This is possible for

R = ls , (1.1.25)

taking q = −w = ±1; then Ñ =
∑

k ı̃k = 1. This state α̃M−1
|0〉 has a single index,

and so it is created by a vector field. At this value of R, we also have the possibility

of using the same trick with the other expression in (1.1.23), this time leading to
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9 Perturbative strings

q = w = ±1, Ñ = 0, N = 1. So we have a total of four more vector fields in R25.

It turns out that these combine with the previous two (1.1.24) to give a nonabelian

gauge group

SU(2) × SU(2) . (1.1.26)

This compactification was rather nice in that the string could be quantized exactly,

at least perturbatively in gs. In more complicated cases, we won’t be so lucky, and

we will have to limit ourselves to the less powerful effective field theory methods,

potentially missing phenomena such as this non-abelian gauge group enhancement.

1.1.2 Type II superstrings

Supersymmetric world-sheet action

The world-sheet action (1.1.13) can be made supersymmetric. At the most basic

level, this means that we promote the xM (σ) to a function of σ and of new formal

coordinates θ± that anticommute: θ+θ− = −θ−θ+, (θ±)2
= 0. The Taylor expansion

in the new coordinates truncates:

XM
= xM

+ θ+ψM
+
+ θ−ψM

− + θ
+θ−FM . (1.1.27)

We can also introduce the derivative operators

D± = ∂θ± + iθ±∂± , ∂± ≡ ∂σ± . (1.1.28)

Then, (1.1.4), for example, is replaced by

S
1,1

F1,g
= −1

2
TF1

∫

Σ

d2σd2θ(g + B)MN (X )D+XM D−XN , (1.1.29)

with the integration rule
∫

dθ±θ± = 1,
∫

dθ±1 =
∫

dθ±θ∓ = 0. We also added the

contribution from B. The terms (1.1.10) can also be supersymmetrized in this way.

The final result is quite messy for a general background where gMN and BMN are

arbitrary; it can be found, for example, in [27, sec. 6.3.1]. For example, it contains a

kinetic term

gMN (ψM
+
∂−ψ

N
+
+ ψM

− ∂+ψ
N
− ) (1.1.30)

for the world-sheet fermions ψM
± .3 The FM in (1.1.27) are auxiliary fields: they have

no kinetic term, and can be replaced with the solutions of their equations of motion.

Since we have introduced a single θ+ and a single θ−, the resulting model is

said to have N = (1, 1) supersymmetry. Any two-dimensional bosonic model can

be promoted to such a model. In the context of compactifications, one often needs to

separate external and internal dimensions, and the supersymmetrization of the world-

sheet model in the latter has more supercharges; a common case one needs is N =
(2, 2). This is more challenging to achieve, because such extended supersymmetry

requires that one combine the xM with each other in pairs. Such a pairing is

reminiscent of the idea of complex coordinates, and is at the root of why differential

geometry is useful for compactifications. This idea will return in Chapter 9.

3 The bosonic world-sheet indices ± are conceptually not the same as the ± on the fermions, denoting

chirality. To emphasize the difference, some authors change the world-sheet indices to + → ++ and

− → =. This also has the benefit that every term in a world-sheet will then have an equal number of

pluses and minuses; see for example [28].
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10 String theory and supergravity

Equation (1.1.29) is called the Neveu–Schwarz–Ramond (NSR) model. While we

introduced it by supersymmetrizing the world-sheet action, we will see later that the

resulting spacetime theory also has the much more nontrivial property of spacetime

supersymmetry.

Spectrum

Even around flat space, the spectrum of (1.1.29) is now more complicated because

it depends on what we impose on the fermionic ψM
± . Since a fermion should only

get back to itself after a 4π rotation, under 2π we can impose either periodic or

antiperiodic boundary conditions, called Neveu–Schwarz (NS) and Ramond (R)

respectively. These can be imposed independently on the ψM
± , leading to four

sectors: NSNS, NSR, RNS, and RR. The spectrum has to be analyzed in each sector

separately, because the Fourier modes for the ψM
± behave differently in each.

In the NS sector, the fermionic Fourier modes are bM
−i−1/2

, i ≥ 0. The two lowest-

lying states are

|0〉NS , 1 , m2
=

1

8l2
s

(2 − d) ; (1.1.31a)

bM
−1/2
|0〉NS , 8V , m2

=

1

l2
s

(

(2 − d)

8
+ 1

)

. (1.1.31b)

We have also indicated what representation these states form under the compact part

SO(d − 2) = SO(8) of the massless little group (1.1.1). For (1.1.31b), the subscript

“V” is because there are two more dimension-eight representations of SO(8), which

will soon play a role too.

In the R sector, the fermionic Fourier modes are dM
−i , i ≥ 0. In this case, the vacuum

has already m2
= 0, but in fact it is not unique: the modes dM

0
now don’t raise the

energy, and they act on the space of vacua. These dM
0

satisfy a Clifford algebra

{dM
0

, dN
0
} = 2gMN1, and as a consequence the space of R vacua transforms as a

spinor under spacetime symmetries. In Section 2.1, we will attack Clifford algebras

and spinors systematically in every dimension; for now, we only state the main

features we need, which are quite similar to the properties of gamma matrices in

four dimensions.

• Gamma matrices ΓM can be defined in every dimension as matrices that satisfy

{ΓM , ΓN } = 2gMN1.

• In d = 10 dimensions, they are 32 × 32 matrices; in d = 8, they are 16 × 16.

• The space of spinors on which the ΓM act is a representation for the Lorentz group;

in d = even, it decomposes in two chiralities, for which we introduce indices α, α̇.

Multiplication by a single ΓM changes chirality, so the nonzero blocks are ΓM
αβ̇

and

Γ
M
α̇β.

• In both d = 10 with Lorentzian signature and d = 8 with Euclidean signature, there

is a choice of ΓM that are all real. (This aspect will be treated more specifically in

Sections 2.2.3 and 2.3.)

As a representation of the transverse SO(8) in the little group (1.1.1), the R states

then form a reducible representation of dimension 16, which further splits in two
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