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Two-Dimensional Random Walk

The main subject of this introductory book is simple random walk on the integer

lattice, with special attention to the two-dimensional case. This fascinating

mathematical object is the point of departure for an intuitive and richly illustrated tour

of related topics at the active edge of research. The book starts with three different

proofs of the recurrence of the two-dimensional walk, via direct combinatorial

arguments, electrical networks, and Lyapunov functions. Then, after reviewing some

relevant potential-theoretic tools, the reader is guided towards the relatively new topic

of random interlacements – which can be viewed as a “canonical soup” of

nearest-neighbour loops through infinity – again with emphasis on two dimensions.

On the way, readers will visit conditioned simple random walks – which are the

“noodles” in the soup – and also discover how Poisson processes of infinite objects are

constructed and review the recently introduced method of soft local times. Each

chapter ends with many exercises, making the book suitable for courses and for

independent study.

Serguei Popov works on questions related to random walks (also in random

environments), random interlacements and others. He also wrote (together with

Mikhail Menshikov and Andrew Wade) a book on the Lyapunov functions method for

Markov chains. Recent works of the author on random interlacements (including the

two-dimensional case) attracted considerable interest in the probabilistic community.

Perhaps his most important recent contribution is the soft local times method for

constructing couplings of stochastic processes, developed in a joint work with Augusto

Teixeira. This method not only permitted strong advances in the field of random

interlacements but also proved its usefulness in other topics.
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Preface

What does it look like when a mathematician explains something to a fel-

low mathematician? Everyone knows: lots of writing on the blackboard,

lots of intuition flying around, and so on. It is not surprising that mathe-

maticians often prefer a conversation with a colleague to “simply” reading

a book. So, in view of this, my initial goal was to write a book as if I were

just explaining things to a colleague or a research student. In such a book,

there should be a lot of pictures and plenty of detailed explanations, so that

the reader would hardly have any questions left. After all, wouldn’t it be

nice if a person (hmm. . . well, a mathematician) could just read it in a bus

(bed, park, sofa, etc.) and still learn some ideas from contemporary math-

ematics? I have to confess that, unfortunately, as attested by many early

readers, I have not always been successful in creating a text with the afore-

mentioned properties. Still, I hope that at least some pieces will be up to

the mission.

To explain my motivation, consider the following well-known fact: fre-

quently, the proof of a mathematical result is difficult, containing lots of

technicalities which are hard to follow. It is not uncommon that people

struggle to understand such proofs without first getting a “general idea”

about what is going on. Also, one forgets technicalities1 but general ideas

remain (and if the ideas are retained, the technical details can usually be

reconstructed with some work). So, in this book the following approach

is used. I will always prefer to explain the intuition first. If the proof is

instructive and not too long, it will be included. Otherwise, I will let the

interested reader look up the details in other books and/or papers.

The approach can be characterized as striving to understand all things

through direct probabilistic intuition. Yes, I am aware that this is not always

possible. Nonetheless, when facing a complex task, it is frequently easier to

1 Even of one’s own proofs, as the author has learned on quite a few occasions.
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8 Preface

tackle it using familiar tools2 (even in a non-optimal way) as much as pos-

sible than to employ other (possibly more adequate) tools one is unfamiliar

with. Also, advanced approaches applied to basic tasks have a tendency to

“hide” what is really going on (one becomes enchanted with the magic,

while still not being able to perform it oneself).

This book revolves around two-dimensional simple random walk, which

is not actually so simple, but in fact a rich and fascinating mathematical ob-

ject. Our purpose here is not to provide a complete treatment of that object,

but rather to make an interesting tour around it. In the end, we will come

to the relatively new topic of random interlacements (which can be viewed

as “canonical” nearest-neighbour loops through infinity). Also, on the way

there will be several “side-quests”: we will take our time to digress to some

related topics which are somewhat underrepresented in the literature, such

as Lyapunov functions and Doob’s h-transforms for Markov chains.

Intended audience

I expect this book to be of interest to research students and postdocs work-

ing with random walks, and to mathematicians in neighbouring fields. Given

the approach I take, it is better suited to those who want to “get the intu-

ition first”, i.e. first obtain a general idea of what is going on, and only

after that pass to technicalities. I am aware that not everybody likes this ap-

proach, but I hope that the book will find its audience. Although this book

is designed primarily for self-study, it can also be used for a one-semester

course on additional topics in Markov chains.

The technical prerequisites are rather mild. The material in the book

will be at a level accessible to readers familiar with the basic concepts of

probability theory, including convergence of random variables and uniform

integrability, with also some background in martingales and Markov chains

(at the level of [44], for example). The book is meant to be mostly self-

contained (and we recall all necessary definitions and results in Chapter 1).

Many topics in the book are treated at length in the literature, e.g. [41, 63,

71, 91]; on the other hand, we also discuss some recent advances (namely,

soft local times and two-dimensional random interlacements) that have not

been covered in other books. In any case, the main distinguishing feature

of this book is not its content, but rather the way it is presented.

2 In Russia, the ability to build a log house using only an axe was considered proof of a

carpenter’s craftsmanship.
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Preface 9

Overview of content

The content of the book is described here. Each chapter (except for the

introduction) ends with a list of exercises, and a section with hints and

solutions to selected exercises appears at the end of the book. A note about

the exercises: they are mostly not meant to be easily solved during a walk

in the park; the purpose of at least some of them is to guide an interested

reader who wants to dive deeper into the subject.

1. Basic definitions. We recall here some basic definitions and facts for

Markov chains and martingales, mainly for reference purposes.

2. Recurrence of two-dimensional simple random walk. First, we recall

two well-known proofs of recurrence of simple random walk in two

dimensions: the classical combinatorial proof and the proof with elec-

trical networks. We then observe that the first proof relies heavily on

specific combinatorics and so is very sensitive to small changes in the

model’s parameters, and the second proof applies only to reversible

Markov chains. Then, we present a very short introduction to the Lya-

punov function method – which neither requires reversibility nor is sen-

sitive to small perturbations of transition probabilities.

3. Some potential theory for simple random walks. This chapter gives a

gentle introduction to the potential theory for simple random walks,

first in the transient case (d ≥ 3), and then in two dimensions. The idea

is to recall and discuss the basic concepts (such as Green’s function,

potential kernel, harmonic measure) needed in the rest of the book; this

chapter is not intended to provide a profound treatment of the subject.

4. Simple random walk conditioned on not hitting the origin. Here, we first

recall the idea of Doob’s h-transform, which permits us to represent a

conditioned (on an event of not hitting some set) Markov chain as a (not

conditioned) Markov chain with a different set of transition probabili-

ties. We consider a few classical examples and discuss some properties

of this construction. Then, we work with Doob’s transform of simple

random walk in two dimensions with respect to its potential kernel. It

turns out that this conditioned simple random walk is a fascinating ob-

ject in its own right: just to cite one of its properties, the probability that

a site y is ever visited by a walk started somewhere close to the origin

converges to 1/2 as y → ∞. Perhaps even more surprisingly, the pro-

portion of visited sites of “typical” large sets approaches in distribution

a Uniform[0, 1] random variable.

5. Intermezzo: soft local times and Poisson processes of objects. This chap-

ter is about two subjects, apparently unrelated to simple random walk.

www.cambridge.org/9781108472456
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10 Preface

One is called soft local times; generally speaking, the method of soft

local times is a way to construct an adapted stochastic process on a

general space Σ using an auxiliary Poisson point process on Σ × R+. In

Chapter 6, this method will be an important tool for dealing with ex-

cursion processes. Another topic we discuss is “Poisson processes of

infinite objects”, using as an introductory example the Poisson line pro-

cess. While this example per se is not formally necessary for the book,

it helps us to build some intuition about what will happen in the next

chapter.

6. Random interlacements. In this chapter, we discuss random interlace-

ments, which are Poisson processes of simple random walk trajecto-

ries. First, we review Sznitman’s random interlacements model [93] in

dimension d ≥ 3. Then we discuss the two-dimensional case recently

introduced in [26]; it is here that various plot lines of this book finally

meet. This model will be built of the trajectories of simple random walk

conditioned on not hitting the origin, studied in Chapter 4. Using the es-

timates of two-dimensional capacities and hitting probabilities obtained

with the technique of Chapters 3 and 4, we then prove several properties

of the model, and the soft local times of Chapter 5 will enter as an im-

portant tool in some of these proofs. As stated by Sznitman in [97],

“One has good decoupling properties of the excursions . . . when the

boxes are sufficiently far apart. The soft local time technique . . . offers

a very convenient tool to express these properties”.
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Notation

Here we list the notation recurrently used in this book.

• We write X := . . . to indicate the definition of X, and will also occasion-

ally use . . . =: X.

• a ∧ b := min{a, b}, a ∨ b := max{a, b}.

• For a real number x, ⌊x⌋ is the largest integer not exceeding x, and ⌈x⌉ is

the smallest integer no less than x.

Sets

• |A| is the cardinality of a finite set A.

• R is the set of real numbers, and R+ = [0,+∞) is the set of real nonneg-

ative numbers.

• Z is the set of integer numbers, N = {1, 2, 3, . . .} is the set of natural

numbers, Z+ = {0, 1, 2, . . .} is the set of integer nonnegative numbers,

Z+ = Z+ ∪ {+∞}.

• Rd is the d-dimensional Euclidean space and Zd is the d-dimensional

integer lattice (with the usual graph structure).

• Zd
n = Z

d/nZd is the d-dimensional torus of (linear) size n (with the graph

structure inherited from Zd).

• For A ⊂ Zd, A∁ = Zd \ A is the complement of A, ∂A =
{
x ∈ A :

there exists y ∈ A∁ such that x ∼ y
}

is the boundary of A, and ∂eA =

∂(A∁) is the external boundary of A.

• N = ∂e{0} = {±e1,2} ⊂ Z
2 is the set of the four neighbours of the origin

(in two dimensions).

• B(x, r) = {y : ‖y − x‖ ≤ r} is the ball (disk) in Rd or Zd; B(r) stands for

B(0, r).

11
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12 Notation

Asymptotics of functions

• f (x) ≍ g(x) means that there exist 0 < C1 < C2 < ∞ such that C1g(x) ≤

f (x) ≤ C2g(x) for all x; f (x) . g(x) means that there is C3 > 0 such that

f (x) ≤ C3g(x) for all x.

• f (x) = O(g(x)) as x → a means that lim supx→a

∣∣∣ f (x)

g(x)

∣∣∣ < ∞, where a ∈

R ∪ {∞}; f (x) = o(g(x)) as x→ a means that limx→a
f (x)

g(x)
= 0.

Euclidean spaces and vectors

• ‖x‖ is the Euclidean norm of x ∈ Rd or x ∈ Zd.

• x · y is the scalar product of x, y ∈ Rd.

• We write x ∼ y if x and y are neighbours in Zd (i.e., x, y ∈ Zd and

‖x − y‖ = 1).

• (ek, k = 1, . . . , d) are the canonical coordinate vectors in Rd or Zd.

• For A, B ⊂ Rd or Zd, dist(A, B) = infx∈A,y∈B ‖x − y‖, and dist(x, A) :=

dist({x}, A); also, diam(A) = supx,y∈A ‖x − y‖.

General probability and stochastic processes

• (Fn, n ≥ 0) is a filtration (a nondecreasing sequence of sigma-algebras).

• a.s. stands for “almost surely” (with probability 1).

• 1{event} is the indicator function of event
{
event

}
.

• (p(x, y), x, y ∈ Σ) are transition probabilities of a Markov chain on a state

space Σ, and (pn(x, y), x, y ∈ Σ) are the n-step transition probabilities.

• Px and Ex are probability and expectation for a process (normally, a ran-

dom walk – the one that we are considering at the moment) starting

from x.

• SRW is an abbreviation for “simple random walk”.

• Ln(z) =
∑n

k=1 1{Xk = z} is the local time at z of the process X at time n;

we write LX
n (z) in case when there might be an ambiguity about which

process we are considering.3

• Gn(z) is the soft local time of the process at time n at site z.

Simple random walk

• (S n, n ≥ 0) is the simple random walk in Zd.

• τA ≥ 0 and τ+A ≥ 1 are entrance and hitting times of A by the SRW.

• EsA(x) = Px[τ
+
A = ∞]1{x ∈ A} is the escape probability from x ∈ A for

SRW in dimensions d ≥ 3.

3 We use different notation for local times of SRW and conditioned SRW; see the

following notations for (conditioned) simple random walk.
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Notation 13

• G(·, ·) is Green’s function for the SRW in three or more dimensions,

GΛ(·, ·) is Green’s function restricted on Λ.

• a(·) is the potential kernel for the two-dimensional SRW.

• hmA(x) is the value of the harmonic measure in x ∈ A.

• cap(A) is the capacity of A (in two or more dimensions).

• Nx =
∑∞

j=0 1{S j = x} is the total number of visits to x, and N
(k)
x =∑k

j=0 1{S k = x} is the total number of visits to x up to time k (i.e., the

local time at x at time k).

• Let A be a fixed subset of Z2; then N♭x =
∑τ+

A
−1

j=0
1{S j = x} is the number

of visits to x before the first return to A, and by N
♯
x =
∑∞

j=τ+
A

1{S j = x} the

number of visits to x after the first return to A (with N
♯
x = 0 on {τ+A = ∞}).

Conditioned simple random walk

• (Ŝ n, n ≥ 0) is the simple random walk in Z2 conditioned on never hitting

the origin.

• τ̂A ≥ 0 and τ̂+A ≥ 1 are entrance and hitting times of A by the conditioned

SRW.

• ÊsA(x) = Px[τ̂
+
A = ∞]1{x ∈ A} is the escape probability from x ∈ A for

the conditioned SRW in two dimensions.

• ĥmA(x) is the harmonic measure for the conditioned walk.

• ĉap(A) = cap(A ∪ {0}) is the capacity of set A with respect to the condi-

tioned SRW.

• Ĝ(x, y) = a(y)(a(x) + a(y) − a(x − y))/a(x) is Green’s function of the

conditioned walk.

• ℓ̂(x, y) = 1 +
a(y)−a(x−y)

a(x)
=

Ĝ(x,y)

a(y)
, and ĝ(x, y) =

Ĝ(x,y)

a2(y)
= ĝ(y, x) is the

“symmetrized” Ĝ.

• N̂x, N̂
(k)
x , N̂

♭
x, N̂

♯
x are defined just as Nx,N

(k)
x ,N

♭
x,N

♯
x, but with the condi-

tioned walk Ŝ instead of SRW S .

Random interlacements

• RI(α) is the random interlacement process on level α > 0.

• Eu is the expectation for random interlacements on level u > 0.

• Iu and Vu are the interlacement and vacant sets for the random inter-

lacement model on level u > 0 in dimensions d ≥ 3; in two dimensions,

we usually denote the level by α, so these become Iα andVα.
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