

Econometric Analysis of Stochastic Dominance

This book offers an up-to-date, comprehensive coverage of stochastic dominance and its related concepts in a unified framework. A method for ordering probability distributions, stochastic dominance has grown in importance recently as a way to measure comparisons in welfare economics, inequality studies, health economics, insurance wages, and trade patterns. Whang pays particular attention to inferential methods and applications, citing and summarizing various empirical studies in order to relate the econometric methods with real applications and using computer codes to enable the practical implementation of these methods. Intuitive explanations throughout the book ensure that readers understand the basic technical tools of stochastic dominance.

Yoon-Jae Whang is Professor of Economics at Seoul National University. He is an elected fellow of the Econometric Society and the *Journal of Econometrics* and is Co-Director of the Center for Econometrics at Seoul National University.

Themes in Modern Econometrics

Series Editor

PETER C. B. PHILLIPS, Sterling Professor of Economics, Yale University

Themes in Modern Econometrics provides an organized sequence of advanced textbooks in econometrics aimed directly at the student population and is the first series in the discipline to have this as its express aim. Written at a level accessible to those who have completed an introductory course in econometrics, each book addresses topics and themes that students and researchers encounter daily. All areas of econometrics are covered within the series. Particular emphasis is given to theory fundamentals and practical implementation in breaking research areas that are relevant to empirical applications. Each book stands alone as an authoritative survey in its own right. The distinct emphasis throughout is on pedagogic excellence and accessibility.

Books in the Series

Structural Vector Autoregressive Analysis (2017) LUTZ KILIAN and HELMUT LÜTKEPOHL

Almost All About Unit Roots (2015) IN CHOI

Granularity Theory with Applications to Finance and Insurance (2014) PATRICK GAGLIARDINI and CHRISTIAN GOURIÉROUX,

Econometric Modeling with Time Series (2012) VANCE MARTIN, STAN HURN, and DAVID HARRIS

Economic Modeling and Inference (2007) JEAN-PIERRE FLORENSE, VELAYOUDOM MARIMOUTOU, and ANNE PEGUIN-FEISSOLLE Translated by JOSEF PERKTOLD and MARINE CARRASCO

Introduction to the Mathematical and Statistical Foundations of Econometrics (2004) HERMAN J. BIERENS

Applied Time Series Econometrics (2004) HELMUT LÜTKEPOHL and MARKUS KRÄTZIG

Semiparametric Regression for the Applied Econometrician (2003) ADONIS YATCHEW

The Econometric Analysis of Seasonal Time Series (2001) ERIC GHYSELS and DENISE R. OSBORN

Econometrics of Qualitative Dependent Variables (2000) CHRISTIAN GOURIEROUX Translated by PAUL B. KLASSEN

Nonparametric Econometrics (1999) ADRIAN PAGAN and AMAN ULLAH Generalized Method of Moments Estimation (1999) Edited by LÁSZLÓ MÁTYÁS

Unit Roots, Cointegration, and Structural Change (1999) G.S. MADDALA and IN-MOO KIM

Time Series and Dynamic Models (1997) CHRISTIAN GOURIEROUX and ALAIN MONFORT Translated and edited by GIAMPIERO GALLO Statistics and Econometric Models: Volumes 1 and 2 (1995) CHRISTIAN GOURIEROUX and ALAIN MONFORT Translated by QUANG VUONG

ECONOMETRIC ANALYSIS OF STOCHASTIC DOMINANCE

Concepts, Methods, Tools, and Applications

YOON-JAE WHANG Seoul National University

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108472791

DOI: 10.1017/9781108602204

Yoon-Jae Whang © 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2019

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data

Names: Whang, Yoon-Jae, author.

Title: Econometric analysis of stochastic dominance: concepts, methods, tools, and applications / Yoon-Jae Whang, Seoul National University.

Description: New York : Cambridge University Press, [2018] |

Includes bibliographical references and index.

Identifiers: LCCN 2018012045 | ISBN 9781108472791 (alk. paper) Subjects: LCSH: Economics, Mathematical. | Stochastic processes. | Mathematical statistics.

Classification: LCC HB135 .W464 2018 | DDC 330.01/51923-dc23

LC record available at https://lccn.loc.gov/2018012045

ISBN 978-1-108-47279-1 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To my parents and Mi Kyung, Sun Young, and Soo Young

Contents

Li	st of f	îgures	<i>page</i> xi
List of tables			xii
Pi	Preface		
Abbreviations and Notation			XV
1	Intr	1	
	1.1	Concepts of Stochastic Dominance	1
		1.1.1 Definitions	1
		1.1.2 Basic Properties of Stochastic Dominance	7
		1.1.3 A Numerical Example	9
		1.1.4 Extensions and Some Related Concepts	11
	1.2	Applications of Stochastic Dominance	15
		1.2.1 Welfare Analysis	15
		1.2.2 Finance	17
		1.2.3 Industrial Organization	18
		1.2.4 Labor Economics	20
		1.2.5 International Economics	20
		1.2.6 Health Economics	21
		1.2.7 Agricultural Economics	21
	1.3	Outline of Subsequent Chapters	22
2	Tests of Stochastic Dominance: Basic Results		24
	2.1	Introduction	24
	2.2	Null of Dominance against Non-Dominance	25
		2.2.1 Tests Based on Multiple Comparisons	26
		2.2.2 Supremum-Type Tests	32
		2.2.3 Integral-Type Tests	45
		2.2.4 Quantile-Based Tests	48
		2.2.5 Neyman's Smooth Tests	53
	2.3	Null of Non-Dominance against Dominance	58
			vii

viii		Conten	ıts	
		2.3.1	Infimum t-Test	59
		2.3.2	Empirical Likelihood Test	61
	2.4	Null o	f Equality against Dominance	64
	2.5	Empir	ical Examples	65
		2.5.1	Comparison of Income Distributions	65
		2.5.2	Testing for Monday Effects in Stock Markets	67
3	Test	s of Sto	chastic Dominance: Further Results	73
	3.1	Stocha	astic Dominance Tests with Improved Power	73
		3.1.1	The Contact Set Approach	73
		3.1.2	The Selective Recentering Approach	80
		3.1.3	Remarks	83
		3.1.4	A Numerical Example	85
	3.2 Program Evaluation and Stochastic Dominance		87	
		3.2.1	Distributional Treatment Effects	87
		3.2.2	Counterfactual Policy Analysis	98
	3.3	Some	Issues of Stochastic Dominance Tests	104
		3.3.1	Stochastic Dominance Tests with Unbounded Supports	104
		3.3.2	Classification of Stochastic Dominance Relations	106
		3.3.3	Large Deviation Approximation	108
	3.4	Empir	ical Examples	109
		3.4.1	Distributional Treatment Effects of Veteran Status	109
		3.4.2	Returns to Schooling: Quantile Treatment Effects	110
4	Stoc	hastic I	Dominance with Covariates	113
	4.1	Introd	uction	113
	4.2	Conditional Stochastic Dominance at Fixed Values of		
	Covariates			114
		4.2.1	Quantile-Based Tests	114
		4.2.2	Cumulative Distribution Function-Based Tests	117
	4.3	Condi	tional Stochastic Dominance at All Values of Covariates	119
		4.3.1	The Poissonization Approach	119
		4.3.2	The Least Concave Majorant Approach	122
		4.3.3	The Strong Approximation Approach	124
		4.3.4	The Unconditional Moment Representation Approach	127
	4.4	Stocha	astic Monotonicity	130
	4.5	Empir	ical Examples	134
		4.5.1	Testing for Conditional Treatment Effects	134
		4.5.2	Testing for a Strong Leverage Hypothesis	136
5	Exte	ensions (of Stochastic Dominance	141
	5.1	Multiv	variate Stochastic Dominance	141
	5.2	Analy	sis of Economic Inequality and Poverty	143
		5.2.1	Lorenz Dominance	143

		Contents	1X
		5.2.2 Poverty Dominance	146
		5.2.3 Initial Dominance	147
	5.3	Analysis of Portfolio Choice Problems	149
		5.3.1 Marginal Conditional Stochastic Dominance	149
		5.3.2 Stochastic Dominance Efficiency	151
		5.3.3 Convex Stochastic Dominance and Stochastic	
		Dominance Optimality	154
	5.4	Weaker Notions of Stochastic Dominance	159
		5.4.1 Almost Stochastic Dominance	159
		5.4.2 Approximate Stochastic Dominance	162
		5.4.3 Infinite-Order Stochastic Dominance	166
	5.5	Related Concepts of Stochastic Dominance	169
		5.5.1 Density Ratio Dominance	169
		5.5.2 Uniform Stochastic Ordering	172
		5.5.3 Positive Quadrant Dependence	176
		5.5.4 Expectation Dependence Dominance	178
		5.5.5 Central Dominance	180
		5.5.6 Spatial Dominance	186
6	Some Further Topics		
	6.1	Distributional Overlap Measure	187
	6.2	Generalized Functional Inequalities	189
	6.3	Distributions with Measurement Errors	192
	6.4	Stochastic Dominance Tests with Many Covariates	195
	6.5	Robust Forecasting Comparisons	198
7	Con	clusions	200
Aj	ppend	lix A Basic Technical Tools	202
	A.1	A Probability Background	202
	A.2	Empirical Processes	205
		A.2.1 Independent Observations	205
		A.2.2 Dependent Observations	209
	A.3	Poissonization Methods	213
Aj	ppend	ix B Computer Code for Stochastic Dominance Tests	218
	B.1	Introduction	218
	B.2	Supremum-Type Tests	221
		B.2.1 McFadden Test	221
		B.2.2 Barrett–Donald Test	222
		B.2.3 Linton–Maasoumi–Whang Test	225
		B.2.4 Donald–Hsu Test	227
	B.3	Integral-Type Test	230
		B.3.1 Hall–Yatchew Test	230

x Contents

	B.3.2 Bennett Test	232
	B.3.3 Linton–Song–Whang Test	235
B.4	Stochastic Dominance with Covariates: Lee–Whang Test	237
Bibliography		242
Index		259

Figures

1.1	X_1 first-order stochastically dominates X_2	page 2
1.2	X_1 does not first-order stochastically dominate X_2 , but X_1	
	second-order stochastically dominates X_2	4
1.3	PDFs and CDFs for the simulation design	10
3.1	CDFs of the first and second designs	86
3.2	Empirical CDFs of earnings of veterans and nonveterans	110
3.3	Estimated distributions of potential earnings for compliers	111
3.4	Estimates of schooling coefficients	112
4.1	Conditional mean of CSAT scores (control: Income)	136
4.2	Plot of $\hat{\bar{m}}_T(y, g, \hat{\pi}^+)$ for MSFT	140
B.1	CDFs of Designs 1, 2, 3, and 4	219
B.2	CDFs of Designs 7, 8, 9, and 10	221

Tables

1.1	Mean-variance and SSD criteria	page 11
2.1	Canadian family income distributions: descriptive statistics	66
2.2	Stochastic dominance in Canadian before tax family income	66
2.3	Monday effects: OLS estimates (EWX)	71
2.4	Monday effects: quantile regression estimates (EWX)	71
2.5	Monday effects: median of p-values of SD tests	72
3.1	SD tests with power improvements: Rejection probabilities	
	(Size)	86
3.2	SD tests with power improvements: Rejection probabilities	
	(Power)	86
6.1	Rejection probabilities of the BD test under measurement	
	errors	193
B.1	Rejection probabilities of the McFadden test	222
B.2	Rejection probabilities of the Barrett–Donald test	224
B.3	Rejection probabilities of the Linton–Maasoumi–Whang test	227
B.4	Rejection probabilities of the Donald-Hsu test	230
B.5	Rejection probabilities of the Hall-Yatchew test	232
B.6	Rejection probabilities of the Bennett test	235
B.7	Rejection probabilities of the Linton-Song-Whang test	237
B.8	Rejection probabilities of the Lee–Whang test	240

Preface

Stochastic dominance (SD) is an ordering rule of distribution functions. Since the work of Hadar and Russell (1969), Hanoch and Levy (1969), and Rothschild and Stiglitz (1970), the concept has been theoretically explored and empirically implemented in various areas including economics, finance, insurance, medicine, and statistics. The stochastic dominance rule is based on the expected utility paradigm and gives a uniform ordering of prospects that does not depend on specific utility (or social welfare) functions. For example, it can produce a majority assessment (valid over a large class of utility functions) on investment strategies, welfare outcomes (income distributions or poverty levels), and program evaluation exercises. In contrast, the traditional strong orders, based on specific indices of inequality or poverty in welfare, mean-variance analysis in finance, or performance indices in program evaluation, do not achieve consensus. In addition, the stochastic dominance rule does not require restrictive parametric assumptions on the distributions of the prospects.

Since the early work of McFadden (1989), a substantial body of literature has been developed on nonparametric inference on stochastic dominance and its related concepts. The stochastic dominance relation corresponds to an inequality restriction between (functionals of) nonparametric distribution functions. Not only is its statistical inference complicated, but it is also multifarious; since the concept of stochastic dominance itself has many variants in different contexts, it calls for separate inference procedures.

The purpose of this book is to provide an overview of the literature in a unified framework, with a focus on recent developments. There are excellent books on stochastic dominance, including Levy (2016) and Sriboonchita, Wong, Dhompongsa, and Nguyen (2010). There are also several surveys: Levy (1992), Maasoumi (2001), Davidson (2010), and Guo (2013). However, the main focus of the two books mentioned is on the theoretical aspects of stochastic dominance rules in finance, rather than on statistical inference for the rules. Also, the coverage of the surveys is somewhat limited. In contrast, this book

xiii

xiv Preface

provides up-to-date and comprehensive coverage of the inference methods proposed in the literature. This book also cites and summarizes several empirical studies that employ the inference methods, so that the reader can relate the econometric methods to real applications.

This book is intended for graduate students and researchers in economics and other sciences who are interested in applications of the stochastic dominance rules. It is also useful to theoretical econometricians as a reference, because it shows several examples of using modern econometric tools to compare functional variables and suggests some open questions. It is expected that the reader has a good background in econometrics at the level of, for example, Greene (2012) or Hayashi (2000). Some knowledge of nonparametric inference methods and probability theory would be desirable but is not essential.

I am grateful to many people who helped me in the writing of this book in one way or another. First of all, I would like to thank my advisors, Professors Don Andrews and Peter Phillips at Yale, for their encouragement and support in the early 1990s. My special thanks also go to Oliver Linton, who introduced me to the fascinating topic of stochastic dominance, and who has been working together with me on various subjects over the past decades. I am also grateful to Gordon Anderson and Kyungchul Song, who read an earlier version of the entire manuscript and gave me very useful comments. I also owe a great intellectual debt to Xiaohong Chen, Doo-Bong Han, Yuichi Kitamura, Sokbae Lee, Haim Levy, Essie Maasoumi, Taisuke Otsu, Joon Park, Thierry Post, and Myung Hwan Seo. Parts of this book were written while I was visiting the Cowles Foundation at Yale, whose hospitality is gratefully acknowledged. Deborah Kim (now a graduate student at Northwestern) wrote the MATLAB code in Appendix B, which I deeply appreciate. I also thank Yeongmi Jeong, MinKyung Kim, Sue-Youl Kim, and Jaewon Lee (now a graduate student at Yale) for their excellent research assistance. Thanks also go to Jooyoung Cha, Danbi Chung, Jae Yu Jung, Eunsun Kim, Hyunkyeong Lim, and Siwon Ryu for their careful proofreading. This book was financially supported by the Korea Research Foundation Grant funded by the Korean Government (NRF-2011-342-B00004).

Last, but not least, my warmest thanks go to my parents, my wife Mi Kyung, and my daughters Sun Young and Soo Young, for their love and support. They have been the most important source of my personal strength throughout my academic life.

Abbreviations and Notation

CDF cumulative distribution function CDTE conditional distributional treatment effect CLT central limit theorem EL empirical likelihood FSD first-order stochastic dominance independent and identically distributed i.i.d. LCM least concave majorant LFC least favorable case PDF probability density function **OTE** quantile treatment effect SD stochastic dominance SDE stochastic dominance efficiency SM stochastic monotonicity SMM studentized maximum modulus SSD second-order stochastic dominance TSD third-order stochastic dominance WLLN weak law of large numbers $\underset{F^{(s)}(x)}{\succeq_s}$ stochastic dominance at order s integrated CDF at order s $\bar{F}^{(s)}(x)$ integrated empirical CDF at order s $D_{1,2}^{(s)}(x)$ difference $F_1^{(s)}(x) - F_2^{(s)}(x)$ between integrated CDFs difference $\bar{F}_1^{(s)}(x) - \bar{F}_2^{(s)}(x)$ between integrated empirical CDFs $\bar{D}_{1,2}^{(s)}(x)$ $Q^{(s)}(x)$ integrated quantile function at order s $\max\{x, 0\}$ (i.e., maximum of x and 0) $[x]_+$ $min\{x, 0\}$ (i.e., minimum of x and 0) $[x]_{-}$ $a \vee b$ $\max\{a, b\}$ (i.e., maximum of a and b) $a \wedge b$ $min\{a, b\}$ (i.e., minimum of a and b) sign of x sgn(x)convergence in probability $\rightarrow p$

XV

U(a, b)

Cambridge University Press & Assessment 978-1-108-47279-1 — Econometric Analysis of Stochastic Dominance Yoon-Jae Whang Frontmatter More Information

xvi Abbreviations and Notation \Rightarrow convergence in distribution or weak convergence x := y equality by definition (i.e., x and y are equal by definition) $X \stackrel{d}{=} Y$ equality in distributions (i.e., X and Y have the same distribution) A^{T} transpose of matrix A f'(x) first-derivative of f with respect to x f''(x) second-derivative of f with respect to x

standard normal random variable, N(0, 1)

uniform distribution on (a, b)