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Introduction

The main subject of this book is simple random walk (also abbreviated

as SRW) on the integer lattice Zd and we will pay special attention to the

case d = 2. SRW is a discrete-time stochastic process which is defined in

the following way: if at a given time the walker is at x ∈ Zd, then at the

next time moment it will be at one of x’s 2d neighbours chosen uniformly

at random.1 In other words, the probability that the walk follows a fixed

length-n path of nearest-neighbour sites equals (2d)−n. As a general fact, a

random walk may be recurrent (i.e., almost surely it returns infinitely many

times to its starting location) or transient (i.e., with positive probability it

never returns to its starting location). A fundamental result about SRWs on

integer lattices is Pólya’s classical theorem [76]:

Theorem 1.1. Simple random walk in dimension d is recurrent for d = 1, 2

and transient for d ≥ 3.

A well-known interpretation of this fact, attributed to Shizuo Kakutani,

is: “a drunken man always returns home, but a drunken bird will eventually

be lost”. This observation may explain why birds do not drink vodka. Still,

despite recurrence, the drunken man’s life is not so easy either: as we will

see, it may take him quite some time to return home.

Indeed, as we will see in (3.42), the probability that two-dimensional

SRW gets more than distance n away from its starting position without

revisiting it is approximately (1.0293737 + 2
π

ln n)−1 (and this formula be-

comes very precise as n grows). While this probability indeed converges

to zero as n → ∞, it is important to notice how slow this convergence

is. To present a couple of concrete examples, assume that the size of the

walker’s step is equal to 1 metre. First of all, let us go to one of the most

beautiful cities in the world, Paris, and start walking from its centre. The

1 Here, the author had to resist the temptation of putting a picture of an SRW’s trajectory

in view of the huge number of animated versions easily available in the Internet, e.g., at

https://en.wikipedia.org/wiki/Random_walk.
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2 Introduction

radius of Paris is around 5000m, and (1.0293737 + 2
π

ln 5000)−1 is approx-

imately 0.155; that is, in roughly one occasion out of seven you would

come to the Boulevard Périphérique before returning to your starting lo-

cation. The next example is a bit more extreme: let us do the same walk

on the galactic plane of our galaxy. (Yes, when one starts in the centre of

our galaxy, there is a risk that the starting location could happen to be too

close to a massive black hole;2 we restrict ourselves to purely mathematical

aspects of the preceding question, though.) The radius of the Milky Way

galaxy is around 1021m, and (1.0293737 + 2
π

ln 1021)−1 ≈ 0.031, which is

surprisingly large. Indeed, this means that the walker3 would revisit the

origin only around 30 times on average, before leaving the galaxy; this is

not something one would normally expect from a recurrent process.

Incidentally, these sorts of facts explain why it is difficult to verify con-

jectures about two-dimensional SRW using computer simulations. (For ex-

ample, imagine that one needs to estimate how long we will wait until the

walk returns to the origin, say, a hundred times.)

As we will see in Section 2.1, the recurrence of d-dimensional SRW

is related to the divergence of the series
∑∞

n=1 n−d/2. Notice that this se-

ries diverges if and only if d ≤ 2, and for d = 2 it is the harmonic series

that diverges quite slowly. This might explain why the two-dimensional

case is, in some sense, really critical (and therefore gives rise to the pre-

vious “strange” examples). It is always interesting to study critical cases

– they frequently exhibit behaviours not observable away from criticality.

For this reason, in this book we dedicate more attention to dimension two

than to other dimensions: two-dimensional SRW is a fascinating mathe-

matical object indeed and this already justifies one’s interest in exploring

its properties (and also permits the author to keep this introduction short).

The next section is intentionally kept concise, since it is not really in-

tended for reading but rather for occasional use as a reference.

1.1 Markov chains and martingales: basic definitions and facts

First, let us recall some basic definitions related to real-valued stochastic

processes in discrete time. In the following, all random variables are de-

fined on a common probability space (Ω,F ,P). We write E for expectation

corresponding to P, which will be applied to real-valued random variables.

Set N = {1, 2, 3, . . .},Z+ = {0, 1, 2, . . .},Z+ = Z+ ∪ {+∞}.
2 https://en.wikipedia.org/wiki/Sagittarius_A*.
3 Given the circumstances, let me not say “you” here.
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1.1 Basic definitions 3

Definition 1.2 (Basic concepts for discrete-time stochastic processes).

• A discrete-time real-valued stochastic process is a sequence of random

variables Xn : (Ω,F )→ (R,B) indexed by n ∈ Z+, where B is the Borel

σ-field. We write such sequences as (Xn, n ≥ 0), with the understanding

that the time index n is always an integer.

• A filtration is a sequence ofσ-fields (Fn, n ≥ 0) such thatFn ⊂ Fn+1 ⊂ F
for all n ≥ 0. Let us also define F∞ := σ

(⋃

n≥0 Fn

) ⊂ F .

• A stochastic process (Xn, n ≥ 0) is adapted to a filtration (Fn, n ≥ 0) if

Xn is Fn-measurable for all n ∈ Z+.
• For a (possibly infinite) random variable τ ∈ Z+, the random variable Xτ

is (as the notation suggests) equal to Xn on {τ = n} for finite n ∈ Z+ and

equal to X∞ := lim supn→∞ Xn on {τ = ∞}.
• A (possibly infinite) random variable τ ∈ Z+ is a stopping time with

respect to a filtration (Fn, n ≥ 0) if {τ = n} ∈ Fn for all n ≥ 0.

• If τ is a stopping time, the corresponding σ-field Fτ consists of all

events A ∈ F∞ such that A ∩ {τ ≤ n} ∈ Fn for all n ∈ Z+. Note that

Fτ ⊂ F∞; events in Fτ include {τ = ∞}, as well as {Xτ ∈ B} for all

B ∈ B.

• For A ∈ B, let us define

τA = min{n ≥ 0 : Xn ∈ A}, (1.1)

and

τ+A = min{n ≥ 1 : Xn ∈ A}; (1.2)

we may refer to either τA or τ+A as the hitting time of A (also called the

passage time into A). It is straightforward to check that both τA and τ+A
are stopping times.

Observe that, for any stochastic process (Xn, n ≥ 0), it is possible to

define the minimal filtration to which this process is adapted via Fn =

σ(X0, X1, . . . , Xn). This is the so-called natural filtration.

To keep the notation concise, we will frequently write Xn and Fn instead

of (Xn, n ≥ 0) and (Fn, n ≥ 0) and so on, when no confusion will arise.

Next, we need to recall some martingale-related definitions and facts.

Definition 1.3 (Martingales, submartingales, supermartingales). A real-

valued stochastic process Xn adapted to a filtration Fn is a martingale (with

respect to Fn) if, for all n ≥ 0,

(i) E|Xn| < ∞, and

(ii) E[Xn+1 − Xn | Fn] = 0.
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If in (ii) “=” is replaced by “≥” (respectively, “≤”), then Xn is called a sub-

martingale (respectively, supermartingale). If the filtration is not specified,

that means that the natural filtration is used.

Clearly, if Xn is a submartingale, then (−Xn) is a supermartingale, and

vice versa; a martingale is both a submartingale and a supermartingale.

Also, it is elementary to observe that if Xn is a (sub-, super-)martingale,

then so is Xn∧τ for any stopping time τ.

Martingales have a number of remarkable properties, which we will not

even try to elaborate on here. Let us only cite the paper [75], whose title

speaks for itself. In the following, we mention only the results needed in

this book.

We start with

Theorem 1.4 (Martingale convergence theorem). Assume that Xn is a sub-

martingale such that supn EX+n < ∞. Then there is an integrable random

variable X such that Xn → X a.s. as n→ ∞.

Observe that, under the hypotheses of Theorem 1.4, the sequence EXn

is non-decreasing (by the submartingale property) and bounded above by

supn E[X+n ]; so limn→∞ EXn exists and is finite. However, it is not necessar-

ily equal to EX.

Using Theorem 1.4 and Fatou’s lemma, it is straightforward to obtain

the following result.

Theorem 1.5 (Convergence of non-negative supermartingales). Assume

that Xn ≥ 0 is a supermartingale. Then there is an integrable random vari-

able X such that Xn → X a.s. as n→ ∞, and EX ≤ EX0.

Another fundamental result that we will use frequently is the following:

Theorem 1.6 (Optional stopping theorem). Suppose that σ ≤ τ are stop-

ping times, and Xτ∧n is a uniformly integrable submartingale. Then EXσ ≤
EXτ < ∞ and Xσ ≤ E[Xτ | Fσ] a.s.

Note that, if Xn is a uniformly integrable submartingale and τ is any

stopping time, then it can be shown that Xτ∧n is also uniformly integrable:

see, e.g., section 5.7 of [44]. Also, observe that two applications of The-

orem 1.6, one with σ = 0 and one with τ = ∞, show that for any uni-

formly integrable submartingale Xn and any stopping time τ, it holds that

EX0 ≤ EXτ ≤ EX∞ < ∞, where X∞ := lim supn→∞ Xn = limn→∞ Xn exists

and is integrable, by Theorem 1.4.

Theorem 1.6 has the following corollary, obtained by considering σ = 0
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and using well-known sufficient conditions for uniform integrability (e.g.,

sections 4.5 and 4.7 of [44]).

Corollary 1.7. Let Xn be a submartingale and τ a finite stopping time.

For a constant c > 0, suppose that at least one of the following conditions

holds:

(i) τ ≤ c a.s.;

(ii) |Xn∧τ| ≤ c a.s. for all n ≥ 0;

(iii) Eτ < ∞ and E[|Xn+1 − Xn| | Fn] ≤ c a.s. for all n ≥ 0.

Then EXτ ≥ EX0. If Xn is a martingale and at least one of the conditions (i)

through (iii) holds, then EXτ = EX0.

Next, we recall some fundamental definitions and facts for Markov pro-

cesses in discrete time and with countable state space, also known as count-

able Markov chains. In the following, (Xn, n ≥ 0) is a sequence of random

variables taking values on a countable set Σ.

Definition 1.8 (Markov chains).

• A process Xn is a Markov chain if, for any y ∈ Σ, any n ≥ 0, and any

m ≥ 1,

P[Xn+m = y | X0, . . . , Xn] = P[Xn+m = y | Xn], a.s.. (1.3)

This is the Markov property.

• If there is no dependence on n in (1.3), the Markov chain is homoge-

neous in time (or time homogeneous). Unless explicitly stated otherwise,

all Markov chains considered in this book are assumed to be time homo-

geneous. In this case, the Markov property (1.3) becomes

P[Xn+m = y | Fn] = pm(Xn, y), a.s., (1.4)

where pm : Σ × Σ → [0, 1] are the m-step Markov transition probabili-

ties, for which the Chapman–Kolmogorov equation holds: pn+m(x, y) =
∑

z∈Σ pn(x, z)pm(z, y). Also, we write p(x, y) := P[X1 = y | X0 = x] =

p1(x, y) for the one-step transition probabilities of the Markov chain.

• We use the shorthand notation Px[ · ] = P[ · | X0 = x] and Ex[ · ] =
E[ · | X0 = x] for probability and expectation for the time homogeneous

Markov chain starting from initial state x ∈ Σ.

• A time homogeneous, countable Markov chain is irreducible if for all

x, y ∈ Σ there exists n0 = n0(x, y) ≥ 1 such that pn0
(x, y) > 0.
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• For an irreducible Markov chain, we define its period as the greatest

common divisor of {n ≥ 1 : pn(x, x) > 0} (it is not difficult to show that

it does not depend on the choice of x ∈ Σ). An irreducible Markov chain

with period 1 is called aperiodic.

• Let Xn be a Markov chain and τ be a stopping time with respect to the

natural filtration of Xn. Then for all x, y1, . . . , yk ∈ Σ, n1, . . . , nk ≥ 1, it

holds that

P[Xτ+n j
= y j, j = 1, . . . , k | Fτ, Xτ = x] = Px[Xτ+n j

= y j, j = 1, . . . , k]

(this is the strong Markov property).

• For a Markov chain, a probability measure (π(x), x ∈ Σ) is called an

invariant measure if
∑

x∈Σ π(x)p(x, y) = π(y) for all y ∈ Σ. It then holds

that Pπ[Xn = y] = π(y) for all n and y (where Pπ means that the initial

state of the process is chosen according to π).

Suppose now that Xn is a countable Markov chain. Recall the definitions

of hitting times τA and τ+A from (1.1)–(1.2). For x ∈ Σ, we use the notation

τ+x := τ+{x} and τx := τ{x} for hitting times of one-point sets. Note that for

any x ∈ A it holds that Px[τA = 0] = 1, while τ+A ≥ 1 is then the return time

to A. Also note that Px[τA = τ
+

A] = 1 for all x ∈ Σ \ A.

Definition 1.9. For a countable Markov chain Xn, a state x ∈ Σ is called

• recurrent if Px[τ
+

x < ∞] = 1;

• transient if Px[τ
+

x < ∞] < 1.

A recurrent state x is classified further as

• positive recurrent if Exτ
+

x < ∞;

• null recurrent if Exτ
+

x = ∞.

It is straightforward to see that the four properties in Definition 1.9 are

class properties, which entails the following statement.

Proposition 1.10. For an irreducible Markov chain, if a state x ∈ Σ is

recurrent (respectively, positive recurrent, null recurrent, transient), then

all states in Σ are recurrent (respectively, positive recurrent, null recurrent,

transient).

By the preceding fact, it is legitimate to call an irreducible Markov chain

itself recurrent (positive recurrent, null recurrent, transient).

Next, the following proposition is an easy consequence of the strong

Markov property.
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Proposition 1.11. For an irreducible Markov chain, if a state x ∈ Σ is

recurrent (respectively, transient), then, regardless of the initial position of

the process, it will be visited infinitely (respectively, finitely) many times

almost surely.

Finally, let us state the following simple result which sometimes helps

in proving recurrence or transience of Markov chains.

Lemma 1.12. Let Xn be an irreducible Markov chain on a countable state

space Σ.

(i) If for some x ∈ Σ and some nonempty A ⊂ Σ it holds that Px[τA < ∞] <

1, then Xn is transient.

(ii) If for some finite nonempty A ⊂ Σ and all x ∈ Σ \ A it holds that

Px[τA < ∞] = 1, then Xn is recurrent.

(For the proof, cf. e.g. lemma 2.5.1 of [71].)

www.cambridge.org/9781108472456
www.cambridge.org


Cambridge University Press
978-1-108-47245-6 — Two-Dimensional Random Walk
Serguei Popov 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2

Recurrence of two-dimensional simple

random walk

This chapter is mainly devoted to the proof of the recurrence part of The-

orem 1.1 (although we still discuss the transience in higher dimensions

later in the exercises). We first present a direct “path-counting” proof, and

then discuss the well-known correspondence between reversible Markov

chains and electrical networks, which also yields a beautiful proof of re-

currence of SRW in dimensions one and two. Then, we go for a side-quest:

we do a basic exploration of the Lyapunov function method, a powerful

tool for proving recurrence or transience of general Markov chains. With

this method, we add yet another proof of recurrence of two-dimensional

SRW to our collection.

2.1 Classical proof

In this section, we present the classical combinatorial proof of recurrence

of two-dimensional simple random walk.

Let us start with some general observations on recurrence and tran-

sience of random walks, which, in fact, are valid in a much broader setting.

Namely, we will prove that the number of visits to the origin is a.s. finite

if and only if the expected number of visits to the origin is finite (note that

this is something which is not true for general random variables). This is

a useful fact, because, as it frequently happens, it is easier to control the

expectation than the random variable itself.

Let pm(x, y) = Px[S m = y] be the transition probability from x to y in m

steps for the simple random walk in d dimensions. Let qd = P0[τ+
0
< ∞]

be the probability that, starting at the origin, the walk eventually returns to

the origin. If qd < 1, then the total number of visits (counting the initial

instance S 0 = 0 as a visit) is a geometric random variable with success

probability 1 − qd, which has expectation (1 − qd)−1 < ∞. If qd = 1, then,

clearly, the walk visits the origin infinitely many times a.s.. So, random

walk is transient (i.e., qd < 1) if and only if the expected number of visits

8
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to the origin is finite. This expected number equals1

E0

∞
∑

k=0

1{S k = 0} =
∞
∑

k=0

E01{S k = 0} =
∞
∑

n=0

P0[S 2n = 0]

(observe that the walk can be at the starting point only after an even number

of steps). We thus obtain that the recurrence of the walk is equivalent to

∞
∑

n=0

p2n(0, 0) = ∞. (2.1)

Before actually proving anything, let us try to understand why Theo-

rem 1.1 should hold. One can represent the d-dimensional simple random

walk S as

S n = X1 + · · · + Xn,

where (Xk, k ≥ 1) are independent and identically distributed (i.i.d.) ran-

dom vectors, uniformly distributed on the set {±e j, j = 1, . . . , d}, where

e1, . . . , ed is the canonical basis of Rd. Since these random vectors are cen-

tred (expectation is equal to 0, component-wise), one can apply the (mul-

tivariate) Central Limit Theorem (CLT) to obtain that S n/
√

n converges in

distribution to a (multivariate) centred Normal random vector with a diag-

onal covariance matrix. That is, it is reasonable to expect that S n should be

at distance of order
√

n from the origin.

So, what about p2n(0, 0)? Well, if x, y ∈ Zd are two even sites2 at dis-

tance of order at most
√

n from the origin, then our CLT intuition tell us

that p2n(0, x) and p2n(0, y) should be comparable, i.e., their ratio should be

bounded away from 0 and ∞. In fact, this statement can be made rigorous

by using the local Central Limit Theorem (e.g., theorem 2.1.1 from [63]).

Now, if there are O(nd/2) sites where p2n(0, ·) are comparable, then the value

of these probabilities (including p2n(0, 0)) should be of order n−d/2. It re-

mains only to observe that
∑∞

n=1 n−d/2 diverges only for d = 1 and 2 to

convince oneself that Pólya’s theorem indeed holds. Notice, by the way,

that for d = 2 we have the harmonic series which diverges just barely; its

partial sums have only logarithmic growth.3

Now, let us prove that (2.1) holds for one- and two-dimensional simple

random walks. In the one-dimensional case, it is quite simple to calcu-

late p2n(0, 0): it is the probability that a Binomial(2n, 1
2
)-random variable

1 Note that we can put the expectation inside the sum because of the Monotone

Convergence Theorem.
2 A site is called even if the sum of its coordinates is even; observe that the origin is even.
3 As some physicists say, “in practice, logarithm is a constant!”
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equals 0, so it is 2−2n
(

2n

n

)

. Certainly, this expression is concise and beauti-

ful; it is, however, not a priori clear which asymptotic behaviour it has (as

it frequently happens with concise and beautiful formulas). To clarify this,

we use Stirling’s approximation4, n! =
√

2πn(n/e)n(1+o(1)), to obtain that

2−2n

(

2n

n

)

= 2−2n (2n)!

(n!)2

= 2−2n

√
4πn(2n/e)2n

2πn(n/e)2n
(1 + o(1))

(fortunately, almost everything cancels)

=
1
√
πn

(1 + o(1)). (2.2)

The series
∑∞

k=1 k−1/2 diverges, so (2.1) holds, and this implies recurrence

in dimension 1.

Let us now deal with the two-dimensional case. For this, we first count

the number of paths N2n of length 2n that start and end at the origin. For

such a path, the number of steps up must be equal to the number of steps

down, and the number of steps to the right must be equal to the number

of steps to the left. The total number of steps up (and, also, down) can be

any integer k between 0 and n; in this case, the trajectory must have n − k

steps to the left and n − k steps to the right. So, if the number of steps up

is k, the total number of trajectories starting and ending at the origin is the

polynomial coefficient
(

2n

k,k,n−k,n−k

)

. This means that

N2n =

n
∑

k=0

(

2n

k, k, n − k, n − k

)

=

n
∑

k=0

(2n)!

(k!)2((n − k)!)2
.

Note that

(2n)!

(k!)2((n − k)!)2
=

(

2n

n

)(

n

k

)(

n

n − k

)

;

the last two factors are clearly equal, but in a few lines it will become

clear why we have chosen to write it this way. Since the probability of any

particular trajectory of length m is 4−m, we have

p2n(0, 0) = 4−2n
N2n

= 4−2n

(

2n

n

) n
∑

k=0

(

n

k

)(

n

n − k

)

. (2.3)

4 See, e.g., http://mathworld.wolfram.com/StirlingsApproximation.html.
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