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Thermodynamics

1.1 Generalities

Thermodynamics aims to describe many-particle systems on the macroscale, i.e., on spatial

scales larger than the distances between the particles and temporal scales longer than the

corresponding time intervals. Thermodynamics enunciates general principles governing the

balance of physical quantities characterizing such macroscopic systems. These physical

quantities are the state variables, also called macrovariables, that are defined by observing

the system on the macroscale. The state variables include mechanical variables such as the

energy E and the particle numbers Nk , which are defined in the framework of the underly-

ing microscopic mechanics, as well as the nonmechanical variable called entropy S. This

latter was introduced by Clausius (1865), who established its existence at the macroscale in

addition to the mechanical properties, in particular, using the study of Carnot (1824) on the

behavior of gases in idealized steam engines.

Basically, the system is delimited by a boundary and has a volume V . The system can be

an engine, a device, a machine, a motor, or part of a larger system, such as a volume element

in a continuous medium like a fluid or a solid.

The time evolution of the system may result from internal transformations and also from

exchanges with its environment, as schematically represented in Figure 1.1. During the evo-

lution of any kind (i.e., spontaneous time evolution or evolution under some external drive),

some state variable X changes by some infinitesimal amount dX at every infinitesimal step

of the evolution. Mathematically speaking, dX is the differential ofX. This differential may

have two contributions

dX = deX + diX. (1.1)

The contribution deX is due to the exchanges of X with the exterior of the system (i.e., its

environment) and the contribution diX is caused by the transformations inside the system

(Prigogine, 1967). The symbols deX and diX denote contributions that are not given by the

differential of some function. The notation ✁dX is also often used for such nondifferential

contributions. If there is no environment, we have that deX = 0 for any quantity X and the

system is said to be isolated.
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2 Thermodynamics
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Figure 1.1 Schematic representation of a system in contact with its environment. Changes

of the macrovariable X with the exterior of the system are denoted by deX and diX denotes

those occurring within its interior.

Thermodynamics is formulated as follows with three laws, specifically concerning

energy and entropy.

1.2 Energy and Other Conserved Quantities

The first law of thermodynamics is a principle of conservation.

First law: There exists a state variable called the energy E that is conserved in every

internal transformation of the system, i.e.,

dE = deE + diE with diE = 0. (1.2)

Energy is measured in joules (SI unit), calories, or electron-Volts (eV), depending on

the context. The first law of thermodynamics expresses the conservation of energy in any

form. The energy is the sum of all the forms of energy: kinetic, potential, electric, magnetic,

thermal, chemical, nuclear, gravitational, etc. The first law is justified in all the mechanical

theories of physics as resulting from the symmetry of the equations of motion under time

translations,1 which implies the conservation of a quantity identified as energy by the theo-

rem of Noether (1918). We note that the first law defines energy up to a constant value that

remains arbitrary.

Beside energy, there exist other quantities that are also conserved as the result of funda-

mental symmetries:

• linear momentum (by symmetry under spatial translations1);

• angular momentum (by symmetry under rotations1);

• electric charge (by local gauge symmetry2);

• leptonic number (by global symmetry3);

• baryonic number (by global symmetry3);

1 These fundamental symmetries of Minkowski’s spacetime belong to the Poincaré group, also called the inhomogeneous
Lorentz group. This group reduces to the Galilean group in the nonrelativistic limit (Weinberg, 1995).

2 This fundamental symmetry holds at every spacetime point for the quantum fields associated with electrically charged
particles (Weinberg, 1996).

3 This other fundamental symmetry is independent of spacetime and holds for the quantum fields associated with leptonic or
baryonic particles (Weinberg, 1996).
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1.2 Energy and Other Conserved Quantities 3

according to experimental observations (Weinberg, 1995, 1996). Every one of these quan-

tities obeys equation (1.1) with diX = 0, as expressed for energy by the first law.

Among the state variables, we also have the numbers Nk of the particles of different

species k = 1,2, . . . , c. The particles are supposed to be identical objects that should be

considered in the description of the system, such as photons, leptons, baryons, nuclei, atoms,

molecules, and supramolecular entities. If some particles undergo reactions, their numbers

are not conserved so that

dNk = deNk + diNk (1.3)

with diNk �= 0, depending on the reaction rates and the stoichiometric coefficients of the

species k in the reactions. However, if there is no reaction and the species k is conserved,

we again have that diNk = 0 and the particle number Nk goes along the other conserved

quantities.

It is also possible that the particle numbers {Nk}
c
k=1 are not conserved, but that some

linear combination of them,Lj =
∑c

k=1 ljkNk , is nevertheless conserved, so that diLj = 0,

which defines an effective conservation law. The existence of the conserved quantities Lj

depends on the energy scale of the reactions taking place inside the system. For low collision

energies, in the absence of chemical reactions the molecules are preserved so that diNk = 0,

where k denotes a molecular species. At higher collision energies, though still below the

energy of the strongest chemical bonds, some parts of molecules called moieties (Nelson

and Cox, 2017) may be preserved by the reactions, in which case the numbers Lj of these

moieties are conserved. At collision energies higher than the energy of the chemical bonds,

the molecules break up into atoms so that only the numbers Aj of atoms are conserved. If

ionization occurs, the numbers of electrons and ions become the relevant state variables,

as in electrolytes or plasmas. Moreover, different isotopes may be distinguished by their

mass mj . The numbers of isotopes are conserved as long as there is no radioactivity. Within

the nonrelativistic description, the law of mass conservation holds, which is expressed as

dM = deM + diM with diM = 0, where M =
∑

j mjAj is the total mass of the system.

For still higher energies at the scale of MeV or higher, radioactivity and nuclear reactions

break the conservation laws of the mass and the numbers of atomic nuclei, so that systems

should be described in terms of nucleons and possibly other particles such as photons,

electrons, positrons, and neutrinos. At energies above about 100 MeV, further particles

should be included in the description (Weinberg, 1995, 1996).

We note that entities much larger than atoms or molecules may also be counted, such as

atomic or molecular clusters, colloidal particles, crystalline particles, or biological entities

such as viruses, organelles, or cells. In every case, an issue is to assess the relevance of the

thermodynamic description adopted.

A system is said to be closed if only energy is exchanged with its environment, i.e., if

deE �= 0 but deNk = 0. A system is said to be open if energy and matter are exchanged

with its environment, i.e., if deE �= 0 and deNk �= 0.

The environment is often supposed to be much larger than the system, in which case it

plays the role of energy or particle reservoir. The environment may also be composed of

several such reservoirs in contact with the system.
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4 Thermodynamics

1.3 Entropy

In addition to themechanical state variables, there is a nonmechanical variable that obeys the

Second law: There exists a state variable called entropy S such that

dS = deS + diS with diS ≥ 0. (1.4)

The entropy production diS is thus always nonnegative. The evolution or transformation

undergone by the system is said to be reversible if diS = 0 and irreversible if diS > 0.

The system remains at thermodynamic equilibrium if diS = 0 and it is out of equilibrium if

diS > 0. In this latter case, there is a time asymmetry in the macroscopic description of the

system. We note that deS may be positive, negative, or zero, depending on the exchanges

between the system and its environment.

1.3.1 Equilibrium Macrostates

If the system is at equilibrium, i.e., if diS/dt = 0, its (absolute) temperature is defined by

differentiating the energy with respect to the entropy,

T ≡

(

∂E

∂S

)

V,{Nk}
c
k=1

, (1.5)

where all the other variables remain constant. The SI unit of temperature is the kelvin (K),

which is related to the SI unit of energy by Boltzmann’s constant kB = 1.380649 ×

10−23 J/K. Accordingly, the entropy has the units of joule per kelvin (J/K). At equilibrium

again, the (hydrostatic) pressure is defined as

p ≡ −

(

∂E

∂V

)

S,{Nk}
c
k=1

, (1.6)

and the chemical potential of species k as

μk ≡

(

∂E

∂Nk

)

V,S,{Nj }cj (�=k)=1

. (1.7)

As a consequence, the energy of an equilibrium macrostate varies according to theGibbs

relation

dE = T dS − p dV +

c
∑

k=1

μk dNk, (1.8)

when changing its entropy, its volume, and particle numbers. In equation (1.8), ✁dQ = T dS

corresponds to the change of heat under the transformation.We note that other contributions

may be included for instance from electromagnetism

dE
∣

∣

em
=

ˆ

V

(E · dD + H · dB) d3r, (1.9)

where E is the electric field, D the electric displacement, H the magnetizing field, B the

magnetic field, and d3r the volume element (Landau and Lifshitz, 1984); or from the inter-

face between two bulk phases
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1.3 Entropy 5

dE
∣

∣

surf
= γ d�, (1.10)

where γ is the surface tension and d� some change of the interfacial surface area �.

Between three bulk phases, a further contribution from line tension should be added

(Rowlinson and Widom, 1989).

Since energy, entropy, and particle numbers are extensive variables proportional to the

volume, the thermodynamically conjugated variables, which are temperature, pressure, and

chemical potentials, are intensive variables independent of the volume at the macroscale.

Further intensive variables can be defined by dividing the extensive variables, for instance,

with the volume to get the densities.

An important consequence of the second law is that the entropy should be maximal at

equilibrium. In turn, the Gibbs relation (1.8) implies that the temperature, the pressure,

and the chemical potentials must be uniform across an equilibrium system, as shown in

Appendix A. This fundamental property of equilibrium macrostates does not preclude the

existence of equilibrium spatial structures since thermodynamically conjugated variables,

i.e., the entropy, mass, and particle densities, are left unconstrained. In particular, crystals

are equilibrium spatially periodic structures classified by the 230 space groups in three

dimensions (Ashcroft and Mermin, 1976). Vortex lattices in type-II superconductivity are

other examples of equilibrium spatial structures. In any case, equilibrium macrostates are

stationary at the macroscale (although dynamical at the microscale).

Since the second law is formulated in terms of a differential, the entropy is only defined

up to a constant, as in the case of energy. Nevertheless, the constant of entropy can be

determined with the

Third law: If the system has a unique microstate of minimal energy, the entropy vanishes

at absolute zero temperature:

lim
T →0

S = 0. (1.11)

Accordingly, the absolute value of the entropy can be defined with the third law on the

basis of an assumption about the microstates of minimal energy (Pauling, 1970).

Another consequence of the Gibbs relation (1.8) is that the energy E is a state variable

that depends on the entropy S, the volume V , and the particle numbers {Nk}
c
k=1. The energy

therefore plays the role of thermodynamic potential E(S,V ,{Nk}
c
k=1) for a system with

independently fixed values of these variables. However, another set of independent variables

may be required if the entropy, the volume, and the particle numbers are not fixed in the

system of interest. We are thus led to define other thermodynamic potentials by performing

Legendre transforms, substituting one variable by the thermodynamically conjugated vari-

able that is fixed, as explained in Appendix A. This leads to the definition of the enthalpy

describing systems where the pressure is fixed instead of volume, the Helmholtz free energy

for systems where the temperature is fixed instead of entropy, the Gibbs free energy (or free

enthalpy) if the temperature and the pressure are fixed instead of entropy and volume, or

the grand thermodynamic potential if the temperature and the chemical potentials are fixed

instead of entropy and particle numbers. Various thermodynamic potentials can thus be

introduced depending on the experimental conditions imposed on the system of interest.

Moreover, inverting equation (1.8), we obtain an expression for the change of entropy
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6 Thermodynamics

dS =
1

T
dE +

p

T
dV −

c
∑

k=1

μk

T
dNk, (1.12)

showing that the entropy can also play the role of thermodynamic potential given by the

function S(E,V,{Nk}
c
k=1).

The thermodynamic properties of chemical substances have been measured experimen-

tally and they are known, in particular, under standard conditions (T 0 = 298.15 K, p0 =

100 kPa). The values of the standard molar enthalpy and the Gibbs free energy of formation,

as well as the standard molar entropy, are tabulated for many chemical substances (Lide,

2000). Since the values of the state variables do not depend on the pathway followed to reach

some equilibrium macrostate, the thermodynamic properties can be determined in mixtures

on the basis of their composition.

1.3.2 Nonequilibrium Macrostates

The system is out of equilibrium if entropy is produced inside the system, i.e., if diS/dt > 0.

Isolated Systems

If the system is isolated, there is no environment, which implies that deS/dt = 0. In this

case, the time derivative of the entropy is only determined by the entropy production rate

according to

dS

dt
=

diS

dt
≥ 0. (1.13)

Therefore, the entropy increases in the system up to its maximal value corresponding to

the equilibrium macrostate, as shown in Figure 1.2(a).4 The second law thus conveys the

time

(a)
S

S0

Seq

time

(b)
S

S0

S
∞

S0
'

Figure 1.2 Possible time evolutions of the entropy towards an asymptotic stationary value

in (a) an isolated system and (b) a nonisolated system.

4 Clausius (1865) expressed the first and second laws for the universe. If the entropy state variable was known everywhere in the
universe, the entropy of the universe could be decomposed as Suniv = Ssys + Senv, i.e., into the entropies of the system and its
environment shown in Figure 1.1. Since the universe contains everything, it is isolated, so that dSuniv/dt = diSuniv/dt ≥ 0 by
equation (1.13), which is the statement of Clausius (1865). Neither the system nor its environment being isolated, the second
law (1.4) gives dSsys/dt = deSsys/dt + diSsys/dt and dSenv/dt = deSenv/dt + diSenv/dt . Moreover, the amounts of entropy
exchanged between the system and its environment and vice versa are opposite to each other: deSsys/dt = −deSenv/dt .
Therefore, the sum of the entropies produced inside the system and its environment is equal to the one produced in the
universe: diSuniv/dt = diSsys/dt + diSenv/dt ≥ 0. We note that the system of interest is often significantly smaller than the
universe, in which case diSuniv/dt ≫ diSsys/dt ≥ 0.
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1.3 Entropy 7

observation that, during some nonequilibrium transients, an isolated macroscopic system

undergoes a relaxation towards the macrostate of thermodynamic equilibrium and that

energy is dissipated in the sense that the macroscopic movements in the system come to

rest when the equilibrium macrostate is reached. This time asymmetry is a characteristic

feature of nonequilibrium systems at the macroscale.

Systems in Contact with One Reservoir

If the system is not isolated, its environment may form an energy or particle reservoir.

Now, the system is closed or open due to the exchanges of energy or particles with the

environment, so that

dS

dt
=

deS

dt
+

diS

dt
(1.14)

with some entropy exchange rate deS/dt . If these conditions hold, the system will undergo

a relaxation towards a macrostate of global equilibrium with its environment. In the long-

time limit, the entropy of the system will reach a stationary value, as schematically

represented in Figure 1.2(b) with limt→∞ S = S∞. Since equilibrium is global in this

stationary macrostate, there is no entropy exchange between the system and its environ-

ment, limt→∞ deS/dt = 0. Therefore, the entropy production rate also vanishes in this

limit, limt→∞ diS/dt = 0, and the stationary macrostate reached after the nonequilibrium

transients is the equilibrium macrostate corresponding to the temperature, pressure, and

chemical potentials of the environment. Since the system is not isolated, the entropy does

not have to increase with time and the initial value of the entropy may be smaller or larger

than its asymptotic value, as shown in Figure 1.2(b). For instance, the system may initially

be hotter than its environment, in which case there will be a heat flux outgoing the system

during the nonequilibrium transients, the systemwill thus cool, and its entropy will decrease

from S′
0 to S∞ = Seq.

Systems in Contact with Several Reservoirs

If the environment is composed of several energy or particle reservoirs at different fixed

values of their temperature, pressure, and chemical potentials, the system in contact with

these reservoirs cannot reach an equilibrium macrostate as long as these differences persist.

Since arbitrarily large reservoirs keep their temperature, pressure, and chemical potentials,

the system can bemaintained inmacrostates with persistent exchanges of energy or particles

between the system and the different reservoirs. Remarkably, several types of macrostates

are possible under nonequilibrium conditions. After some possible transitory relaxation,

stationarity can be reached in the system. Again, since the system is not isolated, the initial

value of the entropy may be smaller or larger than its asymptotic value S∞, as depicted in

Figure 1.2(b). In such a stationary macrostate, the entropy of the system remains stationary

so that dS/dt = 0. Therefore, the second law and equation (1.14) imply that

diS

dt
= −

deS

dt
> 0 (1.15)

in the stationary macrostate. Consequently, the entropy produced inside the system is evac-

uated to the environment, thus keeping invariant the system entropy. Such macrostates are

www.cambridge.org/9781108473729
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47372-9 — The Statistical Mechanics of Irreversible Phenomena
Pierre Gaspard 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 Thermodynamics

called nonequilibrium steady states. Since entropy is continuously produced, energy should

be supplied in order to compensate energy dissipation and maintain these steady states.

In addition, there also exist macrostates that are nonstationary even after transients. Such

macrostates may be oscillatory with periodic, quasiperiodic, or chaotic dynamical behav-

ior. The latter is nonperiodic, manifesting sensitivity to initial conditions and dynamical

randomness over long timescales, as in turbulence. In these regimes, the macrostates evolve

with time towards attractors in the space of macrovariables because of dissipation. These

attractors are limit cycles, tori, or fractals, whether the dynamical behavior is periodic,

quasiperiodic, or chaotic (Bergé et al., 1984; Eckmann and Ruelle, 1985; Strogatz, 1994;

Nicolis, 1995).

Systems with Time-Dependent Driving

Systemsmay also be driven out of equilibrium by time-dependent external forces. Examples

are systems heated by electromagnetic waves or driven by the periodic motion of pistons. In

such circumstances, the system cannot reach a stationary macrostate and its state variables

remain time dependent.

1.4 Thermodynamics in Continuous Media

1.4.1 Balance Equations

In continuous media, the principles of thermodynamics are applied to every volume element

d3r of the macrosystem, which is here assumed to be nonrelativistic. This latter is described

in terms of densities associated with the slowest observable quantities, which include the

locally conserved quantities such as mass, energy, linear momentum, and possibly other

variables such as particle numbers or order parameters. The set of these quantities depends

on the continuous medium whether it is a fluid with one or several compounds, a liquid

crystal, a crystal, a superfluid, a plasma, or something else. Since these systems differ by

their compositions, the relevant variables will be different, but the breaking of continuous

symmetries, for instance in liquid crystal, crystals, and superfluids, may introduce order

parameters and extra slow modes called the Nambu–Goldstone modes that arise from the

fast kinetic modes of normal fluids at phase transitions (Forster, 1975).

A continuous medium is described in terms of fields x(r,t) defined at any position r ∈ R
3

inside the system and any time t ∈ R. The time evolution of some density x is ruled by the

balance equation

∂t x + ∇ · jx = σx, (1.16)

where jx is the associated current density and σx the corresponding production rate density.

The current density has the units of the density x multiplied by a velocity or, equivalently, the

units of the transported quantity X per unit surface and unit time.5 Integrating the density x

5 Current densities are also called flows (Balescu, 1975; de Groot and Mazur, 1984).
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1.4 Thermodynamics in Continuous Media 9

over some volume V that is assumed to be fixed in space, we obtain the amount of this

quantity in this volume

X ≡

ˆ

V

x d3r . (1.17)

Carrying out the same integration for the balance equation (1.16), we get the time derivative

of this quantity as

dX

dt
=

deX

dt
+

diX

dt
, (1.18)

where

deX

dt
= −

ˆ

∂V

jx · d� (1.19)

is the contribution due to the exchanges of the quantity X at the boundary ∂V of the system

with the exterior (d� being the vector surface element) and where

diX

dt
=

ˆ

V

σx d3r (1.20)

is the production rate of X inside the system. We thus recover the global form (1.1) at the

basis of the formulation of thermodynamics.

If the quantity x is locally conserved, the production rate density is equal to zero, i.e.,

σx = 0.

In normal fluids, the fluid elements are advected by the motion of the fluid described by

the velocity field v. In every element of the fluid, the velocity is defined as the velocity of the

center of mass of the element. Denoting dP to be the linear momentum in the fluid element

of volume d3r and mass dM , the velocity is thus defined as v ≡ dP/dM . Introducing the

mass density ρ ≡ dM/d3r and the linear momentum density g ≡ dP/d3r , the velocity is

thus given by v = g/ρ. The advection contributes to the current density jx associated with

the density x according to

jx = xv + JJJ x, (1.21)

whereJJJ x is the rest of the current density due to the flow of x with respect to the center of

mass of the fluid element, which is either identical or related to the corresponding diffusive

or dissipative current density J x .

Table 1.1 gives the different quantities that are relevant in normal fluids with chemical

reactions (Prigogine, 1967; de Groot and Mazur, 1984). Every quantity with σx = 0 is

locally conserved. This is the case in particular for mass, which thus obeys the well-known

continuity equation. The local conservation of mass results from the balance equations of

the different molecular species k because the diffusive current densities are defined with

respect to the center of mass of every fluid element, so that
∑

k mkJ k = 0, and because

every chemical reaction conserves mass,
∑

k mkνkr = 0, where mk is the mass of the

molecules of species k and νkr the stoichiometric coefficient of species k in the reaction r of

rate density wr . We note that the local conservation of angular momentum implies that the
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10 Thermodynamics

Table 1.1. Normal fluids with chemical reactions: The relevant quantities, their density x,

the restJJJ x of the current density, and production rate density σx . Here, nk ≡ dNk/d
3r

denotes of the density of species k (also called concentration), J k the corresponding

diffusive current density, νkr the stoichiometric coefficient of species k in the reaction r of

rate density wr , ρ the mass density, mk the mass of the particles of species k, g the linear

momentum density, v the fluid velocity field, P the pressure tensor, ǫ the total energy

density, e the internal energy density, J q the heat current density, s the entropy density,

and J s the diffusive current density of entropy. The pressure tensor is composed of the

hydrostatic pressure p multiplied by the 3 × 3 identity matrix 1, and its viscous part

� ≡ J g.

Quantity x JJJ x ≡ jx − xv σx

Number of particles k nk J k

∑

r νkrwr

Mass ρ =
∑

k mknk 0 0

Momentum g = ρv P = p 1+ � 0

Energy ǫ =
ρ
2
v2 + e P · v + Jq 0

Entropy s J s σs ≥ 0

pressure tensor is symmetric P = P
T, where the superscript T denotes the transpose.6 In

the presence of external force fields, the balance equations of linear momentum and energy

have nonvanishing source terms σx describing the force and work exerted by the resulting

external force on the fluid element (de Groot and Mazur, 1984).

At every time t , the macrostate of a normal fluid with c components is determined by

their densities {nk(r,t)}
c
k=1, the velocity field v(r,t), and the temperature field T (r,t), at

every point r of the system. An alternative set of fields is given by the mass density ρ(r,t),

the fluid velocity, the temperature, and the mass fractions of the solute species because the

mass fraction of the solvent can be deduced from them and the mass density. Since the

temperature determines the internal energy, the time evolution of the fluid macrostate is

ruled by c + 4 partial differential equations given by the balance equations for the particle

densities, the linear momentum, and the energy. However, these balance equations do not yet

form a closed set of partial differential equations because knowledge of the fluid properties

is still missing.

1.4.2 Local Thermodynamic Equilibrium and Consequences

In order to determine the still missing properties in accordance with the second law, the

hypothesis of local thermodynamic equilibrium is supposed to hold in every fluid ele-

ment. Using the entropy density as thermodynamic potential, its variations satisfy the Gibbs

relation

6 Because of the local conservation of linear momentum ∂tg + ∇ · jg = 0, the angular momentum density ℓ = r × g obeys the
balance equation ∂t ℓ + ∇ · jℓ = σ ℓ with the angular momentum current density jℓ = r × jg and the source density with

components (σ ℓ)i = −
∑

jk ǫijkPjk expressed in terms of the Levi-Civita totally antisymmetric tensor such that
ǫijk = ǫjki = −ǫikj and ǫxyz = +1. Accordingly, the source density is equal to zero if the pressure tensor is symmetric,
Pjk = Pkj . The assumption here is that there is no intrinsic angular momentum (spin), which should otherwise be included in
the balance equation, leading to a possible antisymmetric part for the pressure tensor (de Groot and Mazur, 1984).
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