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Preface

A Couple of Perspectives and a Tribute

The aim of this book is to introduce the basic aspects of the theory of∞-catego-

ries: a homotopy-theoretic variation on category theory, designed to implement

the methods of algebraic topology in broader contexts, such as algebraic geom-

etry [TV05, TV08, Lur09, Lur17] or logic [Uni13, KL16, Kap17]. The theory

of∞-categories is not only a new approach to the foundations of mathematics:

it appears in many spectacular advances, such as the proof of Weil’s conjec-

ture on Tamagawa numbers over function fields by Lurie and Gaitsgory, or the

modern approach to p-adic Hodge theory by Bhatt, Morrow and Scholze, for

instance.

For pedagogical reasons, but also for conceptual reasons, a strong emphasis

is placed on the following fact: the theory of ∞-categories is a semantic in-

terpretation of the formal language of category theory.1 This means that one

can systematically make sense of any statement formulated in the language of

category theory in the setting of∞-categories.2

We also would like to emphasise that the presence of homotopical algebra

in this book is not as an illustration, nor as a source of technical devices: it is

1 To be precise, the language of category theory is the one provided by a Cartesian closed
category endowed with an involution X �→ Xop, called the ‘opposite category functor’, a
monoidal structure defined by a ‘join operation’ ∗ , whose unit is the initial object, and which
is symmetric up to the opposite operation: X ∗Y = (Yop

∗ Xop)op. Furthermore, for each
object Y , we have the slice functor, obtained as a right adjoint of the functor
X �→ (Y → X ∗Y ). Finally, there is a final object ∆0, and we get simplices by iterating the join
operation with it: ∆n = ∆0 ∗ ∆n−1. Category theory is obtained by requiring properties
expressed in this kind of language.

2 There is, more generally, a theory of (∞, n)-categories: a semantic interpretation of the
language of (strict) n-categories (for various ordinals n). The theory of∞-categories as above
is thus the theory of (∞, 1)-categories. Although we shall not say more on these higher
versions here, the interested reader might enjoy a look at Baez’s lectures [BS10] on these
topics.

ix
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x Preface

at the core of basic category theory. In classical category theory, homotopical

algebra seems peculiar, because classical homotopy categories do not have

(co)limits and are not concrete (i.e. cannot be embedded in the category of

sets in a nice way), as the fundamental case of the homotopy category of

CW-complexes shows [Fre70]. This is partly why some traditions seem to put

classical category theory and classical homotopy theory apart. The story that

we want to tell here is that the theory of∞-categories involves a reunion: with

this new semantic interpretation, homotopy theories define ∞-categories with

(co)limits, and the classical methods of category theory do apply to them (and

the problem of concreteness disappears because ∞-groupoids take the role of

sets, not by choice, but under the rule of universal properties). In particular,

in this book, model categories will eventually be allowed to be ∞-categories

themselves, and we shall observe that the localisation of a model category is

also a model category, where the weak equivalences are the invertible maps

and the fibrations are all maps (for the reader who might not be familiar with

such a language, the present text aims at explaining what such a sentence is

about). This means that homotopy theories and their models do live in the same

world, which changes dramatically our perspective on them. Finally, one may

see homotopical algebra as the study of the compatibility of localisations with

(co)limits. And the semantics of∞-categories makes this a little more savoury

because it provides much more powerful and flexible statements. Moreover,

the fact that the free completion of a small category by small colimits can be

described as the homotopy theory of presheaves of spaces on this category puts

homotopical algebra at the very heart of the theory of Kan extensions, and thus

of category theory itself. This enlightens many classical results of the heroic

days of algebraic topology, such as Eilenberg and Steenrod’s characterisation

of singular homology, for instance. In some sense, this is the natural outcome of

a historical process. Indeed category theory was born as a convenient language

to express the constructions of algebraic topology, and the fact that these two

fields were separated is a kind of historical accident whose effects only started

to fade in the late 1990s, with the rise of ∞-categories as we know them

today, after the contributions of André Joyal, Carlos Simpson, Charles Rezk,

Bertrand Toën and Gabriele Vezzosi, and of course Jacob Lurie. A pioneer

of higher category theory such as Daniel M. Kan was aware of the very fact

that category theory should extend to homotopy theory already in the 1950s,

and his contributions, all through his mathematical life, through the theory

of simplicial categories, with William Dwyer, and, more recently, through the

theory of relative categories, with Clark Barwick, for instance, are there to

testify to this. The title of this book is less about putting higher category theory

and homotopy theory side by side, than observing that higher category theory
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Preface xi

and homotopical algebra are essentially the same thing. However, a better tribute

to Daniel M. Kan might have been to call it Category theory, plain and simple.

A Glimpse at the Narrative

As we already wrote above, this text emphasises the fact that the theory of

∞-categories is a semantic interpretation of the language of category theory.

But, when it comes to language, there is syntax. And, if category theory is full

of identifications which are not strict, such as isomorphisms, equivalences of

categories, or even wider notions of weak equivalences, this does not get better

with the theory of∞-categories, which has an even greater homotopy-theoretic

flavour. However, the only identification known by syntax is the identity. In

practice, this means that we have to introduce various rectification tools, in order

to bring back categorical constructions into our favourite language. In Lurie’s

book [Lur09], which is the standard reference on the subject, by its quality

and its scope, this rectification appears early in the text, in several disguises,

in the form of Quillen equivalences relating various model structures (e.g. to

compare Joyal’s model category structure, which encodes the homotopy theory

of ∞-categories, with Bergner’s model category structure, which expresses

Dwyer and Kan’s homotopy theory of simplicial categories). These Quillen

equivalences consist in introducing several languages together with tools to

translate statements from one language to another (for instance, the language

provided by the category of simplicial sets, which is used to describe the

Joyal model structure, and the language of simplicial categories). This is all

good, since we can then extract the most convenient part of each language to

express ourselves. But these Quillen equivalences are highly non-trivial: they

are complex and non-canonical. And since they introduce new languages, they

make unclear which aspects of a statement are independent of the theory we

chose to express ourselves.

There are many models to describe∞-categories, in the same way that there

are many ways to describe homotopy types of CW-complexes (such as Kan

complexes, or sheaves of sets on the category of smooth manifolds). All these

models can be shown to be equivalent. For instance, as already mentioned above,

in Lurie’s book [Lur09], the equivalence between Kan’s simplicial categories

and Joyal’s quasi-categories is proved and used all through the text, but there

are plenty of other possibilities, such as Simpson’s Segal categories [Sim12],

or Rezk’s complete Segal spaces [Rez01]. A reference where one may find

all these comparison results is Bergner’s monograph [Ber18], to which we

should add the beautiful description of∞-categories in terms of sheaves on an
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appropriate category of stratified manifolds by Ayala, Francis and Rozenblyum

[AFR17]. Riehl and Verity’s ongoing series of articles [RV16, RV17a, RV17b]

aim at expressing what part of this theory is model independent.

In the present book, we choose to work with Joyal’s model category structure

only. This means that our basic language is the one of simplicial sets. In fact, the

first half of the book consists in following Joyal’s journey [Joy08a, Joy08b], step

by step: we literally interpret the language of category theory in the category

of simplicial sets, and observe, with care and wonder, that, although it might

look naive at first glance, this defines canonically a homotopy theory such that

all the constructions of interest are homotopy invariant in a suitable sense.

After some work, it makes perfect sense to speak of the∞-category of functors

between two ∞-categories, to see homotopy types (under the form of Kan

complexes) as∞-groupoids, or to see that fully faithful and essentially surjective

functors are exactly equivalences of ∞-categories, for instance. Still in the

same vein, one then starts to speak of right fibrations and of left fibrations (i.e.

discrete fibrations and discrete op-fibrations, respectively). This is an approach

to the theory of presheaves which is interesting by itself, since it involves

(generalisations of) Quillen’s theorems A and B, revisited with Grothendieck’s

insights on homotopy Kan extensions (in terms of smooth base change formulas

and proper base change formulas). This is where the elementary part ends, in

the precise sense that, to go further, some forms of rectification procedure are

necessary.

In classical category theory, rectification procedures are most of the time

provided by (a variation on) the Yoneda lemma. In Lurie’s work as well: the

rectification (straightening) of Cartesian fibrations into simplicial contravariant

functors is widely used, and this is strongly related to a homotopy-theoretic

version of the Yoneda lemma for 2-categories.3 Rectification is a kind of

internalisation: we want to go from ∞-groupoids (or ∞-categories), seen as

objects of the theory of ∞-categories, to objects of a suitable ‘∞-category

of ∞-groupoids’ (or ‘of ∞-categories’). This step is non-trivial, but it is the

only way we can see how objects defined up to homotopy are uniquely (and

thus coherently) determined in a suitable sense. For instance, externally, the

composition of two maps in an ∞-category C, is only well defined up to

homotopy (i.e. there is a contractible space of choices) in the sense that, given

3 There is no need to understand this to go through this book, but for the sake of completeness,
let us explain what we mean here. From a Grothendieck fibration p : X → A, we can produce
a presheaf of categories F on A by defining F (a) as the category of Cartesian functors from
the slice category A/a to X (over A) for all a. The fact that p and F determine each other is
strongly related to the 2-categorical Yoneda lemma, which identifies F (a) with the category of
natural transformation from the presheaf represented by a to F , and to its fibred counterpart:
there is a canonical equivalence of categories from F (a) to the fibre Xa of p at a.
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three objects x, y and z in C, there is a canonical homotopy equivalence

C(x, y) × C(y, z) ← C(x, y, z)

relating the ∞-groupoid C(x, y, z) of pairs of maps of the form x → y → z,

equipped with a choice of composition x → z, with the product of the ∞-

groupoid C(x, y) of maps of the form x → y with the ∞-groupoid C(y, z) of

maps of the form y → z, and there is a tautological composition law

C(x, y, z) → C(x, z) .

Composing maps in C consists in choosing an inverse of the homotopy equiv-

alence above and then applying the tautological composition law. In the case

where C is an ordinary category, i.e. when C(x, y) is a set of maps, the compo-

sition law is well defined because there really is a unique inverse of a bijective

map. The fact that the composition law is well defined and associative in

such an ordinary category C implies that the assignment (x, y) �→ C(x, y)

is actually a functor from Cop
× C to the category of sets. But, when C is a

genuine∞-category, such an assignment is not a functor any more. This is due

to the fact that the above is expressed in the language of the category of

∞-categories (as opposed to the ∞-category of ∞-categories), so that the

assignment (x, y) �→ C(x, y) remains a functional from the set of pairs of

objects of C to the collection of∞-groupoids, seen as objects of the category of

∞-categories. Asking for functoriality is then essentially meaningless. How-

ever, internally, such compositions all are perfectly well defined in the sense that

there is a genuine Hom functor with values in the∞-category of∞-groupoids:

there is an appropriately defined∞-category S of∞-groupoids and a functor

HomC : Cop
× C → S .

Of course, for the latter construction to be useful, we need to make a precise

link between∞-groupoids, and the objects of S, so that C(x, y) corresponds to

HomC (x, y) in a suitable way. And there is no easy way to do this.

Another example: the (homotopy) pull-back of Kan fibrations becomes a

strictly associative operation once interpreted as composition with functors

with values in the ∞-category of ∞-groupoids. And using the Yoneda lemma

(expressed with the functor HomC above), this provides coherence results

for pull-backs in general. More precisely, given a small ∞-groupoid X with

corresponding object in S denoted by x, there is a canonical equivalence of

∞-groupoids between the ∞-category of functors Hom(X, S) and the slice

∞-category S/x (this extends the well-known fact that the slice category of sets

over a given small set X is equivalent to the category of X-indexed families of
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sets). Given a functor between small ∞-groupoids F : X → Y corresponding

to a map f : x → y in S, the pull-back functor

S/y → S/x , (t → y) �→ (x ×y t → x)

corresponds to the functor

Hom(Y, S) → Hom(X, S) , Φ �→ ΦF .

The associativity of composition of functors in the very ordinary category of

∞-categories thus explains how the correspondence

Hom(X, S) ≃ S/x

is a way to rectify the associativity of pull-backs of ∞-groupoids which only

holds up to a canonical invertible map.

Rectification thus involves a procedure to construct and compute functors

with values in the ∞-category of ∞-groupoids, together with the construction

of a Hom functor (i.e. of the Yoneda embedding). In this book, we avoid non-

trivial straightening/unstraightening correspondences which consist in describ-

ing ∞-categories through more rigid models. Instead, we observe that there is

a purely syntactic version of this correspondence, quite tautological by nature,

which can be interpreted homotopy-theoretically. Indeed, inspired by Voevod-

sky’s construction of a semantic interpretation of homotopy type theory with

a univalent universe within the homotopy theory of Kan complexes [KL16],

we consider the universal left fibration. The codomain of this universal left

fibration, denoted by S, has the property that there is an essentially tautologi-

cal correspondence between maps X → S and left fibrations with small fibres

Y → X . In particular, the objects of S are nothing other than small∞-groupoids

(or, equivalently, small Kan complexes). In the context of ordinary category

theory, such a category S would be the category of sets. In this book, we prove

that, as conjectured by Nichols-Barrer [NB07], S is an ∞-category which is

canonically equivalent to the localisation of the category of simplicial sets by

the class of weak homotopy equivalences (hence encodes the homotopy the-

ory of CW-complexes). Furthermore, the tautological correspondence alluded

to above can be promoted to an equivalence of ∞-categories, functorially in

any ∞-category X : an equivalence between an appropriate ∞-category of left

fibrations of codomain X and the ∞-category of functors from X to S. Even

better, the∞-category of functors from (the nerve of) a small category I to S is

the localisation of the category of functors from I to simplicial sets by the class

of levelwise weak homotopy equivalences. This description of the∞-category

of ∞-groupoids is highly non-trivial, and subsumes the result of Voevodsky

alluded to above, about the construction of univalent universes within the
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homotopy theory of Kan complexes. But it has the advantage that the recti-

fication of left fibrations is done without using the introduction of an extra

language, and thus may be used at a rather early stage of the development of

the theory of∞-categories, while keeping an elementary level of expression.

In order to promote the correspondence between left fibrations Y → X and

functors X → S to an equivalence of ∞-categories, we need several tools.

First, we extend this correspondence to a homotopy-theoretic level: we prove

an equivalence of moduli spaces, i.e. we prove that equivalent left fibrations

correspond to equivalent functors with values in S in a coherent way.4 Subse-

quently, to reach an equivalence of ∞-categories, we need a series of results

which are of interest themselves. We provide an ad hoc construction of the

Yoneda embedding; this can be done quite explicitly, but the proof that it satis-

fies the very minimal properties we expect involves non-obvious computations,

which we could only explain to ourselves by introducing a bivariant version of

left fibrations. Then we develop, in the context of∞-categories, all of classical

category theory (the Yoneda lemma, the theory of adjoint functors, extensions

of functors by colimits, the theory of Kan extensions) as well as all of classical

homotopical algebra (localisations, calculus of fractions, ∞-categories with

weak equivalences and fibrations, Reedy model structures, derived functors,

homotopy limits). All these aspects are carried over essentially in the same way

as in ordinary category theory (this is what internalisation is good for). The

only difference is that inverting weak equivalences in complete ∞-categories

gives, under suitable assumptions (e.g. axioms for complete model categories)

∞-categories with small limits. Furthermore, we have the following coherence

property: the process of localisation for these commutes with the formation

of functor categories (indexed by small 1-categories). This means that in the

context of ∞-categories, the notions of homotopy limit and of limit are not

only analogous concepts: they do coincide (in particular, homotopy limits, as

usually considered in algebraic topology, really are limits in an appropriate

∞-category). Similarly, there are coherence results for finite diagrams. For

instance, inverting maps appropriately in ∞-categories with finite limits com-

mutes with the formation of slices. From all this knowledge comes easily the

∞-categorical correspondence between left fibrations Y → X and functors

X → S. Furthermore, in the case where X is the nerve of a small category

A, we observe immediately that the ∞-category of functors X → S is the lo-

calisation of the category of simplicial presheaves on A by the fibrewise weak

homotopy equivalences, which puts classical homotopy theory in perspective

within∞-category theory.

4 Another way to put it, for type theorists, is that we prove Voevodsky’s univalence axiom for the
universal left fibration.
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A Few Words on the Ways We May Read This Book

Although it presents an alternative approach to the basics of the theory of

∞-categories, and even contains a few new results which might make them

of interest to some readers already familiar with higher categories after Joyal

and Lurie, this book is really meant to be an introduction to the subject. It

is written linearly, that is, following the logical order, which also corresponds

to what was actually taught in a two-semester lecture series, at least for most

of it. We have aimed at providing complete constructions and proofs, starting

from scratch. However, a solid background in algebraic topology or in category

theory would certainly help the reader: the few examples only appear at the

very end, and, when we introduce a concept, we usually do not give any

historical background nor pedestrian justification. We have tried to make clear

why such concepts are natural generalisations of siblings from category theory,

though. Despite this, apart from a few elementary facts from standard category

theory, such as the contents of Leinster’s book [Lei14] or parts of Riehl’s

[Rie17], there are no formal prerequisites for reading this text. A very few

technical results, generally with an elementary set-theoretic flavour, are left as

exercises, but always with a precise reference where to find a complete proof.

In particular, we do not even require any previous knowledge of the classical

homotopy theory of simplicial sets, nor of Quillen’s model category structures.

In fact, even the Kan–Quillen model category structure, corresponding to the

homotopy theory of Kan complexes, is constructed in detail, as a warm-up

to construct the Joyal model category structure, which corresponds to the

homotopy theory of ∞-categories. We also revisit several classical results of

algebraic topology, such as Serre’s long exact sequence of higher homotopy

groups, as well as Quillen’s famous theorem A and theorem B. These well-

known results are proven in full because they appear in this book in a rather

central way. For instance, in order to prove that a functor is an equivalence of

∞-categories if and only if it is fully faithful and essentially surjective, one may

observe that the particular case of functors between higher groupoids (i.e. Kan

complexes) is a corollary of Serre’s long exact sequence. Interestingly enough,

the general case follows from this groupoidal version. Similarly, the account

we give of Quillen’s theorem A is in fact a preparation of the theory of Kan

extension, and Quillen’s theorem B is a way to understand locally constant

functors (which will be a technical but fundamental topic in the computation

of localisations).

For the readers who already know the basics of ∞-category theory (e.g. the

five first chapters of [Lur09]), parts of Chapters 4, 5 and 6 might still be of

interest, since they give an account of the basics which differs from Lurie’s
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treatment. But such readers may go directly to Chapter 7, which deals with

the general interpretation of homotopical algebra within the theory of higher

categories. The treatment we give of homotopical techniques in this last chapter

gives robust and rather optimal tools to implement classical homotopy theories

in higher categories. This is a nice example which shows that apparently abstract

concepts, such as that of Kan extensions, can be used intrinsically (without

apparently more explicit tools, such a homotopy coherent nerves) to organise

a theory (e.g. the localisation of higher categories) both conceptually and

effectively (i.e. producing computational tools).

One of the interests of using a single formalism which is a literal semantic

interpretation of the language of category theory is that, although the proofs can

be rather intricate, most of the statements made in this book are easy enough

to understand, at least for any reader with some knowledge of category theory.

This hopefully should help the reader, whether she or he wants to read only

parts of the book, or to follow it step by step. Furthermore, each chapter starts

with a detailed description about its purposes and contents. This is aimed at

helping the reader to follow the narrative as well as to facilitate the use of the

book for reference.

Finally, as all introductions, this book ends when everything begins. The

reader is then encouraged to go right away to Lurie’s realm. And beyond.
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