Cambridge University Press & Assessment 978-1-108-47372-9 — The Statistical Mechanics of Irreversible Phenomena Pierre Gaspard Frontmatter <u>More Information</u>

THE STATISTICAL MECHANICS OF IRREVERSIBLE PHENOMENA

This book provides a comprehensive and self-contained overview of recent progress in nonequilibrium statistical mechanics, in particular, the discovery of fluctuation relations and other time-reversal symmetry relations. The significance of these advances is that nonequilibrium statistical physics is no longer restricted to the linear regimes close to equilibrium but extends to fully nonlinear regimes. These important new results have inspired the development of a unifying framework for describing both the microscopic dynamics of collections of particles, and the macroscopic hydrodynamics and thermodynamics of matter itself. The book discusses the significance of this theoretical framework in relation to a broad range of nonequilibrium processes, from the nanoscale to the macroscale, and is essential reading for researchers and graduate students in statistical physics, theoretical chemistry, and biological physics.

PIERRE GASPARD is a professor in physics at the Université Libre de Bruxelles and co-director of the Interdisciplinary Center for Nonlinear Phenomena and Complex Systems. He is the author of the book, *Chaos, Scattering and Statistical Mechanics* (Cambridge University Press, 1998), and he has published more than 200 related papers in the fields of statistical physics, nonlinear physics, and chemical physics.

Cambridge University Press & Assessment 978-1-108-47372-9 — The Statistical Mechanics of Irreversible Phenomena Pierre Gaspard Frontmatter <u>More Information</u> Cambridge University Press & Assessment 978-1-108-47372-9 — The Statistical Mechanics of Irreversible Phenomena Pierre Gaspard Frontmatter <u>More Information</u>

THE STATISTICAL MECHANICS OF IRREVERSIBLE PHENOMENA

PIERRE GASPARD Université Libre de Bruxelles

Cambridge University Press & Assessment 978-1-108-47372-9 — The Statistical Mechanics of Irreversible Phenomena Pierre Gaspard Frontmatter More Information

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108473729 DOI: 10.1017/9781108563055

© Cambridge University Press 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data Names: Gaspard, Pierre, 1959- author. Title: The statistical mechanics of irreversible phenomena / Pierre Gaspard, Université Libre de Bruxelles. Description: First edition. | Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2022. | Includes bibliographical references and index. Identifiers: LCCN 2021061928 (print) | LCCN 2021061929 (ebook) | ISBN 9781108473729 (hardback) | ISBN 9781108563055 (epub) Subjects: LCSH: Nonequilibrium statistical mechanics. Classification: LCC QC174.86.N65 G37 2022 (print) | LCC QC174.86.N65 (ebook) | DDC 530.13/2–dc23/eng20220314 LC record available at https://lccn.loc.gov/2021061928 LC ebook record available at https://lccn.loc.gov/2021061929

ISBN 978-1-108-47372-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-1-108-47372-9 — The Statistical Mechanics of Irreversible Phenomena Pierre Gaspard Frontmatter <u>More Information</u>

In memory of Grégoire Nicolis

Cambridge University Press & Assessment 978-1-108-47372-9 — The Statistical Mechanics of Irreversible Phenomena Pierre Gaspard Frontmatter <u>More Information</u>

Cambridge University Press & Assessment 978-1-108-47372-9 — The Statistical Mechanics of Irreversible Phenomena Pierre Gaspard Frontmatter <u>More Information</u>

Contents

Pre	face		pa	<i>ige</i> xxi	
1	Thermodynamics				
	1.1	Generalities			
	1.2	Energy	y and Other Conserved Quantities	2	
	1.3	Entrop	ру	4	
		1.3.1	Equilibrium Macrostates	4	
		1.3.2	Nonequilibrium Macrostates	6	
	1.4	Therm	odynamics in Continuous Media	8	
		1.4.1	Balance Equations	8	
		1.4.2	Local Thermodynamic Equilibrium and Consequences	10	
		1.4.3	Equilibrium and Nonequilibrium Constitutive Relations	12	
	1.5	Hydro	dynamics and Chemohydrodynamics	16	
		1.5.1	Hydrodynamics in One-Component Fluids	16	
		1.5.2	Chemohydrodynamics in Multicomponent Fluids	16	
	1.6	Hydro	dynamic Modes of Relaxation to Equilibrium	17	
		1.6.1	Hydrodynamic Modes in One-Component Fluids	17	
		1.6.2	The Relaxation Modes in Diffusion–Reaction Systems	19	
	1.7	Noneq	uilibrium Steady States	20	
		1.7.1	From Local to Global Affinities	20	
		1.7.2	Diffusion	22	
		1.7.3	Ohm's Law for Electric Resistance	23	
		1.7.4	Electric Circuits	25	
	1.8	Reacti	on Networks	26	
		1.8.1	Flow Reactors	27	
		1.8.2	Stoichiometric Analysis of Reaction Networks	30	
1.9 Dissipative Dynamics and Structures		ative Dynamics and Structures	33		
	1.10	Engine	es	35	

vii

viii			Contents	
		1.10.1	Carnot Heat Engine	36
			2 Isothermal Engines Working on Potential Differences	37
	1.11	Open		40
2	Stati	stical N	Iechanics	41
	2.1	Introd	uction	41
	2.2	Classi	cal Mechanics	43
		2.2.1	The Quantum Roots of Classical Mechanics	43
		2.2.2	The Hamiltonian Function	43
		2.2.3	Phase Space	44
		2.2.4	Hamiltonian Dynamics	46
		2.2.5	Existence and Uniqueness Theorem	47
		2.2.6	Dynamical Stability or Instability	49
		2.2.7	Symmetries of Hamiltonian Dynamics	51
	2.3	Liouv	illian Dynamics	54
		2.3.1	Introduction to Statistical Ensembles	54
		2.3.2	Liouville's Equation	57
		2.3.3	Liouvillian Dynamics in Autonomous Systems	58
		2.3.4	Time-Reversal Symmetry of Liouville's Equation	59
		2.3.5	BBGKY Hierarchy	59
	2.4	Ergod	ic Properties	62
		2.4.1	Time Average	62
		2.4.2	Ergodicity	64
		2.4.3	Dynamical Mixing	66
		2.4.4	Pollicott–Ruelle Resonances	67
	2.5	Equili	brium Statistical Ensembles	69
		2.5.1	Equilibrium Systems under Different Conditions	69
		2.5.2	Detailed Balance	72
	2.6	Noneo	quilibrium Statistical Ensembles	74
		2.6.1	Symmetry Breaking by the Selection of Initial Conditions	75
		2.6.2	Systems Evolving from Nonequilibrium Initial	
			Macrostates	78
		2.6.3	Systems in Nonequilibrium Steady Macrostates	79
	2.7	Entrop	by	81
		2.7.1	Coarse Graining	81
		2.7.2	Interpretation	84
		2.7.3	Coentropy	84
		2.7.4	e	85
		2.7.5	Dynamical Mixing and Entropy Time Evolution	85
		2.7.6	Entropy Production	86

		Contents	ix
	2.8	Linear Response Theory	87
		2.8.1 Response Function and Dynamical Susceptibility	87
		2.8.2 Electric Conductivity	91
		2.8.3 Onsager–Casimir Reciprocal Relations	92
		2.8.4 Fluctuation–Dissipation Theorem	93
	2.9	Projection-Operator Methods	95
		2.9.1 Zwanzig Projection-Operator Method	95
		2.9.2 Mori Projection-Operator Method	96
3	Hyd	rodynamics	99
	3.1	Nonequilibrium Statistical Mechanics and Hydrodynamics	99
	3.2	Multicomponent Normal Fluids	101
		3.2.1 Microscopic Densities and Balance Equations	101
		3.2.2 Time Evolution	102
		3.2.3 Local Equilibrium Distribution	103
		3.2.4 Time Evolution of the Local Equilibrium Distribution	105
		3.2.5 Entropy Production and Dissipative Current Densities	107
		3.2.6 Local Thermodynamics	109
		3.2.7 Dissipativeless Time Evolution	110
		3.2.8 Dissipative Time Evolution	111
		3.2.9 Green–Kubo Formulas for the Transport Coefficients	115
		3.2.10 Dissipative Hydrodynamic Equations	117
	3.3	Phases of Matter with Broken Continuous Symmetries	118
		3.3.1 Continuous Symmetry Breaking and Long-Range Order	118
		3.3.2 Nambu–Goldstone Modes	119
		3.3.3 Microscopic Order Fields	121
		3.3.4 Local Equilibrium Approach	123
		3.3.5 Liquid Crystals	128
		3.3.6 Crystals	130
	3.4	Interfaces and Boundary Conditions	139
		3.4.1 Interfacial Phenomena	139
		3.4.2 Partial Slip Boundary Conditions on the Velocity Field	140
		3.4.3 Microscopic Expression for the Sliding Friction Coefficient	141
	3.5	Further Aspects of Microscopic Hydrodynamics	141
	5.5	3.5.1 Hydrodynamic Long-Time Tails and Their Consequences	142
		3.5.2 Hydrodynamics in Low-Dimensional Systems	142
	C.		
4		hastic Processes	147
	4.1	Introduction	147
	4.2	The Joint Probability Distribution of the Stochastic Process	150

Х			Contents	
	4.3	Correl	ation and Spectral Functions	153
	4.4	Discre	te-State Markov Processes	154
		4.4.1	Master Equation	154
		4.4.2	Spectral Theory	157
		4.4.3	Reversible Discrete-State Markov Processes	158
		4.4.4	Entropy Production	159
		4.4.5	Network Theory and Cycles	163
		4.4.6	Examples	166
	4.5	Contin	nuous-State Markov Processes	174
		4.5.1	Generalities	174
		4.5.2	Advection-Diffusion Processes	175
		4.5.3	Stochastic Differential Equations	176
		4.5.4	Jump Processes	177
		4.5.5	Advection-Jump Processes	178
		4.5.6	Spectral Theory	179
		4.5.7	Reversible Continuous-State Markov Processes	180
	4.6	Weak-	Noise Limit in Markov Processes	181
		4.6.1	From Discrete- to Continuous-State Processes	181
		4.6.2	Semideterministic Approximation	182
		4.6.3	Spectral Theory in the Weak-Noise Limit	184
	4.7	•	vin Stochastic Processes	186
		4.7.1	Langevin Equation for Brownian Motion	186
		4.7.2	Kramers' Master Equation	190
		4.7.3	Entropy Production of Brownian Motion	191
		4.7.4	Noisy Electric Circuits	193
	4.8	Frictio	on in Systems with Slow and Fast Degrees of Freedom	195
		4.8.1	General Formulation	196
		4.8.2	The Case of Brownian Motion	198
5	Fluc	tuation	Relations for Energy and Particle Fluxes	202
	5.1		reversibility Out of Equilibrium	202
	5.2		ation Relations for Time-Dependent Systems	203
		5.2.1	Systems Subjected to Time-Dependent Forcing	203
		5.2.2	Nonequilibrium Work Fluctuation Relation	206
		5.2.3	Jarzynski's Equality and Clausius' Inequality	207
		5.2.4	Free-Energy Measurements in Biomolecules	209
		5.2.5	Electromagnetic Heating of Microplasmas	210
		5.2.6	Energy and Angular Momentum Transfers	213
		5.2.7	Nonequilibrium Work Fluctuation Relation in a	
			Magnetizing Field	214

		Contents	xi			
5.3	Fluctu	ation Relation for Currents in Hamiltonian Systems	215			
	5.3.1	Open System in Contact with Reservoirs	215			
	5.3.2	Measuring Energy and Particle Fluxes	217			
	5.3.3	Fluctuation Relation for the Global Currents	219			
	5.3.4	Cumulant Generating Function and Full Counting				
		Statistics	221			
	5.3.5	Symmetry Relation for the Cumulant Generating				
		Function	223			
5.4	Accor	d with the Second Law of Thermodynamics	224			
	5.4.1	Entropy Production	224			
	5.4.2	Fluctuation Relation for Nonequilibrium Directionality	226			
	5.4.3	Timescale for the Emergence of Thermodynamic				
		Behavior	227			
	5.4.4	Entropy Production and Current Fluctuations	228			
	5.4.5	Thermodynamic Efficiencies	229			
	5.4.6	Loose versus Tight Coupling between Currents	230			
	5.4.7	Fluctuation Relation for Paths and Entropy Production	231			
5.5	Linear	and Nonlinear Response Properties	233			
	5.5.1	Response Coefficients	233			
	5.5.2	Implications for the Cumulants at Equilibrium	234			
	5.5.3	Linear Response Properties	234			
	5.5.4	Nonlinear Response Properties at Second Order	235			
	5.5.5	Nonlinear Response Properties at Third Order	235			
	5.5.6	Nonlinear Response Properties at Higher Orders	236			
	5.5.7	Odd versus Even Cumulants	238			
	5.5.8	Current Rectification	239			
5.6	Fluctu	ation Relation for Currents in a Magnetizing Field	239			
	5.6.1 Microreversibility for Open Systems in a Magnetizing					
		Field	239			
	5.6.2	Fluctuation Relation for the Global Currents	240			
	5.6.3	Transport Properties in a Magnetizing Field	241			
	5.6.4	Entropy Production in a Magnetizing Field	245			
5.7	Fluctu	ation Relation for Currents in Stochastic Processes	246			
	5.7.1	Formulation	246			
	5.7.2	Hill–Schnakenberg Cycle Decomposition	249			
	5.7.3	Fluctuation Relation for the Global Currents	251			
	5.7.4	Implications	253			
	5.7.5	Examples	254			

xii			Contents	
6	Path	Probab	ilities, Temporal Disorder, and Irreversibility	257
	6.1	Introd	-	257
	6.2	Path P	robabilities	258
		6.2.1	General Processes	258
		6.2.2	Discrete-State Markov Processes	260
		6.2.3	Continuous-State Markov Processes	261
	6.3	Path P	robabilities, Time Reversal, and Fluctuation Relations	262
		6.3.1	Fluctuation Relations and Entropy Production	262
		6.3.2	Large-Deviation Properties	264
		6.3.3	Markov Jump Processes with Constant Transition Rates	265
		6.3.4	Markov Jump Processes with Time-Varying Transition	
			Rates	268
		6.3.5	Langevin Processes	271
	6.4	Tempo	oral Disorder	275
		6.4.1	Entropy per Unit Time	275
		6.4.2	Kolmogorov-Sinai Entropy per Unit Time	276
		6.4.3	(ε, τ) -Entropy per Unit Time	278
		6.4.4	Temporal Disorder of Markov Jump Processes	279
		6.4.5	Temporal Disorder of Continuous-State Processes	279
		6.4.6	Temporal Disorder of the Ornstein–Uhlenbeck Process	281
		6.4.7	Temporal Disorder of Brownian Motion	281
	6.5		Asymmetry in Temporal Disorder and Entropy Production	284
		6.5.1	Time-Reversed Coentropy per Unit Time	284
		6.5.2	Temporal Disorder of Typical and Time-Reversed Paths	284
		6.5.3	Entropy Production, Temporal Disorder, and Time	
			Reversal	285
		6.5.4	The Case of Markov Jump Processes	286
		6.5.5	Nonequilibrium Temporal Ordering	287
		6.5.6	Landauer's Principle	289
		6.5.7	The Time-Symmetric Part of Path Probability Decay	• • • •
			Rates	290
	6.6	Analo	gy with Other Symmetry-Breaking Phenomena	291
7			vnian Particles and Related Systems	296
	7.1		astic Energetics	296
	7.2		n Brownian Particle	299
	7.3		gous Electric Circuits	304
	7.4		1 Langevin Processes	307
		7.4.1	Underdamped Processes	307
		7.4.2	Overdamped Processes	310

			Contents	xiii
		7.4.3	Examples	310
	7.5		astic Motion of a Charged Particle in Electric and	
			etic Fields	313
		7.5.1	Langevin Stochastic Equation and Kramers' Master	
			Equation	313
		7.5.2	Microreversibility and Multivariate Fluctuation Relation	314
	7.6	Heat 7	Fransport Driven by Thermal Reservoirs	315
		7.6.1	Langevin Stochastic Equations and Master Equation	315
		7.6.2	Microreversibility and Multivariate Fluctuation Relation	316
8	Effu	sion Pro	DCesses	319
	8.1	The K	inetic Process of Effusion	319
	8.2	Station	nary Distribution Function	319
	8.3	Poisse	on Suspension	321
	8.4	Energ	y and Particle Fluxes	323
	8.5	-	by Production of Effusion	324
	8.6	Maste	r Equation	326
	8.7		ation Relation for Energy and Particle Currents	326
	8.8		ation Relation for the Isothermal Particle Current	328
	8.9	<u> </u>	oral Disorder and Entropy Production	329
	8.10	Mass	Separation by Effusion	331
9	Proc	esses in	Dilute and Rarefied Gases	333
	9.1	Lengt	h Scales in Dilute and Rarefied Gases	333
	9.2	Boltzr	nann's Kinetic Equation	335
		9.2.1	Scattering Cross Sections	335
		9.2.2	Derivation of Boltzmann's Equation	336
		9.2.3	<i>H</i> -Theorem	341
		9.2.4		342
		9.2.5	Gas Mixtures and Random Lorentz Gases	343
		9.2.6	Applications of Boltzmann's Equation	344
		9.2.7	Gas-Surface Interactions	344
	9.3		ating Boltzmann Equation and Fluctuation Relation	346
		9.3.1	Gaseous Flows in Open Systems	346
		9.3.2	Fluctuating Boltzmann Equation	347
		9.3.3	The Coarse-Grained Master Equation	349
		9.3.4	The Modified Coarse-Grained Operator	353
		9.3.5	The Symmetry of the Modified Operator	354
		9.3.6	Fluctuation Relation for Energy and Particle Currents	355
	9.4	Integra	al Fluctuation Relation	355

xiv		Contents	
10	Fluct	uating Chemohydrodynamics	358
		The Principles of Fluctuating Chemohydrodynamics	358
		Transport by Diffusion	361
		10.2.1 Stochastic Diffusion Equation	361
		10.2.2 Space Discretization and Master Equation	362
		10.2.3 Fluctuation Relation for the Current	366
		10.2.4 The Case of Homogeneous Diffusion	367
	10.3	Finite-Time Fluctuation Relation	369
	10.4	Diffusion-Influenced Surface Reactions	372
		10.4.1 Stochastic Description	372
		10.4.2 Fluctuation Relation for the Reactive Events	373
	10.5	Ion Transport	374
		10.5.1 The Stochastic Nernst–Planck–Poisson Problem	374
		10.5.2 Space Discretization and Master Equation	376
		10.5.3 Fluctuation Relations for the Currents	377
	10.6	Diodes and Transistors	378
		10.6.1 Stochastic Approach to Charge Transport	378
		10.6.2 Diodes	380
		10.6.3 Transistors	383
	10.7	Fluctuating Hydrodynamics and Brownian Motion	388
		10.7.1 Brownian Particle in a Fluctuating Fluid	388
		10.7.2 Generalized Langevin Equation	392
		10.7.3 Standard Langevin Process	394
		10.7.4 Conditional and Joint Probability Densities	395
		10.7.5 Fluctuation Relation for the Generalized Langevin	
		Process	396
11	React	tions	398
	11.1	Stochastic Approach to Reactive Systems	398
		Reaction Networks	399
		11.2.1 Chemical Master Equations	402
		11.2.2 Kinetic Equations	403
		11.2.3 Entropy Production	406
		11.2.4 Cycle Decomposition of the Entropy Production	409
		11.2.5 Fluctuation Relations	411
	11.3	Linear Reaction Networks	412
	11.4	Bistable Reaction Networks	416
	11.5	Noisy Chemical Clocks	419
	11.6	Enzymatic Kinetics	423
	11.7	Copolymerization Processes	430

	Contents	XV
	11.7.1 Free Copolymerization	432
	11.7.2 Template-Directed Copolymerization	436
12	Active Processes	438
	12.1 Active versus Passive Nonequilibrium Processes	438
	12.2 Molecular Motors	440
	12.2.1 Mechanochemical Coupling and Energy Transduction	440
	12.2.2 The F ₁ -ATPase Rotary Molecular Motor	443
	12.3 Active Particles	454
	12.3.1 Self-Propulsion by Catalytic Reaction and	
	Diffusiophoresis	454
	12.3.2 Overdamped Langevin Process for Motion and Reaction	460
	12.3.3 Enhancement of Diffusion	461
	12.3.4 Mechanochemical Coupling and Efficiencies	462
	12.3.5 Mechanochemical Bivariate Fluctuation Relation	464
	12.3.6 Collective Dynamics	467
13	Transport in Hamiltonian Dynamical Models	469
	13.1 Mathematical Foundations of Transport Properties	469
	13.2 Diffusion of Noninteracting Particles	470
	13.2.1 Spatially Periodic Lorentz Gases	470
	13.2.2 Multibaker Model of Deterministic Diffusion	472
	13.2.3 Diffusive Modes in Spatially Periodic Lorentz Gases	477
	13.2.4 Nonequilibrium Stationary Distribution	481
	13.2.5 Entropy Production of Diffusion	483
	13.3 Diffusion of a Tracer Particle in a Many-Particle System	486
	13.4 Many-Particle Billiard Models of Heat Conduction	487
	13.4.1 Conducting and Insulating Phases in Lattice Billiards	487
	13.4.2 From Liouville's Equation to the Master Equation13.4.3 Fourier's Law and Heat Conductivity	489 491
	13.5 Models for Mechanothermal Coupling	491 491
14	Quantum Statistical Mechanics	494
	14.1 Introduction	494
	14.2 Quantum Mechanics	495
	14.2.1 Quantum Microstates and Observables	495
	14.2.2 Time Evolution of the Quantum Microstates	495
	14.2.3 Time Reversal	496
	14.2.4 Quantum Fields	497
	14.3 Statistical Ensembles and Their Time Evolution	498
	14.3.1 Statistical Ensemble and Statistical Operator	498

xvi

		14.3.2	Time Evolution of the Statistical Operator	498
		14.3.3	Wigner Function and the Classical Limit	498
		14.3.4	Equilibrium Statistical Ensembles	499
		14.3.5	Entropy	500
		14.3.6	Ergodic Properties	500
		14.3.7	Local Equilibrium Approach	501
		14.3.8	Path Probabilities in Quantum Systems	502
	14.4	Functio	onal Time-Reversal Symmetry Relation and Response	
		Theory		503
		14.4.1	Functional Time-Reversal Symmetry Relation	503
		14.4.2	Quantum Nonequilibrium Work Relation	505
		14.4.3	Response Theory	505
		14.4.4	Fluctuation-Dissipation Theorem	508
	14.5	Quantu	m Master Equations	508
		14.5.1	Overview	508
		14.5.2	Weak-Coupling Master Equation	509
		14.5.3	Slippage of Initial Conditions	512
			stic Schrödinger Equations	513
	14.7	The Ca	se of the Spin-Boson Model	517
15	Tran	sport in	Open Quantum Systems	520
		-	and Particle Fluxes in Open Quantum Systems	520
	15.2	Fluctua	tion Relation for Energy and Particle Fluxes	520
		15.2.1	Time-Dependent Driving of Open Quantum Systems	521
		15.2.2	Consequences of Microreversibility	523
		15.2.3	Nonequilibrium Work Quantum Fluctuation Relation	524
		15.2.4	Full Counting Statistics of Energy and Particle Fluxes	525
		15.2.5	Microreversibility and Full Counting Statistics	528
	15.3	Scatter	ing Approach to Quantum Transport	529
		15.3.1	Open Quantum Systems with Independent Particles	529
		15.3.2	The Scattering Operator	530
		15.3.3	Full Counting Statistics and Cumulant Generating	
			Function	532
		15.3.4	Cumulant Generating Function and Microreversibility	535
	15.4	Tempo	ral Disorder and Entropy Production	537
		15.4.1	Characterization of Temporal Disorder in Quantum	
			Systems	537
		15.4.2	Temporal Disorder and Time Reversal	539
		15.4.3	Time Asymmetry of Temporal Disorder and Entropy	
			Production	539

Contents

	Contents	xvii
15 5	Transport of Fermions	540
15.5	Transport of Fermions 15.5.1 Generalities	540 540
	15.5.2 Full Counting Statistics and Microreversibility	540 541
	15.5.3 Temporal Disorder	542
	15.5.4 Quantum Transport in Aharonov–Bohm Rings	543
15.6	Transport of Bosons	546
15.0	15.6.1 Generalities	546
	15.6.2 Full Counting Statistics and Microreversibility	546
	15.6.3 Temporal Disorder	547
15.7	Transport in the Classical Limit	548
1017	15.7.1 Full Counting Statistics and Microreversibility	548
	15.7.2 Temporal Disorder	549
15.8	Stochastic Approach to Electron Transport in Mesoscopic	
	Devices	550
	15.8.1 General Formulation	550
	15.8.2 Quantum Dot	552
	15.8.3 Quantum Point Contact	553
	15.8.4 Double Quantum Dot with Quantum Point Contact	554
	15.8.5 Single-Electron Transistor	558
15.9	Outlook	559
Conc	lusion and Perspectives	561
Appendix	A Complements on Thermodynamics	565
	Thermodynamic Potentials	565
A.2	Euler Relations in Homogeneous Systems	565
A.3	Equilibrium Properties of Materials	566
A.4	Conditions for Thermodynamic Equilibrium	567
	A.4.1 First Variation of the Entropy	567
	A.4.2 Second Variation of the Entropy	568
A.5	Hydrodynamic Equations in Eulerian and Lagrangian Forms	568
A.6	Deduction of the Entropy Production in Normal Fluids	569
A.7	The Heat Equation	570
A.8	Deduction of the Hydrodynamic Modes in One-Component	
	Fluids	572
A.9	Interfacial Nonequilibrium Thermodynamics	573
	A.9.1 Balance Equations in Heterogeneous Media	573
	A.9.2 Local Equilibrium at the Interface	574
	A.9.3 Contributions to the Entropy Production at an Interface	574

xviii	Contents	
Annendix	<i>B</i> Complements on Dynamical Systems Theory	577
B.1		577
211	B.1.1 From Differential Equations to Flows	577
	B.1.2 Linear Stability Analysis and Lyapunov Exponents	578
	B.1.3 Generalized Liouville Equation	579
	B.1.4 Stationary Probability Distribution and Path Probabilities	580
	B.1.5 Hausdorff Dimension and Fractals	582
B.2	Dissipative Dynamical Systems	582
B.3	Volume-Preserving Dynamical Systems	583
	B.3.1 Hamiltonian Dynamical Systems	583
	B.3.2 Standard Map	584
	B.3.3 Billiards and Hard Ball Gases	586
	1 5	588
B.5	Non-Hamiltonian Time-Reversal Symmetric Dynamical Systems	589
Appendix	C Complements on Statistical Mechanics	591
C.1	1	591
	C.1.1 Microcanonical Ensemble	591
	C.1.2 Canonical Ensemble	593
	C.1.3 Grand Canonical Ensemble	593
	C.1.4 Isobaric-Isothermal Ensemble	594
	C.1.5 Semigrand Canonical Ensembles	595
	Local Fluctuations at Equilibrium	596
C.3	Dilute Solutions	597
Appendix	D Complements on Hydrodynamics	600
D.1	Hydrodynamics in Normal Fluids	600
	D.1.1 Local Thermodynamic Relations	600
	D.1.2 Derivation of the Equations for the Conjugate Fields	600
	D.1.3 Derivation of the Dissipative Current Densities	601
D.2	Microscopic Approach to Reactions in Fluids	602
	<i>E</i> Complements on Stochastic Processes	604
E.1	Central Limit Theorem	604
E.2	Large-Deviation Theory	604
E.3	Standard Poisson Process	606
E.4	Lower Bound on the Entropy Production Rate	607
E.5	The Martingale Property Underlying Entropy Production	609
E.6	Stochastic Integrals	609
E.7	Ornstein–Uhlenbeck Process	613
E.8	Random Diffusion with Drift	615

	Contents	xix
E.9	One-Dimensional Reversible Advection–Diffusion Processes	615
E.10	Weak-Noise Limit Beyond the Quadratic Approximation	616
E.11	Examples of Non-Markovian Processes	616
E.12	Rayleigh Gas	617
E.13	Kac's Ring Model	618
Appendix	F Complements on Fluctuation Relations	620
F.1	Proof of the Nonlinear Response Properties at Higher Order	620
F.2	Consequences of Microreversibility in a Magnetizing Field	622
	F.2.1 General Relations at Arbitrarily High Orders in a	
	Magnetizing Field	622
	F.2.2 Consequences of Expanding the Hyperbolic Tangent	623
F.3	Time-Reversal Symmetry of the Binary-Collision Operator	624
F.4	Proof of the Finite-Time Fluctuation Relation for Diffusion	624
	F.4.1 Markov Jump Process with Poisson Stationary	
	Distribution	624
	F.4.2 Full Moment Generating Function	625
	F.4.3 Cumulant Generating Function for the Counting	
	Statistics	626
	F.4.4 The Case of Homogeneous Diffusion	627
F.5	Proof of the Finite-Time Fluctuation Relation for Reactions	627
Reference	25	630
Index		660

Cambridge University Press & Assessment 978-1-108-47372-9 — The Statistical Mechanics of Irreversible Phenomena Pierre Gaspard Frontmatter <u>More Information</u>

Preface

Time asymmetry is observed in many phenomena, which are referred to as irreversible. At the macroscale, the arrow of time is expressed by the second law of thermodynamics in terms of the so-called entropy. Yet, at the microscale, the laws of electrodynamics and mechanics are symmetric under time reversal. Irreversibility and microreversibility are often opposed, and we may wonder how such contrasted aspects may be compatible with each other.

Recent advances in statistical mechanics are shedding a new light on this issue. Since pioneering work by Maxwell and Boltzmann, statistical mechanics has been building a bridge between the motion of atoms and molecules composing matter and its macroscopic properties. During recent decades, discoveries in the nanosciences have revealed the existence of diverse molecular structures and processes on all the scales intermediate between the size of atoms and the macroscopic world, this latter being usually characterized by the Avogadro number equal to $N_{\rm A} = 6.02214076 \times 10^{23}$ particles per mole.¹ With covalent bonds, atoms can form large molecules such as fullerenes and carbon nanotubes, as well as arbitrarily long macromolecules. Nanoclusters with a few hundred atoms may undergo liquidsolid transitions (Haberland et al., 2005). Chemical nanoclocks can manifest themselves in heterogeneous catalytic reactions, as observed with field ion microscopy (McEwen et al., 2009). Single-electron transport and irreversibility are measured in submicrometric semiconducting quantum dots (Küng et al., 2012). In biological cells, linear and rotary molecular motors made of proteins can perform mechanical power developing about 10^{-18} W (Alberts et al., 1998). More generally, the metabolism and the self-reproduction of biological cells are driven by nanometric enzymes dissipating energy.

At the nanoscale, thermal and molecular fluctuations are prevailing due to the atomic structure of matter, so that statistical mechanics plays a fundamental role in the description of such small systems. Statistical mechanics supplements the laws of mechanics by making assumptions on the initial and boundary conditions for externally prepared or controlled systems, and by methods to predict the properties of the systems from these assumptions. Indeed, the laws of mechanics formulated by Newton, Hamilton, Schrödinger, and others are based on ordinary or partial differential equations, leaving unspecified the initial and

¹ By its historical definition as an SI unit, this number refers to artefacts such as the kilogram and, thus, probably more to human muscular strength than to any property of the inanimate world of atoms.

Cambridge University Press & Assessment 978-1-108-47372-9 — The Statistical Mechanics of Irreversible Phenomena Pierre Gaspard Frontmatter More Information

xxii

Preface

boundary conditions. In this regard, the symmetry under time reversal can be considered either for the equations of motion, which define microreversibility, or for the initial conditions, which concern the statistical level of description. This key point is used, in particular, to establish the so-called fluctuation relations, which constitute a major advance in statistical mechanics, allowing us to understand today the properties of irreversible phenomena on the basis of the reversible microscopic dynamics of atoms and electrons.

The aim of this book is to provide a comprehensive overview of these advances in statistical mechanics. For this purpose, the successive chapters explain how statistical mechanics can make predictions by linking together different theories, including thermodynamics, hydrodynamics, and the theory of stochastic processes.

Chapter 1 presents thermodynamics, where the equilibrium and nonequilibrium properties can be identified using the second law of thermodynamics.

Chapter 2 is devoted to statistical mechanics, where the concepts of statistical ensembles and probability distributions are introduced on the basis of classical mechanics. In this framework, the distinction between equilibrium and nonequilibrium statistical ensembles can be made by considering their symmetry under time reversal. The concept of entropy is associated with the probability distributions describing the system. Moreover, linear response theory and the fluctuation-dissipation theorem are formulated in the classical setting and the projection-operator methods are summarized.

The deduction of hydrodynamics from the underlying microscopic dynamics is carried out in Chapter 3 by considering local equilibrium distributions. The method is shown to extend to the phases of matter with broken continuous symmetries such as crystals and liquid crystals.

In Chapter 4, the theory of stochastic processes is elaborated for physicochemical systems described as Markovian processes. In this context, the rate of entropy production is deduced and the Hill–Schnakenberg network theory is explained. The case of Brownian motion is used to illustrate how the probabilistic description can be inferred from statistical mechanics.

The fluctuation relations are presented in Chapter 5, first for the nonequilibrium work and then for the energy and particle fluxes across open systems in contact with several reservoirs. Their deduction is performed on the basis of microreversibility in the framework of classical statistical mechanics, leading to exact fluctuation relations and the connection to entropy production. Furthermore, the fluctuation relations are shown to have fundamental consequences about the linear and nonlinear response properties. The Onsager–Casimir reciprocal relations are found for the linear response properties. Their generalizations up to arbitrarily high orders are obtained for the nonlinear response properties. Moreover, the multivariate fluctuation relation for the currents is also established within the theory of stochastic processes using the Hill–Schnakenberg network theory.

In Chapter 6, path probabilities and temporal disorder are defined and their properties under time reversal are inferred, showing that the rate of entropy production can be related to time asymmetry in temporal disorder. The analogy with other symmetry-breaking phenomena is discussed.

Chapters 7–13 apply the previous results to different types of nonequilibrium processes.

Preface

Chapter 7 deals with driven Brownian particles and analogous electric circuits, as well as to related stochastic processes.

The case of effusion processes is presented in Chapter 8, for which the fluctuation relation and the connection between the entropy production and the time asymmetry in temporal disorder can be directly proved from mechanics.

The processes ruled by Boltzmann's kinetic equation in dilute and rarefied gases are studied in Chapter 9, where the fluctuation relation for the energy and particle fluxes is obtained from the fluctuating Boltzmann equation.

Chapter 10 presents several processes where fluctuation relations can be obtained from fluctuating chemohydrodynamics: transport by diffusion, diffusion-influenced surface reactions, ion transport, diodes, transistors, and Brownian motion described by non-Markovian generalized Langevin processes deduced from fluctuating hydrodynamics.

The stochastic approach to reactive systems is developed in Chapter 11, where fluctuation relations are obtained for chemical reactions.

Chapter 12 considers several cases of active processes: transmembrane ion transport, molecular motors, and chemically propelled Janus particles. In these active processes, energy transduction is ruled by a fluctuation relation for the fluxes that are coupled together.

In Chapter 13, transport is studied using Hamiltonian dynamical models. The periodic Lorentz gases and the multibaker map are used to investigate deterministic diffusion and to mathematically construct the diffusive modes on the basis of the microscopic dynamics. Fourier's law for heat conduction is shown to hold in many-particle billiard models. Furthermore, the importance of the nonlinear response properties is illustrated with models for mechanothermal coupling.

The last two chapters are concerned with quantum systems. Quantum statistical mechanics is summarized in Chapter 14, showing how quantum master equations and stochastic Schrödinger equations can be deduced with methods similar to those used in Brownian motion theory. Finally, transport in open quantum systems is presented in Chapter 15, where the fluctuation relation for the energy and particle fluxes is established within the framework of quantum mechanics. Systems with interacting and noninteracting particles are considered. The scattering approach is developed for the full counting statistics of noninteracting particles and for their temporal disorder. The Onsager–Casimir reciprocal relations and their generalizations beyond the linear regime are shown to hold in quantum as well as classical systems. The transport properties are described in particular for fermions, bosons, and electrons in mesoscopic devices such as quantum dots, quantum point contacts, and single-electron transistors.

Several appendices provide complements on thermodynamics, dynamical systems theory, statistical mechanics, hydrodynamics, stochastic processes, and fluctuation relations.

I wish here to express my gratitude to my students, postdoctoral associates, coworkers, and colleagues. This research was supported by the "Université libre de Bruxelles (ULB)," the "Fonds de la Recherche Scientifique – FNRS," and the Belgian Federal Government under the Interuniversity Attraction Pole programme.

xxiii

Cambridge University Press & Assessment 978-1-108-47372-9 — The Statistical Mechanics of Irreversible Phenomena Pierre Gaspard Frontmatter <u>More Information</u>