The biological functions debate is a perennial topic in the philosophy of science. In the first full-length account of the nature and importance of biological functions for many years, Justin Garson presents an innovative new theory, the “generalized selected effects theory of function,” which seamlessly integrates evolutionary and developmental perspectives on biological functions. He develops the implications of the theory for contemporary debates in the philosophy of mind, the philosophy of medicine and psychiatry, the philosophy of biology, and biology itself, addressing issues ranging from the nature of mental representation to our understanding of the function of the human genome. Clear, jargon-free, and engagingly written, with accessible examples and explanatory diagrams to illustrate the discussion, his book will be highly valuable for readers across philosophical and scientific disciplines.

Justin Garson is Associate Professor of Philosophy at Hunter College of the City University of New York. He is the author of The Biological Mind: A Philosophical Introduction (2015) and A Critical Overview of Biological Functions (2016).
WHAT BIOLOGICAL FUNCTIONS ARE AND WHY THEY MATTER

JUSTIN GARSON

Hunter College, City University of New York
For Elias:
Creative, inquisitive, and funny.
I love you.
Contents

List of Figures page x
Acknowledgments xii

Introduction 1

PART I BACKGROUND 7
1 The Strangeness of Functions 9
 1.1 Functions and Explanations 11
 1.2 Backwards Causation 16
 1.3 Theism and Fictionalism 17
 1.4 Being There 20
 1.5 Rules of the Game 22
2 Function and Selection 25
 2.1 The Traditional Selected Effects Theory 25
 2.2 Mutation, Drift, Design 29
 2.3 Criticisms of the Traditional Selected Effects Theory 32
3 Feedback and Functions 43
 3.1 Forward-Looking Functions 43
 3.2 Invoking the Wrong History 46
 3.3 Organizational Functions 47
 3.4 Weak Etiological Functions 57

PART II THEORY 63
4 An Explosion of Selection Processes 65
 4.1 The Breadth of Selection 66
 4.2 Functions and Antibody Selection 69
 4.3 Is Learning a Selection Process? 74
Contents

5 Selection and Construction 78
 5.1 How to Build a Brain 79
 5.2 Selection and Construction 80
 5.3 War of the Synapses 82
 5.4 The Function of Selection 86
 5.5 How the Brain Makes Functions 89

6 A Generalized Selected Effects Theory of Function 93
 6.1 The Theory 93
 6.2 Six Problems for GSE 96
 6.3 Functions and Populations 103
 6.4 A Harder Liberality Problem 106

7 Proper Functions Are Proximal Functions 109
 7.1 What Function Indeterminacy Is and Why It Matters 111
 7.2 Distal and Proximal Functions 114
 7.3 An Objection to Proximal Functions 117
 7.4 Functions and Functional Analysis 118
 7.5 Functions and Mechanistic Explanation 121

8 When Functions Go Wrong 124
 8.1 Constitution and Circumstance 125
 8.2 Normal Environment and Selective Environment 129
 8.3 Can the Biostatistical Theory Explain Dysfunction? 134

PART III APPLICATIONS 139

9 Function Pluralism 141
 9.1 Selected Effects and Causal Roles 144
 9.2 SE-Disciplines and CR-Disciplines? 148

10 What Are Mechanisms? 152
 10.1 The Functional Sense of Mechanism 153
 10.2 Two Senses of “Mechanism” 156
 10.3 Convergence and Divergence 158
 10.4 How Mechanisms Break 161
 10.5 How to Explain Disease 164
 10.6 Is Natural Selection a Mechanism? 168

11 What Are Mental Disorders? 170
 11.1 Mental Disorders and Biological Dysfunctions 172
 11.2 Mismatch or Dysfunction? 174
 11.3 Developmental Mismatches 176
 11.4 Generalized Selection Processes and Mental Disorders 178
 11.5 Objections and Replies 181
Contents

12 A New Kind of Teleosemantics 187
 12.1 Meaning and Selection 188
 12.2 Producers and Consumers 191
 12.3 Neural Selection and Novel Representations 195
 12.4 Proximal-Distal Content Indeterminacy 200

A Programmatic Epilogue 213

References 216
Index 233
Figures

3.1 An example of a noncomplex self-reproducing system. page 50
3.2 An example of a complex self-reproducing system. 50
3.3 Panic disorder as a complex self-reproducing system. 52
5.1 Innervation of skeletal muscle of newborn rats. The first panel (a) depicts the multiple innervation of muscle fibers by motor neurons; the second panel (b) depicts the one-to-one pattern of connectivity that emerges by two weeks after birth. Redrawn from Purves and Lichtman (1980, 155). 83
5.2 A simple example of synapse selection. The first panel (a) shows a neuron N innervating two target neurons, N$_T_1$ and N$_T_2$, yielding two synapses, S$_1$ and S$_2$. As a result of experience, S$_1$ is inhibited, leaving S$_2$ (as shown in [b]). 88
6.1 A simple example of synapse selection. Panel (a) shows two different neurons, N$_1$ and N$_2$, innervating the same target N$_T$, and yielding two synapses, S$_1$ and S$_2$. After synapse selection, only S$_1$ remains (panel [b]). 97
6.2 An example of normal constructionist growth. N$_1$ innervates N$_2$, yielding S$_1$; N$_1$ innervates N$_3$, yielding S$_2$. S$_2$ atrophies as a result of disuse. There is a kind of differential retention but it is not synapse selection and hence does not create a new function. 98
6.3 A pile of rocks represented as an undirected graph. 107
7.1 The hierarchical form of the function indeterminacy problem. 110
7.2 Functional and systemic hierarchies. 120
12.1 Producer and consumer mechanisms for a representation. 192
12.2 A simple case of synapse selection. 198
12.3 Representational capacities of sets of neurons. 200
12.4 A simple input–output mechanism. 203
List of Figures

12.5 A snake-detection mechanism that can only exploit information from a single modality (vision). 205
12.6 A snake-detection mechanism that can exploit information from two different modalities (vision and hearing). 206
12.7 A kangaroo rat capable of associative learning. 208
Acknowledgments

First and foremost, I owe a great debt of gratitude to Karen Neander for several valuable conversations about the topics in this book. Many of my thoughts on function and related topics arose as responses to her work, as will become evident shortly. There are many others to whom I’m especially indebted for discussions that helped to shape the ideas expressed here. These include Carl Craver, Lindley Darden, Dan McShea, David Papineau, Gualtiero Piccinini, and Sahotra Sarkar.

Many people gave me valuable feedback on parts of this book, or on articles that fed into this book. In addition to those listed above, these include Reid Blackman, Robyn Bluhm, Paul Sheldon Davies, Stuart Glennan, Paul Griffiths, Ginger Hoffman, Fabian Hundertmark, Phyllis Illari, Stefan Linquist, Alan Love, John Matthewson, Lenny Moss, Matteo Mossio, Bence Nanay, Anya Plutynski, Gerhard Schlosser, Peter Schulte, Armin Schulz, and Thomas Teufel. I’m also grateful to two anonymous referees who helped make this a much better book. I also wish to thank Hilary Gaskin at Cambridge University Press for taking on this project, as well as Marianne Nield and Sophie Taylor for their valuable editorial assistance.

Finally, my largest debt of gratitude goes to my wife, Rita, for her love, friendship, and support while I wrote this book. I’m also very grateful to my two sons, Elias and Noah, for giving me such an amazing life.