
Cambridge University Press
978-1-108-47241-8 — Statistical Methods for Climate Scientists
Timothy DelSole , Michael Tippett 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Basic Concepts in Probability and Statistics

Probability theory is nothing more than common sense reduced to

calculation.

Pierre Simon Laplace

This chapter reviews some essential concepts of probability and statistics, including

the following:

• line plots, histograms, scatter plots

• mean, median, quantiles, variance

• random variables

• probability density function

• expectation of a random variable

• covariance and correlation

• independence

• the normal distribution (also known as the Gaussian distribution)

• the chi-squared distribution.

These concepts provide the foundation for the statistical methods discussed in the

rest of this book.
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2 Basic Concepts in Probability and Statistics
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Figure 1.1 A time series of themonthly Niño 3.4 index over the period 1990–2000.

1.1 Graphical Description of Data

Scientific knowledge is based on observations. However, a mere list of observational

facts rarely advances science. Instead, the data need to be organized in ways that

help the scientist interpret the data in a scientific interpret the data in a scientific

framework and formulate new hypotheses that can be checked in independent data

or experiments. To illustrate ways of describing themain characteristics of a data set,

consider a specific observable quantity: the area-average sea surface temperature in

the equatorial Pacific in the region 170◦W − 120◦W and 5◦S − 5◦N. This quantity

is called the Niño 3.4 index and is an indicator of seasonal climate variations. The

monthly average value of this index over a period of 50 ormore years is readily avail-

able from various data portals. What are some ways of describing such a data set?

Data taken sequentially in time are known as time series. A natural way to visual-

ize time series is to plot them as a function of time. A time series plot of Niño 3.4 is

shown in Figure 1.1. The figure reveals that peaks and valleys occur at nearly peri-

odic intervals, reflecting the annual cycle for this region. The figure also reveals that

the time series is “smooth” – the value at one time is close to the value at neighboring

times. Such time series are said to be serially correlated or autocorrelated and

will be studied in Chapter 5. Another feature is that the minimum values generally

decreased from 1993 to 2000, suggesting a possible long-term change. Methods for

quantifying long-term changes in time series will be discussed in Chapters 8 and 9.

Note how much has been learned simply by plotting the time series.

Another way to visualize data is by a histogram.

Definition 1.1 (Histogram) A histogram is a plot obtained by partitioning the

range of data into intervals, often equal-sized, called bins, and then plotting a
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Figure 1.2 Histograms of the monthly mean Niño 3.4 index over the period 1948–
2017. The two histograms show the same data, but the left histogram uses a wider
bin size than the right.

rectangle over each bin such that the area of each rectangle equals the empirical

frequency with which samples fall into the bin. The total area of the rectangles equals

one. (Sometimes, histograms may be defined such that the total area of the rectangles

equals the total number of samples, in which case the area of each rectangle equals

the number of samples that fall into that bin.)

Histograms of the Niño 3.4 index for different bin sizes are shown in Figure 1.2.

The figure shows that this index varied between 24◦C and 29.5◦C over the period

1948–2017. Also, values around 27◦ occur more frequently than values around 25◦

or 29◦. However, the shape of the histogram is sensitive to bin size (e.g., compare

Figures 1.2a and b); hence, the conclusions one draws from a histogram can be

sensitive to bin size. There exist guidelines for choosing the bin size, e.g., Sturges’

rule and the Freedman–Diaconis rule, but we will not discuss these. They often are

implemented automatically in standard statistical software.

The scatterplot provides a way to visualize the relation between two variables. If

X and Y are two time series over the same time steps, then each point on the scatter-

plot shows the point (X(t),Y (t)) for each value of t . Some examples of scatterplots

are illustrated in Figure 1.3. Scatterplots can reveal distinctive relations between X

and Y . For instance, Figure 1.3a shows a tendency for large values of X to occur

at the same time as large values of Y . Such a tendency can be used to predict one

variable based on knowledge of the other. For instance, if X were known to be

at the upper extreme value, then it is very likely that Y also will be at its upper

extreme. Figure 1.3b shows a similar tendency, except that the relation is weaker,

and therefore a prediction of one variable based on the other would have more

uncertainty. Figure 1.3c does not immediately reveal a relation between the two

variables. Figure 1.3d shows thatX and Y tend to be negatively related to each other,
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4 Basic Concepts in Probability and Statistics

Figure 1.3 Scatterplots ofX versus Y for various types of relation. The correlation
coefficient ρ, given in the title of each panel, measures the degree of linear
relation between X and Y . The data were generated using the model discussed
in Example 1.7, except for data in the bottom right panel, which was generated by
the model Y = X2, where X is drawn from a standardized Gaussian.

when one goes up, the other goes down. Methods for quantifying these relations are

discussed in Section 1.7.

1.2 Measures of Central Value: Mean, Median, and Mode

Visual plots are informative, but ultimately data must be described quantitatively.

A basic descriptor of a set of numbers is their central value. For instance, the

central value could be identified with the most frequent value, called the mode. The

mode could be estimated by the location of the peak of a histogram, although this

definition would depend on bin size. Also, for the Niño 3.4 time series, each value

occurs only once, so there is no “most frequent value.” Other measures of central

value are the mean and median. When these quantities are computed from data, the

qualifier sample is used to emphasize its dependence on data.

Definition 1.2 (Sample Mean) The sample mean (or average) of N numbers

X1, . . . ,XN is denoted µ̂X and equals the sum of the numbers divided by N
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Figure 1.4 Histogram of the monthly mean (raw) Niño 3.4 index over the period
1948–2017, as in Figure 1.2, but with measures of central value and dispersion
superimposed. The mean and median are indicated by dashed and dotted vertical
lines, respectively. The dash-dotted lines indicate the 5th and 95th percentiles. The
horizontal “error bar” at the top indicates the mean plus or minus two standard
deviations. The empirical mode is between 27◦C and 27.5◦C.

µ̂X =
X1 + X2 + · · · + XN

N
=

1

N

N
∑

n=1

Xn. (1.1)

The mean of the Niño 3.4 index is indicated in Figure 1.4 by the dashed vertical

line. The mean is always bounded by the largest and smallest elements.

Another measure of central value is the median.

Definition 1.3 (Sample Median) The sample median of N numbers X1, . . . ,XN

is the middle value when the data are arranged from smallest to largest. If N is odd,

the median is the unique middle value. If N is even, then two middle values exist and

the median is defined to be their average.

The median effectively divides the data into two equal halves: 50% of the data

lie above the median, and 50% of the data lie below the median. The median of the

Niño 3.4 index is shown by the dotted vertical line in Figure 1.4 and is close to the

mean. In general, the mean and median are equal for symmetrically distributed data,

but differ for asymmetrical distributions, as the following two examples illustrate.

Example 1.1 (The Sample Median and Mean for N Odd) Question: What is

the mean and median of the following data?

2 8 5 9 3. (1.2)

Answer: To compute the median, first order the data:

2 3 5 8 9. (1.3)
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6 Basic Concepts in Probability and Statistics

The middle value is 5, hence the median is 5. The mean is

2 + 3 + 5 + 8 + 9

5
= 5.4. (1.4)

Example 1.2 (The Sample Median and Mean for N Even) Question: What is

the mean and median of the following data?

2 8 5 9 3 100. (1.5)

Answer: To compute the median, first order the data:

2 3 5 8 9 100. (1.6)

The two middle values are 5 and 8, hence the median is their average, namely 6.5. In

contrast, the mean is 21.2, which differs considerably from the median (contrary to

example 1.1). Note that if the value of 100 were changed to some higher value X, the

median would remain at 6.5 regardless of the value X, but the mean would increase

withX. This example shows that the mean is sensitive to extreme values in a data set,

whereas the median is not.

1.3 Measures of Variation: Percentile Ranges and Variance

Two data sets can have similar central values but differ by how they vary about the

central value. Two commonmeasures of variation are quantile ranges and variance.

Sample quantiles are points that divide the sample into equal parts. Common quan-

tiles have special names. For instance, terciles divide the sample into three equal

parts; quartiles divide a sample into four equal parts. One of the most common

quantiles is the percentile.

Definition 1.4 (Sample Percentiles) A (sample) percentile is indicated by a num-

ber p, such that after the data are ordered from smallest to largest, at least p · 100%

of the data are at or below this value, and at least 100(1 − p)% are at or above this

value. The resulting value is said to be the 100p-th percentile (e.g., the 90th percentile

corresponds to p = 0.9).

Themedian is a special case of a percentile: It is the 50th percentile (i.e.,p = 0.5).

The above definition states merely that at least p · 100% of the data lies below the

100p’th percentile, hence the sample percentile is not unique. There are several

definitions of sample quantiles; for instance, Hyndman and Fan (1996) discuss nine

different algorithms for computing sample quantiles. The differences between these

sample quantiles have no practical importance for largeN and will not be of concern

in this book. Mathematical software packages such as Matlab, R, and Python have

built-in functions for computing quantiles.

The percentile range is the interval between two specified percentile points. For

instance, the 5–95% range includes all values between the 5th and 95th precentiles.

This percentile range is ameasure of variation in the sense that it specifies an interval

in which a random number from the population will fall 90% of the time. The 5th
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1.3 Measures of Variation: Percentile Ranges and Variance 7

and 95th percentiles of the Niño 3.4 index are indicated in Figure 1.4 by the two

dash-dot lines.

Another measure of variation is the variance.

Definition 1.5 (Sample Variance) The sample variance ofN numbersX1, . . . ,XN

is denoted σ̂ 2
X and defined as

σ̂ 2
X =

1

N − 1

N
∑

n=1

(Xn − µ̂X)
2, (1.7)

where µ̂X is the sample mean of the data, defined in (1.1).

The reader ought to be curious why the sum in (1.7) is divided by N −1, whereas

the sum for the mean (1.1) was divided byN . The reason for this will be discussed in

Section 1.10 (e.g., see discussion after Theorem 1.4). Based on its similarity to the

definition of the mean, the variance is approximately the average squared difference

from the sample mean.

Definition 1.6 (Standard Deviation) The standard deviation is the (positive)

square root of the variance:

σ̂X =

√

σ̂ 2
X. (1.8)

The standard deviation has the same units as X.

Among the different measures listed above, the ones that will be used most often

in this book are the mean for central tendency, and the variance for variation. The

main reason for this is that the mean and variance are algebraic combinations of

the data (i.e., they involve summations and powers of the data); hence, they are

easier to deal with theoretically compared to mode, median, and percentiles (which

require ranking the data). Using the mean and variance, a standard description of

variability is the mean value plus and minus one or two standard deviations. For the

Niño 3.4 index shown in Figure 1.4, the mean plus or minus two standard deviations

is indicated by the error bar at the top of the figure.

Selected Properties of the Sample Variance

If σ̂ 2
X is the sample variance of X1, . . . ,XN and k is a constant, then

• variance of k times each Xn: σ̂
2
(kX) = k2σ̂ 2

X .

• variance of k plus each Xn: σ̂
2
(X+k) = σ̂ 2

X .

An identity that is occasionally useful is

σ̂ 2
X =

(

µ̂(X2) − µ̂2
X

) N

N − 1
. (1.9)

Numerically, computation of sample variance based on (1.7) requires two passes of

the data: one to compute the mean, and a second to compute deviations from the
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8 Basic Concepts in Probability and Statistics

mean. With (1.9), the sample variance can be computed from one pass of the data,

but requires tracking two quantities, namely the means of X and X2. The sample

variance is nonnegative, but in practice (1.9) can be (slightly) negative owing to

numerical precision error.

1.4 Population versus a Sample

An observation is defined as the outcome of an experiment performed on nature. We

will conceive of a theoretical collection of all possible outcomes, and then interpret

an observation as a random draw from this theoretical collection. The theoretical

collection of all possible observations is called the population, while a random draw

from this collection is called a sample or realization. The goal of statistics is to

make inferences or decisions about a population based on information derived from

a sample.

In nature, population properties are never knownwith complete certainty. Knowl-

edge of population properties is tantamount to knowledge of the “inner machinery”

of the system. Except in idealized settings, we never know the inner workings of

the system on which we experiment, and therefore we can never be sure about

the population properties. Rather, we can only infer population properties based

on the outcome of experiments. We might attempt to approximate the population

probability of an event by measuring the relative frequency with which the event

occurs in a large number of independent samples, but this approach meets funda-

mental difficulties with defining “large,” “approximate,” and “independent.” These

and other subtle problems can be avoided by defining probability in axiomatic terms,

much like geometry is developed strictly from a set of axioms and rules of logic.

This is the approach mathematicians have adopted. For the problem considered in

this book, this axiomatic abstraction is not required. Therefore, we briefly review

basic concepts in probability theory that are needed to get started. Most text books

on statistics and probability cover these concepts in detail and can be consulted for

further information.

1.5 Elements of Probability Theory

What is the probability of tossing a fair coin and getting heads? A typical 10-year-

old child knows that the probability is 50%. However, that same 10-year-old child

can become confused by an experiment where 6 out of 10 tosses are heads, since

6/10 is not 50%. The child eventually learns that “50% probability” refers to the idea

that in a long sequence of coin tosses the relative frequency of heads approaches

50%. However, the relative frequency of heads in a small number of experiments
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1.5 Elements of Probability Theory 9

can differ considerably from 50%. Asserting that heads occurs with 50% probability

is tantamount to asserting knowledge of the “inner machinery” of nature. We refer

to the “50% probability” as a population property, to distinguish it from the results

of a particular experiment, e.g., “6 out of 10 tosses,” which is a sample property.

Much confusion can be avoided by clearly distinguishing population and sample

properties. In particular, it is a mistake to equate the relative frequency with which

an event occurs in an experiment with the probability of the event in the population.

A random variable is a function that assigns a real number to each outcome of

an experiment. If the outcome is numerical, such as the temperature reading from

a thermometer, then the random variable often is the number itself. If the outcome

is not numerical, then the role of the function is to assign a real number to each

outcome. For example, the outcome of a coin toss is heads or tails, i.e., not a number,

but a function may assign 1 to heads and 0 to tails, thereby producing a random

variable whose only two values are 0 and 1. This is an example of a discrete random

variable, whose possible values can be counted. In contrast, a random variable is said

to be continuous if its values can be any of the infinitely many values in one or more

line intervals.

Sometimes a random variable needs to be distinguished from the value that it

takes on. The standard notation is to denote a random variable by an uppercase

letter, i.e. X, and denote the specific value of a random draw from the population by

a lowercase letter, i.e. x. We will adopt this notation in this chapter. However, this

notation will be adhered to only lightly, since later we will use uppercase letters to

denote matrices and lowercase letters to denote vectors, a distinction that is more

important in multivariate analysis.

If a variable is discrete, then it has a countable number of possible realizations

X1,X2, . . .. The corresponding probabilities are denoted p1,p2, . . . and called the

probability mass function. If a random variable is continuous, then we consider a

class of variables X such that the probability of {x1 ≤ X ≤ x2}, for all values of

x1 ≤ x2, can be expressed as

P (x1 ≤ X ≤ x2) =

∫ x2

x1

pX(x)dx, (1.10)

wherepX(x) is a nonnegative function called the density function. By this definition,

the probability of X falling between x1 and x2 corresponds to the area under the

density function. This area is illustrated in Figure 1.5a for a particular distribution.

If an experiment always yields some real value of X, then that probability is 100%

and it follows that

∫ ∞

−∞

pX(x)dx = 1. (1.11)
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10 Basic Concepts in Probability and Statistics

Figure 1.5 Schematic showing (a) a probability density function forX and the fact
that the probability that X lies between 1/2 and 1 is given by the area under the
density function p(x), and (b) the corresponding cumulative distribution function
F (x) and the values at x = 0.5 and x = 1, the difference of which equals the area
of the shaded region in (a).

The histogram provides an estimate of the density function, provided the histogram

is expressed in terms of relative frequencies. Another function is

F (x) = P (X ≤ x) =

∫ x

−∞

pX(u)du, (1.12)

which is called the cumulative distribution function and illustrated in Figure 1.5b.

The probability that X lies between x1 and x2 can be expressed equivalently as

P (x1 ≤ X ≤ x2) = F (x2) − F (x1). (1.13)

The above properties do not uniquely specify the density function pX(x), as there

is more than one pX(x) that gives the same left-hand side of (1.10) (e.g., two density

functions could differ at isolated points and still yield the same probability of the
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