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1 Introduction

In applied science and engineering applications, modeling effort requires both

physical insight in order to choose the appropriate mathematical models and

computational tools for parameter inference and model validation. Insofar as

the physical intuition is concerned, one usually proposes a mathematical model

based on a certain physical law or observed mechanism. Unfortunately, the

resulting models are typically subject to errors, be they of a systematic type due

to incomplete physical understanding or of statistical nature due to uncertain-

ties in the initial conditions, boundary conditions, model parameters, numerical

discretization, etc. Since the ultimate goal of modeling dynamical systems is to

predict the future states, it is important to compare the model-based predictions

with the actual observables. It is also equally important to provide uncertainties

associated with the predictions. As a consequence, the demand for computational

methods that involve data fitting and uncertainty quantification is increasing.

Traditionally, statistical science is the leading and established field that ana-

lyzes data and develops such computational tools. The focus of this book to a

large extent is on surveying recent data-driven methods for modeling dynamical

systems. In particular, we survey numerical methods that leverage observational

data to estimate parameters in a dynamical model when the parametric model

is available and to approximate the model nonparametrically when such a para-

metric model is not available. These topics were developed through interaction

between certain areas of mathematics and statistics such as probability, stochas-

tic processes, numerical analysis, spectral theory, applied differential geometry,

Bayesian inference, Monte Carlo integrals, and kernel methods for density and

operator estimations. Even with such a wide spectrum of interdisciplinary areas,

the coverage here is far from complete. Nevertheless, we hope that the selected

topics in this book can serve as a foundation for the data-driven methods in

modeling stochastic dynamics.

1.1 The Role of Data in Parametric Modeling

Consider modeling dynamical systems in the form of differential equations,

dx

dt
= f(x, θ), (1.1)

www.cambridge.org/9781108472470
www.cambridge.org


Cambridge University Press
978-1-108-47247-0 — Data-Driven Computational Methods
John Harlim 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Introduction

where x(t; θ) is the variable of interest and the vector field f defines the “law”

that determines how x changes with time. Here, the differential equations can be

either deterministic or stochastic. When the dependence of f on state variables x

and parameters θ is given (or imposed), we call such a representation parametric

modeling.

To make this dynamical model useful for predicting the future state, x(t; θ), t >

ti, one needs to specify the parameters θ as well as the initial condition, x(ti),

which reflects the current state. This inverse problem can naturally be solved

with a Bayesian approach (Dashti & Stuart 2017). This parameter estimation

problem is the first main topic of this book. We will neglect the non-Bayesian

approach in this book.

Now, let us describe the basic idea of the Bayesian approach. In practice, we

often observe noisy discrete-time data,

yi = h(x(ti; θ†, x0)) + ηi, (1.2)

where the subscript i denotes a discrete time index, h denotes the observa-

tion operator, and x(ti; θ†, x0) denotes the solutions of (1.1) at time ti with

hidden parameters θ† and initial condition x(t0) = x0. In (1.2), the terms ηi

denote unbiased independent and identically distributed (i.i.d.) noises, repre-

senting measurement error. Depending on the distribution of the observation

error ηi, one can define the likelihood function of (θ, x0) via the conditional

distribution, p(yi|x0, θ) = p(yi − h(x(ti; θ, x0))) = p(ηi), where x0 can also

be estimated when it is not known. In this book, we will survey two popular

Bayesian computational methods to estimate the conditional density for θ given

the measured observations in (1.2).

1.1.1 Markov-Chain Monte Carlo

Let’s denote y = {y1, . . . , yn} and p(y|θ) =
∏n

i=1 p(yi|θ) and assume that the

initial condition x0 is given. The objective of this Bayesian inference is to estimate

p(θ|y) by applying Bayes’ rule,

p(θ|y) ∝ p(θ)p(y|θ), (1.3)

where p(θ) denotes the prior density of the parameter. Here, the prior acts as

a regularization term to overcome ill-posedness in the inverse problems (Dashti

& Stuart 2017). From the estimated posterior density p(θ|y), one can deduce

statistical quantities, such as the mean as a point estimator for θ† and the

covariance, to quantify the uncertainty of the mean estimate.

A popular method to sample the posterior density p(θ|y) in (1.3) is the Markov-

chain Monte Carlo (MCMC) method, which will be discussed in Chapter 2. We

will give a brief survey of the mathematical theory behind MCMC to give readers

a solid understanding of this sampling procedure. Briefly, this method constructs

a Markov chain with the posterior p(θ|y) as the limiting or target distribu-

tion. While the MCMC approach for solving Bayes’ formula in (1.3) is a “gold
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1.1 The Role of Data in Parametric Modeling 3

standard,” this objective is computationally demanding and may not be feasible

when the underlying model in (1.1) is high-dimensional. This computational

overhead is because MCMC involves an iterative procedure that requires one to

solve the dynamical system in (1.1) on the proposed parameters in each iteration.

One popular way to avoid this expensive calculation is with a surrogate modeling

(Marzouk & Xiu 2009), which will be discussed in Section 2.5. In Example 1.1,

we give a brief illustration of the expected product of the MCMC implemented

with the underlying dynamics as well as with a surrogate model constructed

using a polynomial expansion (which is discussed in detail in Chapter 4).

Example 1.1 Consider estimating two parameters D, F of a system of a five-

dimensional Lorenz-96 model (Lorenz 1996),

dxj

dt
= xj−1(xj+1 − xj−2) − Dxj + F, j = 1, . . . , J,

xj(0) = sin

(

2πj

5

)

,
(1.4)

from a given set of discrete-time observations, ∆t = ti−ti−1 = 0.05, i = 1, . . . , 10,

yj(ti) = xj(ti) + ηi, ηi ∼ N (0, 0.01). (1.5)

In (1.5), the observations of state x(ti) are corrupted with i.i.d. Gaussian

noises, ηi.

In Figure 1.1, we show the resulting posterior density estimate from the

MCMC with the underlying model in (1.4) as well as with a surrogate modeling

constructed using a polynomial expansion that avoids integrating the system of

differential equations in (1.4). Notice that the true parameter values are within

the posterior density estimates.

1.1.2 The Ensemble Kalman Filter

The second Bayesian inference method we will discuss is the ensemble Kalman

filter. In particular, define Yi = {yj , j ≤ i}. Here, we consider applying Bayes’

formula sequentially to approximate the posterior distribution of both the state

and the parameters,

p(θi, xi|Yi) ∝ p(θi, xi|Yi−1)p(yi|xi, θi), (1.6)

as the new observation yi becomes available. At each time step, we need to

specify an initial density, p(θi, xi|Yi−1).

Faithful solutions to the Bayesian filtering in (1.6) have been proposed, such as

the particle filter or sequential Monte Carlo (Doucet et al. 2001), which represents

the prior density with a point measure. However, clever sampling algorithms are

needed to mitigate the curse of dimensionality of the classical particle filter

(Bengtsson et al. 2008, Bickel et al. 2008). In the world of applied science and

engineering, a popular choice to approximate this Bayesian filtering problem is
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Figure 1.1 Standard MCMC density of each parameter (black), surrogate MCMC
density (dashes), and the true parameter value (asterisk).

to use algorithms that are based on the celebrated Kalman filter (Kalman &

Bucy 1961). One of the most successful schemes that has been used in many

applications, including numerical weather predictions, is the ensemble Kalman

filter (EnKF) (Evensen 1994). The EnKF is a clever extension to the Kalman

filter on nonlinear problems, without which the Kalman filter is impractical for

high-dimensional problems. Since the Kalman filter formula is derived under

strict assumptions, namely linearity and Gaussianity, it is clear that the EnKF,

which represents the prior density, p(θi, xi|Yi−1), with a Gaussian measure, will

not produce a meaningful estimate of the posterior density p(θi, xi|Yi) in nonlin-

ear and non-Gaussian problems. Nevertheless, what is interesting is that often

the ensemble solutions can track the true initial conditions, xi, and parameter

values, θ†. In Chapter 3, we will discuss recent theoretical results that justify

the accuracy of the EnKF as a state estimation method, which has also been

observed in many applications. The main emphasis of this chapter will be on

the application of the EnKF in estimating both the state xi and the parameters

θ in (1.1). In particular, we will focus on two parameter estimation methods.

The first technique is a simple application of the EnKF to estimate parameters

θ of the deterministic terms in the model. The second technique is on adaptive

covariance estimation schemes that can be used in tandem with the EnKF to

estimate parameters θ which represent the amplitudes of additive white noise

forcings. In particular, we will discuss two recently developed methods that have

been tested in many parameter estimation problems; the Berry–Sauer scheme
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1.1 The Role of Data in Parametric Modeling 5

(Berry & Sauer 2013) and the classical Belanger scheme (Belanger 1974) which

was recently adapted to the EnKF (Harlim et al. 2014).

While fitting data to a dynamical model is a central topic of Chapters 2 and 3,

constructing a model with accurate statistical prediction in the presence of model

errors remains a challenging problem. In other words, constructing a model that

can reproduce the marginal statistics (or observables) of the hidden dynamics is

a nontrivial problem in general. In Section 3.3, we discuss this problem in the

context of reduced-order modeling. Here, we survey the Mori–Zwanzig formalism

(Mori 1965, Zwanzig 1961, 1973) as an idealistic concept for reduced-order mod-

eling. Our goal with this discussion is to elucidate the difficulty of this problem.

Subsequently, we will discuss a Markovian approximation for the generalized

Langevin equation (GLE) derived from the Mori–Zwanzig formalism. Here, we

will demonstrate the potential of using the parameter estimation scheme sur-

veyed in this chapter to calibrate statistically accurate reduced-order Markovian

dynamics. In Example 1.2, we give a brief illustration of the expected product

from the parameter estimation method discussed in Chapter 3, implemented on

a reduced-order model of a multiscale dynamical system.

Example 1.2 Consider the two-layer Lorenz-96 model (Lorenz 1996), whose

governing equations are a system of N(J + 1)-dimensional ODEs given by

dxi

dt
= xi−1(xi+1 − xi−2) − xi + F + hx

iJ
∑

j=(i−1)J+1

yj ,

dyj

dt
=

1

ǫ

(

ayj+1(yj−1 − yj+2) − yj + hyxceil(i/J)

)

.

(1.7)

Let �x = (xi) and �y = (yj) be vectors in R
N and R

NJ , respectively, where the

subscript i is taken modulo N and j is taken modulo NJ . In this example, we

set N = 8, J = 32, ǫ = 0.25, F = 20, a = 10, hx = −0.4, and hy = 0.1. In this

regime the timescale separation is small.

Suppose that we are given the following set of noisy observations:

�vm = h(�x(tm)) + ηm, ηm ∼ N (0, R),

where R = 0.1IM . In our experiment below, we will take observations only at

every other grid point (M = 4). That is, h(�x) = H�x is a linear observation

function where H ∈ R
4×8 and H(i, 2(i − 1) + 1) = 1 and zero everywhere else.

Consider the single-layer N -dimensional stochastically forced Lorenz-96 model

(Berry & Harlim 2014) as the reduced-order model

dx̃i

dt
= x̃i−1(x̃i+1 − x̃i−2) − x̃i + F − αx̃i(t) + σẆi(t), (1.8)

where the Ẇi(t) denote white noises. Our goal is to estimate parameters α

and σ such that the reduced-order model in (1.8) can reproduce the statistics

of the slow components of (1.7). Here, we estimate these parameters with an

EnKF in tandem with the Berry–Sauer adaptive covariance method discussed
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Figure 1.2 Comparison of the marginal density (left) and the time correlation (right)
predicted by the reduced-order model in (1.8) (gray solid) compared with the
corresponding true statistics (black dashes) of (1.7).

in Chapter 3. For this example, see Berry & Harlim (2014) for more detailed

implementation and comparisons with other methods. In Figure 1.2, we show

the resulting statistical solutions of the reduced-order model in (1.8) compared

with the statistics of the true solutions of (1.7). Notice that the reduced-order

model is able to accurately reproduce the marginal density and autocorrelation

function of the slow component, xi, of the full dynamics in (1.7).

1.2 Nonparametric Modeling

The second main topic of this book concerns an operator estimation method

for nonparametric modeling of dynamical systems. Our notion of nonparametric

modeling follows directly from the standard statistical literature (see for example

Härdle et al. (2012)). That is, we do not make any strong assumption about how

the vector field f in (1.1) depends on the state variables x and parameters θ.

However, the method still contains parameters. For example, a histogram is a

nonparametric approach for estimating density functions, and it contains param-

eters, namely the bin size and the number of bins. Kernel density estimation is

another nonparametric approach for estimating density functions, and it also

has a parameter, namely the kernel bandwidth parameter. In fact, the kernel

density estimate is usually implemented with a specific choice of kernel function,

such as the Gaussian kernel, Epanechnikov kernel, etc. However, it is still con-

sidered nonparametric modeling in the sense that it does not make any a-priori

assumption about the distributions that are being estimated, and the resulting

estimate is independent with respect to the choice of kernel functions. In contrast,

a parametric model for estimating densities imposes that the data be sampled

from a certain distribution, such as the Gaussian, exponential, gamma, etc.
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1.2 Nonparametric Modeling 7

An example of nonparametric modeling of dynamical systems is the analog

forecast, which finds states in the historical time series that are very similar to

the current state (it identifies analogs) and hopes that the history repeats itself

(Lorenz 1969). Although this approach is less susceptible to model errors, it is

difficult to identify the analog if the data space is high-dimensional, even if the

underlying dynamical systems are low-dimensional (Zhao & Giannakis 2016).

Furthermore, it is not so clear whether one can use this method for uncertainty

quantification.

In Chapter 6, we discuss a nonparametric probabilistic modeling technique,

the so-called diffusion forecast (Berry et al. 2015, Berry & Harlim 2016a). This

data-driven method rigorously approximates the solutions of the corresponding

Fokker–Planck partial differential equations without knowing the differential

operator. Since the solutions of the Fokker–Planck PDEs characterize the evo-

lution of the distribution of the underlying dynamics, one can compute the

corresponding time-dependent statistics to predict the future states and quantify

uncertainties of the predictions. In a nutshell, the diffusion forecast is a method

to solve a set of differential equations without knowing the equations.

Our aim here is to show readers that the diffusion forecast is a natural exten-

sion of the central idea in uncertainty quantification (UQ), namely representation

of random variables with a linear superposition of polynomial basis functions

of appropriate Hilbert space. The main difference is that the diffusion forecast

does not make any assumption on the distribution of the random variables,

which usually determines the polynomial basis functions as in the standard UQ.

Instead it learns the basis functions from the data using a kernel-based nonlinear

manifold learning method, the so-called diffusion maps algorithm (Coifman &

Lafon 2006, Berry & Harlim 2016d). We shall see that the diffusion forecast is a

spectral Galerkin representation of the semigroup solution of the Fokker–Planck

equation corresponding to the underlying dynamics with the data-driven basis

functions.

With this intention, we include the following two related topics: the stochastic

spectral method, which has nothing to do with data, and the Karhunen–Loève

expansion, whose applications include a linear manifold learning algorithm. Our

main intention in including these two chapters is to demonstrate the transitional

ideas in passing from the non-data-driven methods that are usually used in a

parametric modeling context to a purely data-driven nonparametric modeling

technique in the diffusion forecasting method. Readers who are familiar with

these two topics can skip them and go directly to Chapter 6.

1.2.1 Stochastic Spectral Method

Given a parametric model as in (1.1), a popular subject known as uncertainty

quantification (UQ) (Xiu 2010, Le Maître & Knio 2010) is concerned with esti-

mating the following statistical quantities:

E[A(x)](t) =

∫

M

A(x(t; θ))p(θ)dθ. (1.9)
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8 Introduction

Here the parameters θ are assumed to be a realization of a random variable Θ

with distribution p(θ)dθ over the parameter domain M. We also assume that A◦

x ∈ L1(M, p). The standard forward UQ technique imposes a certain assumption

on the distribution of Θ and subsequently represents functions of Θ with a linear

superposition of the orthogonal basis functions ϕj(θ) of the corresponding Hilbert

space L2(M, p). For example, ϕj(θ) is the Hermite polynomial of degree j if p is

a Gaussian or Legendre polynomial of degree j if p is uniformly distributed.

Given these basis functions, if x is smooth as a function of θ, one can approx-

imate it as

x(t; θ) ≈
N

∑

k=1

xk(t)ϕk(θ), (1.10)

where the time-dependent expansion coefficients, xk(t) = 〈x(t; ·), ϕk〉p, are to be

determined. With this approximation, one can estimate the integral in (1.9) for

A(x) = x2 as

E[x2](t) ≈
N

∑

k,ℓ=1

xk(t)xℓ(t)

∫

M

ϕk(θ)ϕℓ(θ)p(θ)dθ =

N
∑

k=1

x2
k(t),

thanks to the orthogonality property. In Chapter 4, we will discuss several

approaches to compute the coefficients, xk(t), which may or may not involve

deriving new equations based on the dynamics in (1.1).

As we mentioned before, this polynomial representation is non-data-driven.

In fact, it chooses the basis functions by imposing certain assumptions on the

distribution and the domain of the parameters. Since the representation idea

is mathematically elegant, we would like to extend it nonparametrically. That

is, our aim is to use the data to find the basis functions without making any

assumption on the sampling distribution and the data manifold. Subsequently, we

approximate the smooth densities of the Itô drifted diffusions with functions of a

finite-dimensional subspace spanned by the resulting data-driven basis functions

on M. This is the central idea of the diffusion forecasting method. In contrast to

the usual parametric approach, here we let the data determine the basis functions

via the diffusion maps algorithm (Coifman & Lafon 2006, Berry & Harlim 2016d).

In fact, if the sampling measure of the data is Gaussian on the real line, then the

resulting data-driven basis functions obtained via the diffusion maps algorithm

are precisely the Hermite polynomials that are usually used in the orthogonal

polynomial expansion for representing a one-dimensional Gaussian random vari-

able. Therefore, the data-driven basis that is used in the diffusion forecasting

method is a natural generalization of the orthogonal polynomial basis on the

data manifold.
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1.2 Nonparametric Modeling 9

1.2.2 Karhunen–Loève Expansion

The polynomial basis functions described in Chapter 4 can also be deduced

from solving appropriate Sturm–Liouville eigenvalue problems with appropriate

boundary conditions. This is an eigenvalue problem of a self-adjoint second-

order differential operator on a compact domain (Andrews & Askey 1985). This

classical theory gives us an intuition behind the construction of the data-driven

basis functions. Namely, our aim is to approximate a self-adjoint second-order

differential operator on the compact manifold where the data lie, solve the

corresponding eigenvalue problem, and set the resulting eigenvectors to be the

discrete estimators of the basis functions. The diffusion maps algorithm (Coifman

& Lafon 2006) is a method that was designed to perform these tasks on nonlinear

data manifolds.

To provide a self-contained exposition, we briefly review the Karhunen–Loève

(KL) expansion in Chapter 5. Our emphasis is to understand the KL expansion

as an application of Mercer’s theorem that ties together the eigenfunctions of

kernel-based integral operators and orthonormal basis functions of a Hilbert

space. In an example, we will show that sometimes it is more convenient to

transform the eigenvalue problem associated with an integral operator in the

KL expansion into an eigenvalue problem of a second-order elliptic differential

operator. We shall see that the diffusion maps algorithm is designed in exactly

the opposite way. This method is a kernel-based algorithm which approximates

a weighted Laplacian operator on the data manifold with an integral operator.

So, it approximates an eigenvalue problem of a differential operator by solving

the eigenvalue problem of an appropriate integral operator.

While the basic theory of the KL expansion assumes the availability of

the autocovariance function, one can also employ the KL expansion with an

empirically estimated autocovariance function from the data. Intuitively, this

approach represents the data in terms of the directions in which the data have

the largest variance. The resulting method is a linear manifold learning algorithm

which bears many names depending on the field of applications, including proper

orthogonal decomposition (POD), principal component analysis (PCA), the

empirical orthogonal function (EOF), etc. By linear manifold learning, we refer to

the fact that PCA represents data by a linear projection on a set of basis functions

of a linear manifold, namely the ellipsoid. Specifically, the basis functions, which

are usually called the principal components, are the axes of the ellipsoid. On the

other hand, the diffusion maps algorithm (which will be discussed in Chapter 6

in detail) is a nonlinear manifold learning algorithm since it provides basis

functions on an arbitrary data manifold embedded in a Euclidean space.

To clarify the distinction between linear and nonlinear manifold learning,

we compare the principal components obtained from the POD and the basis

functions obtained from the diffusion maps on a trivial yet illuminating example.

Example 1.3 Consider uniformly sampled data, xi = (cos(θi), sin(θi))
⊤,

i = 1, . . . , N , on a unit circle S1 embedded in R
2. Here, θi denotes the ith
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sample on the intrinsic coordinate of the circle, S1. For clarity of exposition,

in our numerical test on this artificial example below we generate “very nice”

samples, with uniformly spaced θi = 2πi/N . In practice, we usually don’t have

such a nice data set, and the accuracy of the estimates will depend on the

samples. Denote X = [x1, x2, . . . , xN ] ∈ R
2×N .

Loosely speaking, the goal of manifold learning is to find (basis) functions

ϕ(x) that can describe the data x ∈ M. In particular, POD describes the data

in terms of principal components, which are defined as follows. The kth principal

component (of POD) is defined as a functional ψk(x) = w⊤
k x, where wk solves

the symmetric positive-definite eigenvalue problem (1/N)XX⊤wk = λkwk. For

this trivial circle example, k = 1, 2, and

1

N
XX⊤ −→ A =

(

1/2 0

0 1/2

)

,

as N → ∞. In this case, the limit can be estimated analytically as follows:

Aij =
1

2π

∫ 2π

0

xi(θ)xj(θ)dθ =
1

2
δij .

Here, the notation xj(θ) denotes the jth component of x ∈ R
2; that is,

xj(θ) =

{

cos(θ) if j = 1,

sin(θ) if j = 2.

Since the standard bases e1, e2 ∈ R
2 are eigenvectors of A, the principal com-

ponents are nothing but ψ1(x) = e⊤
1 x = x1 and ψ2(x) = e⊤

2 x = x2. Essentially,

each component of the given data (or each row of matrix X) is the principal

component. To clarify this assertion, we plot the principal components (in color)

as functions of the data in Figure 1.3. Notice that the first principal component

identifies the data in the horizontal direction (the function values increase from

−1 to 1). On the other hand, the second principal component identifies the data

in the vertical direction. These two axes correspond to the principal axes of

the unit circle. In general, the principal components of POD correspond to the

principal axes of an ellipsoid that is fitted to the data even if the data do not lie

on an ellipsoid (see the example in Chapter 5).

On the other hand, the diffusion maps algorithm solves the eigenvalue prob-

lem ∆θϕk(θ) = λkϕk(θ), where the Laplace–Beltrami operator is numerically

estimated using a matrix as a discretization of a kernel-based integral operator.

For this example, since the embedding function (or the Riemannian metric) is

known, it is clear that the Laplace–Beltrami operator is simply a one-dimensional

derivative with respect to the intrinsic coordinate. The explicit solutions of this

eigenvalue problem are the Fourier series ϕk(θ) = eikθ, which form a basis

for L2(S1). In Figure 1.4, we compare the discrete estimates of the first four

Fourier modes obtained from the diffusion maps algorithm applied on the data

{xi}i=1,...,N , where N = 1000, with the corresponding analytical solutions.
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Figure 1.3 The principal components (color) as functions of the data.
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Figure 1.4 Discrete estimates of the eigenfunctions eikx, for k = 1, . . . , 4, evaluated on
the training data manifold (circles) compared with the analytical solutions. In each panel,
we show the cosine (solid) and sine (dashes) components.

In summary, the diffusion maps algorithm produces orthonormal basis func-

tions of a Hilbert space L2(S1), where each component ϕk : M → R is a nonlinear

map. In contrast, the principal components of POD are the first Fourier mode

in this example, where each principal component is a linear function of the data

manifold.

In the next example, we show the application of the diffusion maps algorithm

on a data set with a complicated manifold corresponding to solutions of a

chaotic dynamical system. The key point is that we don’t have any knowledge

of the embedding (or the Riemannian metric) for the following example. As a
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12 Introduction

consequence, we don’t have an analytical expression for differential operators on

this data manifold whose components are samples of the invariant measure of the

dynamical systems. In this situation, the diffusion maps algorithm is a powerful

tool that approximates the weighted Laplacian operator on this complicated data

manifold, where the weight is defined with respect to the sampling measure of

the data.

Example 1.4 Consider the famous three-dimensional chaotic Lorenz model

(Lorenz 1963), which is a truncated approximation to the Navier–Stokes equa-

tions. This toy model has been found to be useful to describe laser physics

(Haken 1975) and it is well known as the first example of a simple deterministic

dynamical system with solutions that are sensitive to initial conditions; this

behavior has been called deterministic chaos or simply chaos. The governing

equation of the Lorenz-63 model is given as

dx

dt
= σ(y − x),

dy

dt
= ρx − y − xz, (1.11)

dz

dt
= xy − bz,

with the parameter set (σ, b, ρ), where, in its original derivation (Lorenz 1963,

Solari et al. 1996), σ is called the Prandtl number and ρ is the Rayleigh number.

In Figure 1.5, we show the nonparametric estimates of the basis functions

obtained via the diffusion maps algorithm, implemented with variable-bandwidth

kernels (which will be discussed in Chapter 6). These eigenfunctions are gener-

ated using solutions (xi, yi, zi) of (1.11) at 5000 discrete time instances, with time

step ti+1 − ti = ∆t = 0.5 (see Berry et al. (2015) for the computational detail).

In each of these panels, we depict the discrete estimate of the eigenfunction

evaluated on each training data point, ϕj(xi, yi, zi).

From these two examples, we can view the diffusion maps algorithm as a

numerical method to estimate generalized Fourier bases (or orthogonal polyno-

mials) of Hilbert space on the data manifold. Next, we will give a brief description

of the diffusion forecasting method using these data-driven basis functions.

1.2.3 Diffusion Forecasting

Suppose that x(t) ∈ M ⊂ R
n denotes a time-dependent Itô diffusion, which

satisfies a system of differential equations

dx = a(x)dt + b(x)dWt, (1.12)

where a(x) and b(x) denote the drift and diffusion terms, respectively. Here, dWt

denotes white noises.
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Figure 1.5 Discrete estimates of the eigenfunctions ϕ40, ϕ500, ϕ1500, and ϕ4000

evaluated on the training data manifold.

Assume that the model in (1.12) is unknown, which means that the corre-

sponding Fokker–Planck (or Liouville if (1.12) is deterministic) equation,

∂p

∂t
= L∗p, (1.13)

is also unknown. Instead we are given only a set of time series X = {xi,

i = 1, . . . , N} from measurements; here xi = x(ti) are the solutions of (1.12)

given an initial condition x0. We assume that N is finite but large enough that

all configurations of the dynamics (or points in M) are sufficiently close to some

components in X. Given such practical constraints, the diffusion forecasting

method uses these data to train a nonparametric probabilistic model whose

solutions approximate the probability density function of x at any time t. The key

idea of this method is to represent an approximation of the semigroup solutions

of the generator of (1.12) with data-adapted basis functions ϕj(xi), obtained via

the diffusion maps algorithm (Coifman & Lafon 2006, Berry & Harlim 2016d).

In particular, we will represent the solutions of (1.13) as

p(x, t) = etL∗

p(x, 0) =
∑

j

〈etL∗

p(x, 0), ϕj〉peq
ϕj(x)peq(x), (1.14)
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Figure 1.6 Probability densities (as functions of x + y and z) from the equation-free
diffusion forecasting model (left column) and an ensemble forecasting model (right
column) at times t = 0 (first row), t = 0.5 (second row), and t = 2 (third row). In the
column on the left, the color spectrum ranging from red to blue is to denote high to low
values of density.

where peq(x) denotes the equilibrium measure of the dynamical system in (1.12),

such that L∗peq = 0. Subsequently, we employ a nonparametric approximation

to the time-evolving coefficients 〈etL∗

p(x, 0), ϕj〉peq
such that we don’t need to

know L∗. Since the diffusion map algorithm is a kernel-based method, one can

interpret the diffusion forecast as an extension of the kernel density estimation

method to estimate operators of Markovian dynamical systems. This is the topic

of Chapter 6. In the next example, we give a brief illustration of the expected

product of the diffusion forecast applied on time series of a chaotic dynamical

system, the famous Lorenz-63 model.

Example 1.5 In Figure 1.6, we show snapshots of the probability density at

various times, obtained from the diffusion forecasting method, on the three-

dimensional Lorenz-63 model in (1.11). For qualitative comparison, we also show

the Monte Carlo approximation of the evolution of the density (or ensemble

forecasting), assuming that the full Lorenz-63 model is known. Here, the Monte

Carlo initial conditions are prescribed by sampling the Gaussian density used

in the diffusion forecasting method (as shown in the first row in Figure 1.6).
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In each panel of this figure, we show the density as a function of x + y and

z (corresponding to the three components of the Lorenz model) at different

instances. In the left column, we also show the data set that is used for training

the diffusion model (smaller dots). Notice that, even at a long time t = 2 (which is

longer than the doubling time of this model, 0.78), the densities obtained from the

two forecasting methods are still in good agreement. From these time-evolving

density functions, one can compute statistical quantities for state estimation as

well as uncertainty quantification nonparametrically.

While the example above assumes that the initial density is given, it is impor-

tant to stress that in practice the initial density is not known. Usually, one is

interested in predicting the future states with initial configurations, xj , that are

not in the training data set X. Therefore one needs to specify the corresponding

initial densities, p(x|xj), to be used for predictions. In Chapter 6, we will also

discuss the Nyström extension and a Bayesian filtering method to specify these

initial distributions for noiseless and noisy data, respectively.
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