

Uncovering Quantum Field Theory and the Standard Model

This textbook provides an accessible introduction to quantum field theory and the Standard Model of particle physics. It adopts a distinctive pedagogical approach with clear, intuitive explanations to complement the mathematical exposition.

The book begins with basic principles of quantum field theory, relating them to quantum mechanics, classical field theory, and statistical mechanics, before building toward a detailed description of the Standard Model. Its concepts and components are introduced step by step, and their dynamical roles and interactions are gradually established. Advanced topics of current research are woven into the discussion, and key chapters address physics beyond the Standard Model, covering subjects such as axions, technicolor, and Grand Unified Theories.

This book is ideal for graduate courses and as a reference and inspiration for experienced researchers. Additional material is provided in appendices, while numerous end-of-chapter problems and quick questions reinforce the understanding and prepare students for their own research.

Wolfgang Bietenholz is Professor of Physics at the National Autonomous University of Mexico (UNAM). His research focuses on lattice field theory with applications to elementary particles and condensed matter. He also writes articles on physics, mathematics, and the history of science for a broader audience. He studied at ETH Zürich and the University of Bern. He previously held positions at Centro Brasileiro de Pesquisas Físicas in Rio de Janeiro, the Massachusetts Institute of Technology (MIT), Deutsches Elektronen-Synchrotron (DESY), Nordic Institute for Theoretical Physics, and the Humboldt University in Berlin.

Uwe-Jens Wiese is Professor at the University of Bern, and his research is focused on strongly interacting quantum systems in particle and condensed matter physics. He studied at the University of Hannover, and he previously held positions at DESY and MIT, where his work has been recognized by an Alfred P. Sloan Fellowship. He was a recipient of an ERC Advanced Grant for the duration from 2014 to 2019 and of a Humboldt Research Award in 2022.

"Wolfgang Bietenholz and Uwe-Jens Wiese have done an impressive job of writing an introduction to quantum field theory and the standard model of particle physics that incorporates modern viewpoints throughout. They manage to cover a great deal of material in a manageable space. Students will come away with an excellent grounding in a difficult and multifaceted subject, and the book will also be a valuable resource for experienced researchers."

Prof. Edward Witten, Institute for Advanced Studies, Princeton

"Bietenholz and Wiese have succeeded in writing a quantum field theory textbook that takes a radically different path from those before it whilst still covering the field in a manner appropriate for a graduate course. The presentation is clear and is interestingly modulated by the authors' backgrounds in lattice approaches to field theory, explaining difficult concepts in concise and interesting ways. Throughout the book are scattered gems of topics that you will not find in existing mainstream texts, where the authors eloquently delve into these selected topics in deeper detail."

Prof. William Detmold, Massachusetts Institute of Technology

"This is a remarkable book! As an introduction to quantum field theory it impresses with its clarity and depth. It also provides great insight into the standard model, in particular its nonperturbative features and connections to condensed matter physics. This book will be an invaluable source of information for students and researchers alike."

Prof. Wilfried Buchmüller, DESY and University of Hamburg

"This is a marvelous book that manages to synthesize the developments over more than fifty years in quantum field theory, statistical mechanics, the Standard Model of particle physics, critical phenomena, and the renormalization group. The authors have a deep understanding of the subject and manage to present the material with explanations and insight rather than heavy use of equations. It serves as an excellent complete textbook for graduate courses but also as a reference book for researchers in the field."

Prof. Poul H. Damgaard, Niels Bohr Institute

"A modern and empowering text on quantum field theory. The book is very successful in engaging its readers right from the start, with the main relevant topics covered in a solid and motivating way, highlighting open questions, and providing interesting historical remarks and exercises. The authors' approach is novel and stimulating and the book will be very valuable for students."

Prof. Tereza Mendes, University of São Paulo

Uncovering Quantum Field Theory and the Standard Model

From Fundamental Concepts to Dynamical Mechanisms

WOLFGANG BIETENHOLZ

Universidad Nacional Autónoma de México

UWE-JENS WIESE

Universität Bern

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108472333

DOI: 10.1017/9781108657037

© Wolfgang Bietenholz and Uwe-Jens Wiese 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2024

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Names: Bietenholz, Wolfgang, 1962– author. | Wiese, Uwe-Jens, 1958– author.

Title: Uncovering quantum field theory and the standard model: from fundamental concepts to dynamical mechanisms / Wolfgang Bietenholz, Universidad Nacional Autónoma de México, Uwe-Jens Wiese, Universität Bern, Switzerland.

Description: Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2024. | Includes bibliographical references and indexes.

Identifiers: LCCN 2023028733 (print) | LCCN 2023028734 (ebook) | ISBN

9781108472333 (hardback) | ISBN 9781108657037 (ebook) Subjects: LCSH: Quantum field theory. | Particle Physics |

ubjects: LCSH: Quantum field theory. | Particle Physics Standard Model of Particle Physics

Classification: LCC QC174.45 .B53 2024 (print) | LCC QC174.45 (ebook) | DDC 530.14/3–dc23/eng/20230928

LC record available at https://lccn.loc.gov/2023028733 LC ebook record available at https://lccn.loc.gov/2023028734

ISBN 978-1-108-47233-3 Hardback

Additional resources for this publication at www.cambridge.org/bietenholz-wiese.

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Pı	reface		page xv
	Inter	ntion of this Book	XV
	Subj	ects of this Book	xvi
	Stru	eture of this Book	xviii
	Ack	nowledgments	xix
	Nota	tions and Conventions	xxi
	Glos	sary	xxiv
		Part I Quantum Field Theory	1
0ι	ıvertu	e: Concepts of Quantum Field Theory	3
	Poin	t Particles versus Fields at the Classical Level	3
	Parti	cles versus Waves in Quantum Theory	4
	Clas	sical and Quantum Gauge Fields	6
	Ultra	aviolet Divergences, Regularization, and Renormalization	7
	Eucl	idean Quantum Field Theory versus Classical Statistical Mechanics	8
1	Basic	s of Quantum Field Theory	10
	1.1	From Point Particle Mechanics to Classical Field Theory	10
	1.2	Quantum Mechanical Path Integral	13
	1.3	Path Integral in Euclidean Time	18
	1.4	Spin Models in Classical Statistical Mechanics	20
	1.5	Quantum Mechanics versus Classical Statistical Mechanics	24
	1.6	Transfer Matrix	25
	1.7	Lattice Field Theory	28
	Exer	cises	34
2	Scala	r Field Theory and Canonical Quantization	37
	2.1	Scalar Fields	37
	2.2	Noether Current	39
	2.3	From the Lagrangian to the Hamilton Density	41
	2.4	Commutation Relations for the Scalar Field Operators	42
	2.5	Hamilton Operator in Scalar Field Theory	42
	2.6	Vacuum State and Vacuum Energy	44
	2.7	Cosmological Constant Problem	44

٧

vi Contents

	2.0	Destine States and their Engages and Statistics	44
	2.8	Particle States and their Energies and Statistics	46
	2.9	Momentum Operator	46
	Exer	ases	48
3	From	Particles to Wavicles and Back	49
	3.1	Model for Ions Forming a Crystal	50
	3.2	Phonon Creation and Annihilation Operators	53
	3.3	Quantum States of a Vibrating Crystal	54
	3.4	Phonons as Wavicles	56
	3.5	Explicit Breaking of Continuous Translation Symmetry	58
	3.6	Debye Field Theory of the Vibrating Solid	59
	3.7	From Wavicles Back to Particles	60
	3.8	What is Space?	62
	Exerc	cises	64
4	Pertu	rbative Scalar Field Functional Integral in Dimensional Regularization	65
	4.1	From Minkowski to Euclidean Space–Time	65
	4.2	Euclidean Propagator and Contraction Rule	67
	4.3	Perturbative Expansion of the Functional Integral	68
	4.4	Dimensional Regularization	70
	4.5	2-Point Function to 1 Loop	71
	4.6	Mass Renormalization	73
	4.7	Connected, Disconnected, and 1-Particle Irreducible Diagrams	74
	4.8	Feynman Rules for the $\lambda \phi^4$ Model	76
	4.9	4-Point Function to 1 Loop	78
	4.10	Dimensional Regularization of $J(p^2)$	80
	4.11	Renormalization of the Coupling	81
	4.12	Renormalizability of Scalar Field Theories	82
	4.13	Condition for Renormalizability	83
	Exerc	cises	85
5	Renoi	malization Group	87
	5.1	Locality and Hierarchies of Energy Scales	87
	5.2	Renormalization Group Blocking and Fixed Points	88
	5.3	Gaussian Fixed Points of Lattice Scalar Field Theory	92
	5.4	Blocking from the Continuum to the Lattice	94
	5.5	Perfect Lattice Actions on the Renormalized Trajectory	96
	5.6	Wilson–Fisher Fixed Points	98
	5.7	Renormalization of Scalar Field Theory in a Cut-off Regularization	99
	5.8	Callan–Symanzik Equation	101
	5.9	β -Function and Anomalous Dimension to 1 Loop	102
		Running Coupling	103
	5.11	Infrared and Ultraviolet Fixed Points	104
	Exerc		106

vii Contents

6	Quan	tization of the Free Electromagnetic Field	107
	6.1	Vector Potential and Gauge Symmetry	107
	6.2	From the Lagrangian to the Hamilton Density	109
	6.3	Hamilton Operator for the Photon Field	110
	6.4	Gauss Law	111
	6.5	Vacuum and Photon States	113
	6.6	Momentum Operator of the Electromagnetic Field	114
	6.7	Angular Momentum Operator and Helicity of Photons	115
	6.8	Planck's Formula and the Cosmic Background Radiation	116
	6.9	Gauge Fixing and Photon Propagator	120
	Exer		122
7	Charged States in Scalar Quantum Electrodynamics		
	7.1	Complex Scalar Field with Global U(1) Symmetry	124
	7.2	Scalar Quantum Electrodynamics	125
	7.3	Charged Particles as Infraparticles	127
	7.4	Superselection Sectors	130
	7.5	Charged Particles in a Periodic Volume	132
	7.6	C-periodic Boundary Conditions	134
	Exer	cises	135
8	Canonical Quantization of Free Weyl, Dirac, and Majorana Fermions		
	8.1	Massless Weyl Fermions	136
	8.2	Momentum, Angular Momentum, and Helicity of Weyl Fermions	139
	8.3	Fermion Number, Parity, and Charge Conjugation	141
	8.4	Cosmic Background Radiation of Neutrinos	145
	8.5	Massive Dirac Fermions	146
	8.6	Massive Majorana Fermions	150
	8.7	Massive Weyl Fermions	153
	8.8	Redundant Particle Labels and the Pauli Principle as a "Gauss Law"	155
	8.9	Can We Supersede Gauge Symmetry?	157
	Exer	cises	158
9	Fermionic Functional Integrals		
	9.1	Grassmann Algebra, Pfaffian, and Fermion Determinant	160
	9.2	Dirac Equation	167
	9.3	Weyl and Majorana Equations	169
	9.4	Euclidean Fermionic Functional Integral	171
	9.5	Euclidean Lorentz Group	173
	9.6	Charge Conjugation, Parity, and Time Reversal for Weyl Fermions	176
	9.7	C, P, and T Transformations of Dirac Fermions	179
	9.8	CPT Invariance in Relativistic Quantum Field Theory	179
	9.9	Connections between Spin and Statistics	180
	9.10	Euclidean Time Transfer Matrix	182
	Exer	rises	186

viii

Contents

10 Chiral Symmetry in the Continuum and on the Lattice	188
10.1 Chiral Symmetry in the Continuum	188
10.2 Lattice Fermion Doubling Problem	189
10.3 Nielsen–Ninomiya No-Go Theorem	191
10.4 Absence of Neutrinos on a Lattice	193
10.5 Wilson Fermions	194
10.6 Perfect Lattice Fermions and the Ginsparg–Wilson Relation	195
10.7 Overlap Fermions	200
Exercises	201
11 Non-Abelian Gauge Fields	202
11.1 Non-Abelian Gauge Fields at the Classical Level	203
11.2 Gauge Fixing and Faddeev–Popov Ghosts	205
11.3 Becchi–Rouet–Stora–Tyutin Symmetry	207
11.4 Nilpotency and BRST Cohomology	209
11.5 Aharonov–Bohm Effect as an Analogue of BRST Cohomology	210
11.6 Lattice Gauge Theory	212
11.7 Canonical Quantization of Compact U(1) Lattice Gauge Theory	213
11.8 Canonical Quantization of Non-Abelian Lattice Gauge Theory	215
11.9 Functional Integral for Compact U(1) Lattice Gauge Theory	217
11.10 Functional Integral for Non-Abelian Lattice Gauge Theory	220
Exercises	221
Part II Construction of the Standard Model	223
raith construction of the Standard Model	222
Intermezzo: Concepts of the Standard Model	225
The Standard Model: A Non-Abelian Chiral Gauge Theory	225
Renormalizability of Non-Abelian Gauge Theories	226
Triviality and Incorporation of Gravity	228
Fundamental Standard Model Parameters	229
Hierarchies of Scales and Approximate Global Symmetries	231
Local and Global Symmetries	232
Explicit versus Spontaneous Symmetry Breaking	233
Anomalies in Local and Global Symmetries	235
Power of Lattice Field Theory	236
12 Spontaneous Breakdown of Global Symmetries:	
From Condensed Matter to Higgs Bosons	240
12.1 Effective Scalar Fields for Cold Condensed Matter	241
12.2 Vacua in the $\lambda \Phi ^4$ Model	242
12.3 Higgs Doublet Model	244
12.4 Goldstone Theorem	248
12.5 Mermin–Wagner–Hohenberg–Coleman Theorem	250
12.6 Low-Energy Effective Field Theory	253
12.7 Hierarchy Problem	256

ix Contents

12.8	Solving the Hierarchy Problem with Supersymmetry?	259
12.9	Is Nature Natural?	260
12.10	Triviality of the Standard Model	262
12.11	Electroweak Symmetry Restoration at High Temperature	263
12.12	2 Extended Model with Two Higgs Doublets	265
Exerc	cises	268
13 Local	Symmetry and the Higgs Mechanism:	
	Superconductivity to Electroweak Gauge Bosons	271
13.1	Higgs Mechanism in Scalar Electrodynamics	271
13.2	Higgs Mechanism in the Electroweak Theory	274
13.3	Identification of the Electric Charge	279
13.4	Accidental Custodial Symmetry	280
13.5	Variants of the Standard Model with Modified Gauge Symmetry	282
13.6	Scalar Electrodynamics on the Lattice	283
13.7	$SU(2)_L$ Gauge–Higgs Model on the Lattice	286
13.8	Small Electroweak Unification	289
13.9	Electroweak Symmetry Breaking in an SU(3) Unified Theory	295
Exerc	cises	297
14 Gluon	s: From Confinement to Deconfinement	299
14.1	Gluons in the Continuum and on the Lattice	299
14.2	Quark Confinement and the Wegner-Wilson Loop	302
	Character Expansion and Group Integration	303
14.4	Strong Coupling Limit of Lattice Yang–Mills Theory	306
14.5	Asymptotic Freedom and Natural Continuum Limit	308
14.6	How Strong is the Strong Force?	309
14.7	Roughening Transition	312
14.8	Systematic Low-Energy Effective String Theory	313
14.9	Lüscher Term as a Casimir Effect	315
14.10	Cosmological Constant Problem on the String World-Sheet	317
14.11	Gluon Confinement and the Fredenhagen–Marcu Operator	319
14.12	2 Glueball Spectrum	321
14.13	B Polyakov Loop and Center Symmetry	323
	Deconfinement at High Temperatures	325
14.15	Exceptional Confinement and Deconfinement in G(2) Yang–Mills Theory	327
Exerc	cises	329
15 One G	eneration of Leptons and Quarks	330
15.1	Electron and Left-Handed Neutrino	330
15.2	CP and T Invariance of Gauge Interactions	333
15.3	_	335
15.4	Triangle Gauge Anomalies in the Lepton Sector	338
	Witten's Global $SU(2)_L$ Gauge Anomaly in the Lepton Sector	340
	Up and Down Quarks	341
	Anomaly Cancellation between Leptons and Quarks	344

x Contents

15.8	Electric Charges of Quarks and Baryons	346
15.9	Anomaly Matching	347
15.10	Right-Handed Neutrinos	349
	1 Lepton and Baryon Number Anomalies	350
15.12	2 Gauge Anomaly-Free Technicolor Model	352
Exer	cises	354
16 Fermi	ion Masses	356
16.1	Electron and Down Quark Masses	357
16.2	Up Quark Mass	359
16.3	Neutrino Mass from a Dimension-5 Operator	361
16.4	Mass Hierarchies of Fermions	362
16.5	Neutrino Mass Term and Reconsideration of CP	363
16.6	Lepton and Baryon Number Violation by Higher-Dimensional Operators	364
16.7	Charge Quantization, Fermion Masses, and Consistency with Gravity	366
16.8	Dirac and Majorana Masses from Right-Handed Neutrino Fields	369
16.9	Seesaw Mass-by-Mixing Mechanism	370
16.10	Right-Handed Neutrinos and Electric Charge Quantization	372
16.11	1 Lepton–Baryon Mixing for $N_c = 1$	374
Exer	cises	377
17 Sever	al Generations and Flavor Physics of Quarks and Leptons	378
17.1	Electroweak versus Mass Eigenstates	379
17.2	Generation-Specific Lepton Numbers and Lepton Universality	381
17.3	Cabibbo-Kobayashi-Maskawa Quark Mixing Matrix	382
17.4	Flavor-Changing Neutral Currents and the GIM Mechanism	385
17.5	CP Violation with Neutral Kaons and B-Mesons	386
17.6	Pontecorvo-Maki-Nakagawa-Sakata Lepton Mixing Matrix	388
17.7	Neutrino Oscillations	390
17.8	Overview of Fundamental Standard Model Parameters	393
17.9	Low-Energy Theory Perspective on the Standard Model Physics	396
Exer	cises	398
	Part III Strong Interaction	399
	Tarem Strong interaction	393
	tum Chromodynamics	401
	Deconstructing the Standard Model	402
	Asymptotic Freedom	403
	Structure of Chiral Symmetry	406
18.4	j j	408
	Lattice QCD	410
	Ginsparg–Wilson Relation and Lüscher's Lattice Chiral Symmetry	411
	Under-Appreciated Fermionic Hierarchy Problem	413
	Domain Wall Fermions and a Fifth Dimension of Space–Time	414
Exer	cises	416

xi Contents

19	Topol	ogy of Gauge Fields	417
	19.1	Adler-Bell-Jackiw Anomaly	417
	19.2	Topological Charge	419
	19.3	Topology of a Gauge Field on a Compact Manifold	422
	19.4	SU(2) Instanton	425
	19.5	θ -Vacuum States	427
	19.6	Analogy with Energy Bands in a Periodic Crystal	430
	19.7	Some Questions Related to θ	432
	19.8	Atiyah–Singer Index Theorem	434
	19.9	Zero-Mode of the SU(2) Instanton	436
	19.10	Index Theorem on the Lattice	437
	Exerc	rises	440
20	II(1).	Problem	442
20		Nature of the Problem	442
		QCD in the Large-N _c Limit	443
		Witten–Veneziano Formula for the η' -Meson Mass	446
		Topological Susceptibility from Lattice Gauge Theory	447
	Exerc		449
	Exerc	ALISES	447
21	Spect	rum of Light Baryons and Mesons	450
	21.1	Isospin Symmetry	450
	21.2	Nucleon and Δ-Isobar	452
	21.3	Anti-Quarks and Mesons	455
	21.4	Strange Hadrons	456
	21.5	Gell-Mann-Okubo Baryon Mass Formula	459
	21.6	Meson Mixing	461
	21.7	Hadron Spectrum from Lattice QCD	463
	21.8	Hadrons for $N_c = 5$	465
	Exerc	cises	467
22	Parto	ns and Hard Processes	469
	22.1	Electron–Positron Annihilation into Hadrons	470
	22.2	<i>R</i> -Ratio as Evidence for $N_c = 3$	472
	22.3	Deep-Inelastic Electron–Nucleon Scattering	475
	22.4	Deep-Inelastic Neutrino–Nucleon Scattering	482
		Sum Rules	484
	Exerc	cises	486
23	Chiral	Perturbation Theory	487
23		Effective Theory for Pions, Kaons, and the η -Meson	487
		Masses of Pseudo-Nambu–Goldstone Bosons	490
		Low-Energy Effective Theory for Nambu–Goldstone Bosons and Photons	492
		Electromagnetic Corrections to the Nambu–Goldstone Boson Masses	494
		Effective Theory for Nucleons and Pions	496
		QCD Contributions to the W- and Z-Boson Masses	498
		YOU COMMITTEE TO THE !! WHE Z DODON MUDDED	0

xii (Contents
-------	----------

	23.7	Remarks about Technicolor	500
		Hypothesis of Minimal Flavor Violation	501
	Exerc	*1	503
24	Tonal	ogy of Nambu—Goldstone Boson Fields	504
24	-	Skyrmions	505
		Anomaly Matching for $N_{\rm f} = 2$	507
		G-Parity and its Explicit Breaking	511
		Electromagnetic Decay of the Neutral Pion	512
		Evidence for $N_c = 3$ from $\pi^0 \to \gamma \gamma$?	513
		Wess-Zumino-Novikov-Witten Term	514
		Intrinsic Parity and Its Anomalous Breaking	517
		Electromagnetic Interactions of Pions, Kaons, and η -Mesons	518
		Electromagnetic Interactions of Nambu–Goldstone Bosons for $N_{\rm f} \geq 3$	520
		Can One See the Number of Colors?	521
		Techni-Baryons, Techni-Skyrmions, and Topological Dark Matter	523
	Exerc		524
		Part IV Selected Topics beyond the Standard Model	527
25	Stron	g CP-Problem	529
	25.1	Rotating θ into the Mass Matrix	531
	25.2	θ -Angle in Chiral Perturbation Theory	531
	25.3	θ -Angle at Large $N_{\rm c}$	533
	25.4	Peccei–Quinn Symmetry	534
	25.5	U(1) _{PQ} Symmetry Breaking and the Axion	536
	25.6	Astrophysical and Cosmological Axion Effects	538
	25.7	Elimination of the Weak $SU(2)_L$ Vacuum-Angle	539
	25.8	Is there an Electromagnetic CP-Problem?	541
	Exerc	ises	544
26	Grand	Unified Theories	545
	26.1	Minimal SU(5) Model	546
	26.2	Fermion Multiplets	550
	26.3	Lepton–Quark Transitions and Proton Decay	554
	26.4	Baryon Asymmetry in the Universe	555
	26.5	Thermal Baryon Number Violation in the Standard Model	557
	26.6	Topological Excitations as Cosmic Relics	560
	26.7	't Hooft-Polyakov Monopole and Callan-Rubakov Effect	561
	26.8	Dirac-Schwinger-Zwanziger Dyon Quantization Condition	564
	26.9	Julia-Zee Dyon and Witten Effect	565
	26.10	Fermion Masses and the Hierarchy Problem	567
	26.11	Spin(10) Structure	570
	26 12	Neutrino Masses in the Spin(10) GUT	572

26.1	3 Small Unification with SU(3), G(2), Spin(6), or Spin(7) 4 Grand or not so Grand Unification?	572 577 579
Finale		580
Appendi	x A Highlights in the Development of Particle Physics	583
A.1		583
	Development of Quantum Field Theory and the Standard Model	587
Appendi	x B Units, Hierarchies, and Fundamental Parameters	590
B.1	Man-Made versus Natural Units	590
B.2	Energy Scales and Particle Masses	593
Appendi	x C Structure of Minkowski Space—Time	598
C.1	Lorentz Transformations	598
C.2	Gradient as a 4-Vector and d'Alembert Operator	601
Appendi	x D Relativistic Formulation of Classical Electrodynamics	602
D.1	Current and Vector Potential	602
D.2	Field Strength Tensor	603
D.3	Maxwell Equations	605
D.4	8	607
D.5	C	607
D.6	Action and Euler–Lagrange Equation	608
D.7	Energy–Momentum Tensor	608
Appendi	-	610
E.1	Galilei Algebra	610
E.2	Poincaré and Lorentz Algebras	610
Appendi	x F Lie Groups and Lie Algebras	613
F.1	Definition of a Lie Algebra	613
F.2	Simple and Semi-Simple Lie Algebras	614
F.3	Representations of Lie Algebras	615
F.4	Lie Algebra so(3) and its Representations	615
F.5	Unitary Group SU(2) versus Orthogonal Group SO(3)	618
F.6	Unitary Group $SU(n)$ and its Algebra $SU(n)$	619
F.7	Group SU(3) and its Algebra su(3)	621
F.8	Permutation Group S_N	624
F.9	su(n) Representations and Young Tableaux	626
F.10 F.11	Tensor Product of $su(n)$ Representations Tensor Product of $\{3\}$ and $\{\overline{3}\}$ in $su(3)$	628 629
F.11 F.12		630
F.13		631
F.14		633
F.15		638

xiv Contents

Appendix	.,	641
G.1	Maps from S^d to S^n	641
G.2	Topological Charge in 2-d Abelian Gauge Theory	646
G.3	Homotopy Groups of Lie Group Manifolds	647
Appendix	H Monte Carlo Method	648
H.1	Concept of a Markov Chain	649
H.2	Detailed Balance	651
H.3	Ergodicity and its Implications	651
H.4	Convergence to the Stationary Distribution	653
H.5	Metropolis Algorithm	654
H.6	Error Analysis	656
H.7	Critical Slowing Down	657
H.8	Supercritical Slowing Down and Sign Problems	658
H.9	Complexity Classes and the Severity of Sign Problems	660
H.10	Quantum Computation and Simulation of Real-Time Evolution	661
Appendix	l Phase Transitions and Critical Phenomena	663
I.1	Phase Transitions and Critical Points	663
I.2	Critical Exponents	664
I.3	Universal Critical Behavior	666
I.4	Scaling Hypothesis	667
I.5	Critical Exponents and Scaling Laws: An Overview	669
Referenc	res	671
Author I	ndex	696
Subject	Index	699

Preface

Intention of this Book

This book is an introduction to *quantum field theory* and the *Standard Model* of particle physics, which is a relativistic quantum field theory that incorporates the basic principles of quantum physics and special relativity. Quantum field theory provides a systematic, universal framework that allows us to understand the local interactions of field degrees of freedom attached to the different points of space at all times. Quantum field theories are of central importance in many areas of physics, ranging from condensed matter physics, atomic, molecular, and optical physics, to nuclear and particle physics. At the most fundamental level, quantum field theory describes the interactions between elementary particles, which are nothing but quantized field excitations, in the framework of the Standard Model.

The Standard Model of particle physics is one of the greatest achievements of science in the second half of the twentieth century, and – in light of its high-precision predictions – of all history. It summarizes all we know today about the fundamental structure of matter, forces, and symmetries, by describing the *electromagnetic, weak*, and *strong* interactions of *Higgs particles, leptons*, and *quarks*, mediated by *photons*, *W- and Z-bosons*, and *gluons*. It describes further interactions by Yukawa couplings between the Higgs field and the fermion fields, and by the self-interaction of the Higgs field. It is our goal to explain these topics sufficiently well, such that a deep understanding becomes possible. Achieving profound insight into a complex subject such as quantum field theory takes time, but leaves us with a sense of empowerment and an urge to progress to more advanced topics. Empowering the curious reader and encouraging him or her to think about Nature's biggest puzzles at a deep level is a major goal of this book.

This book provides a detailed description of those features of the Standard Model and some subjects beyond it that should be of general interest to any physicist of the twenty-first century, irrespective of his or her specialization. It concentrates on the model's symmetries, on its hierarchies of energy scales and the related puzzles, on its predictive power and its limitations, as well as on its possible extensions to even higher energies. Our goal is to expose the structure of the Standard Model in a language that is accessible to physicists with just a basic background in special relativity, quantum mechanics, statistical mechanics, and classical – but not necessarily quantum – field theory. This book introduces quantum field theory at a level that is of interest for applications not only in particle but also in nuclear and condensed matter physics.

The enormous importance and robustness of the Standard Model, which has maintained its validity in the era of the Large Hadron Collider (LHC) at CERN (near Geneva, Switzerland), has intrigued many physicists. Irrespective of whether or not an extended Standard

xvi Preface

Model (perhaps with additional right-handed neutrino fields) may be valid all the way up to the Planck scale, the Standard Model will stay with us as the most fundamental description of Nature up to the TeV energy scale. Familiarizing the interested reader, either with a particle physics or with a more general physics orientation, with its fascinating dynamical structures is a main intention of this book. The broad relevance of the Standard Model is also reflected in the structure of M.Sc. and Ph.D. programs. While all physicists should become familiar with the basic features of the Standard Model, many physicists will want to gain a deeper understanding of its fundamental structures and the underlying dynamical mechanisms. The present book fulfills this purpose.

Victor Weisskopf's teaching at MIT was characterized by his motto:

It is better to uncover a little than to cover a lot.

As the title of this book suggests, it is our intention to uncover some fundamental structures of quantum field theory and the Standard Model, which are usually not strongly emphasized in most of the textbook literature. Exposing some deeper layers of the subject, whose understanding is sometimes obstructed by the involved mathematical structure of quantum field theory or by the rich particle phenomenology of the Standard Model, is a central intention of the book. Lectures based on this book should be able to follow Weisskopf's motto. In particular, we aim at facilitating a deep understanding of a subject by going through each individual step of an extensive explanation. While the variety of subjects discussed in the book is not small, each one is presented in sufficient detail, in order to clarify it at a deep level. In this way, somewhat like in archeology, we aim at uncovering some hidden layers, which are obstructed from the more common perspective of large parts of the textbook literature.

Subjects of this Book

The book begins with an overview of the fundamental concepts underlying quantum field theory. A basic understanding of quantum field theory is facilitated by relating it to quantum mechanics and to classical field theory, as well as (in its Euclidean functional integral formulation) to classical statistical mechanics. Canonical quantization as well as the perturbative quantization applying *dimensional regularization*, and the non-perturbative *lattice regularization* are then introduced, using scalar field theory as a simple framework. In this context, we address the very nature of "particles" in quantum field theory, which arise as quantized wave excitations of the corresponding quantum fields.

Other fields are introduced one by one, starting with *Abelian gauge fields* and then moving on to fermion fields. We put an emphasis on *Weyl fermions*, which are basic building blocks of the Standard Model, and then relate them to *Dirac and Majorana fermions*. We discuss the chiral symmetries of fermions, both in continuum and in lattice quantum field theory. We then move on to *non-Abelian gauge fields*.

In order to elucidate the interplay of its various dynamical ingredients, the Standard Model is then constructed step by step, starting from the Higgs sector, proceeding further to the electroweak and strong gauge fields, and finally adding fermionic lepton

xvii Preface

and quark matter fields. Important dynamical mechanisms, such as the spontaneous breakdown of a global symmetry, the *Higgs mechanism* describing the "spontaneous breaking" of a gauge symmetry, as well as the quantum-induced anomalous breakdown of symmetries, and the requirement of *gauge anomaly cancellation* are each addressed at the appropriate stage of the construction. For example, the consistency of the Standard Model as a quantum field theory, which is tied to the cancellation of perturbative and non-perturbative anomalies, is discussed in detail and is related to the issue of charge quantization.

The book concentrates on the fundamental structures of the Standard Model, its symmetries and their various realizations, its basic dynamical mechanisms, and some of its less obvious beautiful structures, more than on particle phenomenology or advanced perturbative techniques. The book also emphasizes non-perturbative physics and uses the lattice regularization when appropriate, but it is by no means focused on lattice field theory (when it is possible, we use continuum notation).

The lattice regularization is more physical than dimensional regularization (by analytic continuation of the space–time dimension). In particular, it also arises naturally in condensed matter physics (in the form of spatial crystal lattices); thus it provides a bridge between the different disciplines. Most important, the lattice regularization leads to *non-perturbative* insights into essential dynamical mechanisms including the *confinement of quarks and gluons* and the spontaneous breakdown of the quarks' *chiral symmetry*.

Along with its impressive success, the Standard Model also gives rise to puzzles and open questions, which may hint to new physics. The discussion of theories that go beyond the Standard Model, such as *technicolor*, *axion models*, and *Grand Unified Theories*, is embedded in the construction of the Standard Model itself. Such ideas are addressed as soon as it is suitable; certain aspects of these theories are discussed even before addressing the theory of the strong interaction – Quantum Chromodynamics (QCD).

Special attention is given to the *number of quark colors* N_c (which is 3 in the real world) as a discrete parameter of the Standard Model. Via anomaly cancellation, it affects the electric quark charges, with consequences, *e.g.*, for the electromagnetic decay of the neutral pion, which is not addressed correctly in large parts of the textbook literature.

Again in contrast to most standard textbooks, this book puts an emphasis on *topological aspects* of the Standard Model and its low-energy effective theories. Topological effects are related to anomalies and play an important role in the dynamics of pions and the other Nambu–Goldstone bosons of the strong interaction, as well as for the $U(1)_A$ -problem, the *strong CP-problem*, and for the generation of the *baryon asymmetry*. The topology of quantum fields is again of general interest, with numerous links to condensed matter physics.

Finally, the book supplements nine appendices, which address, for instance, the historical development of experimental and theoretical high-energy physics, as well as units, energy scales, and fundamental parameters in particle physics. Other appendices describe Minkowski space—time, the Lorentz-covariant formulation of classical electrodynamics, as well as the Monte Carlo method and second-order phase transitions, in order to facilitate a smooth transition beyond B.Sc. knowledge. More advanced mathematical topics including group theory and homotopy theory, which are again of general interest beyond particle physics, are addressed in two more appendices.

xviii Preface

Structure of this Book

This book has emerged from numerous lectures at the Master and Ph.D. student level, held over three decades at the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, the Humboldt University in Berlin, the University of Bern, the Massachusetts Institute of Technology (MIT), Potsdam University, the Universidad Nacional Autónoma de México (UNAM), and at Wuppertal University.

Part I of this book can be covered in a 1-semester introduction to quantum field theory. It begins with an Ouverture that provides an overview of the fundamental concepts underlying quantum field theory. It continues with a concise presentation of the theoretical framework of quantum field theory in the functional integral approach, provided in Chapter 1. Chapters 2–4 discuss scalar field theory, starting at the classical level, and progressing from canonical quantization to the perturbative quantization using the Euclidean functional integral in dimensional regularization. In this context, the nature of "particles" in a quantum field theory is clarified: they are quantized waves, which we temporarily address as "wavicles". Chapter 5 provides an introduction to the renormalization group from a Wilsonian perspective. The quantization of the electromagnetic field, and the characterization of electrically charged particles as "infraparticles" are the subjects of Chapters 6 and 7. Chapters 8–10 discuss Weyl, Dirac, and Majorana fermions, as well as their various symmetries, both in canonical quantization and using a functional integral approach. Part I ends with Chapter 11, in which non-Abelian gauge fields and their quantization are introduced. Part I serves as a prerequisite for studying the other parts of the book.

Part II can be the subject of a 1-semester introduction to the Standard Model. It begins with an Intermezzo that summarizes the fundamental concepts and dynamical mechanisms that underlie the Standard Model. Chapters 12–14 introduce the bosonic Higgs and gauge fields with their dynamics, including the Higgs mechanism, as well as confinement and Coulomb phases. The gauge interactions of lepton and quark fields of the first fermion generation are introduced in Chapter 15. The fermions are endowed with mass by coupling them to the Higgs field in Chapter 16, while Chapter 17 discusses the physics related to the other fermion generations.

Part III corresponds to a course on the strong interaction, from a fundamental Standard Model point of view (Chapters 18–20), from the perspective of effective models (Chapters 21 and 22), and in the framework of systematic low-energy effective theories (Chapters 23 and 24). Part IV, which includes Chapter 25 on the strong CP-problem and Chapter 26 on Grand Unified Theories, addresses selected topics beyond the Standard Model, and can be taught as part of a special topics course. Both Part III and Part IV can be presented in another 1-semester course, relying on the material of Part I and II as a prerequisite. The appendices provide some background for the various chapters of the main text.

All chapters end with a set of exercises. In addition, "Quick Questions", which allow to test the reader's immediate understanding, are embedded in the text. It cannot be stressed enough that theoretical physics can be learned in depth only by working through a large number of problems. This means a lot of work for the student which, however, is well worth investing. The skills that one learns by solving the exercises are very useful when working on actual research problems.

xix Preface

As an additional motivation for the curious reader, the book connects the Standard Model with some deep fundamental questions (inserted in boxes) that we hope to be answered in the course of the twenty-first century. For example, one such question is known as the *hierarchy problem*, *i.e.* the question: *Why is the electroweak scale so much lower than the Planck scale?* The authors encourage the reader to face such fundamental questions and think about them at a deep level. This should serve as a strong motivation to penetrate the subject of the Standard Model in a profound manner. Although quantum field theory is almost a century old, it remains one of the most promising tools that will allow us to push the boundaries of current knowledge further into the unknown.

Readers who find mistakes of any kind are encouraged to kindly report them to us. Outstanding lists of mistakes will be awarded. Relevant corrections will be listed – if necessary – on the book website.

Acknowledgments

First of all, we like to thank the numerous students who have helped to improve the lecture notes and exercises on which this book is based by their constructive feedback. Their enthusiasm provided the motivation for turning the lecture notes into a regular textbook.

It is impossible to thank all the colleagues and numerous collaborators who have influenced our thinking about quantum field theory and the Standard Model. Very special thanks go to Oliver Bär, Debasish Banerjee, Detlev Buchholz, Wilfried Buchmüller, Klaus Fredenhagen, Urs Gerber, Carlo Giunti, Kieran Holland, Gurtej Kanwar, Martin Lüscher, Alessandro Mariani, Colin Morningstar, Mike Peardon, Michele Pepe, João Pinto Barros, Lilian Prado, Simona Procacci, Christopher Smith, Rainer Sommer, Youssef Tammam, Christiane Tretter, Christof Wetterich, and Edward Witten, who have read parts of this book or have substantially improved it through their invaluable comments.

We like to thank Aline Guevara Villegas for her help with the figures in Chapters 4, 17, and 19, as well as Lucian Harland-Lang for preparing Figure 22.8. We are indebted to Nadiia Vlasii for realizing the picture on the cover page with chalk on the blackboard. We also thank Sarah Armstrong, Jane Chan, Nicholas Gibbons, Shanthy Jaganathan, Suresh Kumar, Sunantha Ramamoorthy, Stephanie Windows, and the other staff at Cambridge University Press for their competent support of this project.

Wolfgang Bietenholz would like to thank Klaus Hepp and Heinrich Leutwyler, who supervised his diploma thesis at ETH Zürich and his Ph.D. thesis at the University of Bern, respectively. He further thanks Hans-Jürg Gerber, Mikhail Terentyev, José Abdalla Helayël-Neto, John Negele, Klaus Schilling, Michael Müller-Preußker, and Gerrit Schierholz for their support in the course of his career (in chronological order).

It was his great pleasure to publish research articles with numerous authors from 24 countries, which underscores the cosmopolitan spirit of science, which builds bridges between peoples and cultures.

He would like to particularly highlight the pleasant collaboration with David Adams, Kostas Anagnostopoulos, Alejandro Ayala, Richard Brower, Shailesh Chandrasekharan, Hermann Dilger, Philippe de Forcrand, José Antonio García-Hernández, Urs Gerber, Juan

xx Preface

José Giambiagi, Ivan Hip, Frank Hofheinz, Roger Horsely, Edgar López-Contreras, Julieta Medina, Héctor Mejía-Díaz, Jaime Fabián Nieto Castellanos, Jun Nishimura, Denjoe O'Connor, Kostas Orginos, Marco Panero, João Pinto Barros, Paul Rakow, Fernando Rejón-Barrera, Gerrit Schierholz, Luigi Scorzato, Stanislav Shcheredin, Jan Volkholz, Marc Wagner, and Urs Wenger.

He acknowledges inspiring communication and helpful advice by Poul Damgaard, Stefan Dürr, Peter Hasenfratz, Christian Hoelbling, Martin Lüscher, Peter Minkowski, Mike Peardon, Christian Schubert, and Rainer Sommer. He also thanks for the support during his sabbatical periods at Bern University – which boosted the work on this book – by the *Programa de Apoyos para la Superación del Personal Académico de la UNAM* and by the *Swiss National Science Foundation*.

Finally, W. B. is grateful to Diego, Marlene, Philippe, and Tatiana for their moral support and patience during various stages of the work on this book.

Uwe-Jens Wiese is deeply indebted to his Ph.D. advisor, Peter Sauer, who created an exciting scientific atmosphere at the Institute for Theoretical Physics at Hannover University, where quarks, gluons, or *W*- and *Z*-bosons were discussed at a profound level, before formal courses on particle physics or quantum field theory were offered there. U.-J. W. also thanks Gerrit Schierholz, who ignited his interest in lattice field theory and co-advised his Ph.D. thesis over the distance between DESY and Hannover, for creating a wonderful research group and providing it with exciting and challenging problems. During his years as a postdoc, U.-J. W. has benefited tremendously from guidance, encouragement, as well as constructive criticism from Peter Hasenfratz, Jiři Jersák, Hans Kastrup, Heinrich Leutwyler, and Martin Lüscher. As an Assistant and later Associate Professor at MIT, he received invaluable support from Robert Jaffe, John Negele, and many other colleagues, during one of the most exciting periods in his career.

He had the privilege to discuss quantum field theory and the Standard Model with many colleagues at the University of Bern and at MIT, including Thomas Becher, Matthias Blau, Gilberto Colangelo, Jean-Pierre Derendinger, Edward Farhi, Jürg Gasser, Jeffrey Goldstone, Christoph Greub, Roman Jackiw, Mikko Laine, Patrick Lee, Peter Minkowski, Ferenc Niedermayer, Domenico Orlando, Krishna Rajagopal, Susanne Reffert, Urs Wenger, and Frank Wilczek. Other people who had an impact on his understanding of the subject, either through collaboration, discussion, or through their published work include Richard Brower, Shailesh Chandrasekharan, Jürg Fröhlich, Meinulf Göckeler, David Kaplan, Andreas Kronfeld, Morten Laursen, and Jean Zinn-Justin.

He is very grateful to all these people for making theoretical physics a very exciting and satisfying experience over several decades.

Finally, U.-J. W. thanks Nadiia Vlasii for her love and support which sustain him and were vital for finishing this book.

xxi Preface

Notations and Conventions

In the following, we list various notations and conventions to be used throughout this book.

Minkowski and Euclidean space–time:
 In Minkowski space–time, we use the metric

$$g_{\mu\nu} = g^{\mu\nu} = \text{diag}(1, -1, -1, -1).$$

Co- and contra-variant vectors describing a space-time point are given by

$$x^{\mu} = (x^{0}, \vec{x}), \quad x_{\mu} = g_{\mu\nu}x^{\nu} = (x_{0}, -\vec{x}), \quad x^{0} = x_{0} = ct,$$

and the corresponding space-time derivatives take the form

$$\partial_{\mu} = \left(\frac{\partial}{\partial x^{0}}, \frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}, \frac{\partial}{\partial x^{3}}\right) = \left(\frac{1}{c}\partial_{t}, \vec{\nabla}\right), \quad \partial^{\mu} = \left(\frac{1}{c}\partial_{t}, -\vec{\nabla}\right).$$

Minkowski and Euclidean space–time are related by the Wick rotation $x_4=\mathrm{i}x_0$. We distinguish the imaginary unit i from a generic index i. In Euclidean space–time, we exclusively use lower indices, with $x_\mu=(x_1,x_2,x_3,x_4)$ and the standard Euclidean metric $g_{\mu\nu}=\delta_{\mu\nu}$. The totally anti-symmetric Levi-Civita symbol $\epsilon_{\mu\nu\rho\sigma}$ obeys $\epsilon_{1234}=1$.

Both in Minkowski and in Euclidean space—time, we denote a Lagrange density or Lagrangian by \mathcal{L} , while a Lagrange function is denoted by L. A Hamiltonian density is denoted by \mathcal{H} , and a Hamilton operator by \hat{H} . We dress the operators that act in a Hilbert or Fock space with a hat.

• Internal symmetries:

The generators T^a of a Lie algebra obey

$$[T^a, T^b] = if_{abc}T^c, \quad Tr[T^aT^b] = \frac{1}{2}\delta_{ab}.$$

Examples of internal symmetries are SU(2)_I isospin, which is generated by $T^a = \tau^a/2$ ($a \in \{1, 2, 3\}$), with the Pauli matrices

$$\vec{\tau} = (\tau^1, \tau^2, \tau^3) = \left(\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \right),$$

SU(3)_c color, which is generated by $T^a = \lambda^a/2$, with the Gell-Mann matrices λ^a ($a \in \{1, 2, ..., 8\}$), which are written down in Appendix F.7, or a general SU(N) symmetry, which is generated by $T^a = \eta^a/2$ ($a \in \{1, 2, ..., N^2 - 1\}$).

• Gauge fields:

Electrodynamics is formulated with the 4-vector potential $A^{\mu}(x) = \left(\phi(\vec{x}, t), \vec{A}(\vec{x}, t)\right)$. The electromagnetic interaction is governed by the Abelian gauge group $U(1)_{em}$. We use Lorentz–Heaviside units in which the potential of a static point charge carrying the elementary electric charge e is given by

$$\phi(\vec{x}) = \frac{e}{4\pi |\vec{x}|}.$$

xxii Preface

The 4-vector potential as well as a complex field $\Phi(x) \in \mathbb{C}$, which carries $Q \in \mathbb{Z}$ units of the elementary charge e, transform under gauge transformations as

$$A'_{\mu}(x) = A_{\mu}(x) - \partial_{\mu}\alpha(x), \quad \Phi'(x) = \exp(iQe\alpha(x)) \Phi(x).$$

The gauge fields of the Standard Model transform under the gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y$. The Abelian hypercharge gauge field $B_\mu(x) \in \mathbb{R}$ is associated with the symmetry $U(1)_Y$. It couples with the strength g' to a scalar field that carries the weak hypercharge Y, such that

$$B'_{\mu}(x) = B_{\mu}(x) - \partial_{\mu}\varphi(x), \quad \Phi'(x) = \exp(iYg'\varphi(x)) \Phi(x).$$

Non-Abelian vector potentials mediate the weak and the strong gauge interaction with the fundamental coupling constants g and g_s , and with the matrix-valued gauge transformations $L(x) \in SU(2)_L$ and $\Omega(x) \in SU(3)_c$. They are defined by the anti-Hermitian gauge fields W_μ and G_μ ,

$$\begin{split} W_{\mu}(x) &= \mathrm{i} g W_{\mu}^a(x) \frac{\tau^a}{2}, \quad W_{\mu}^a(x) \in \mathbb{R}, \quad W_{\mu}'(x) = L(x) \left(W_{\mu}(x) + \partial_{\mu} \right) L(x)^{\dagger}, \\ G_{\mu}(x) &= \mathrm{i} g_s G_{\mu}^a(x) \frac{\lambda^a}{2}, \quad G_{\mu}^a(x) \in \mathbb{R}, \quad G_{\mu}'(x) = \Omega(x) \left(G_{\mu}(x) + \partial_{\mu} \right) \Omega(x)^{\dagger}. \end{split}$$

Occasionally, we will extend the Abelian gauge symmetry $U(1)_Y$ to a non-Abelian symmetry with $R(x) \in SU(2)_R$, or the $SU(3)_c \times SU(2)_L \times U(1)_Y$ symmetry to a grand unified symmetry with $\Upsilon(x) \in SU(5)$, such that

$$\begin{split} X_{\mu}(x) &= \mathrm{i} \, g' X_{\mu}^{a}(x) \frac{\tau^{a}}{2}, \quad X_{\mu}^{3}(x) = B_{\mu}(x), \quad X_{\mu}'(x) = R(x) \left(X_{\mu}(x) + \partial_{\mu} \right) R(x)^{\dagger}, \\ V_{\mu}(x) &= \mathrm{i} \, g_{5} V_{\mu}^{a}(x) \frac{\eta^{a}}{2}, \quad V_{\mu}^{a}(x) \in \mathbb{R}, \quad V_{\mu}'(x) = \Upsilon(x) \left(V_{\mu}(x) + \partial_{\mu} \right) \Upsilon(x)^{\dagger}. \end{split}$$

In the context of the Higgs mechanism, we always write "spontaneous symmetry breaking" in inverted commas, because a gauge symmetry (which reflects a redundancy) can, in fact, not break.

• Fermion fields:

The spin $\vec{S} = \vec{\sigma}/2$ of elementary fermions is described by the same set of Pauli matrices

$$\vec{\sigma} = (\sigma^1, \sigma^2, \sigma^3) = \left(\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \right).$$

In the context of canonical quantization, fermion fields are described by field operators $\hat{\psi}(\vec{x})$ and $\hat{\psi}(\vec{x})^{\dagger}$. In the framework of the functional integral, fermions are described by independent, anti-commuting Grassmann fields $\psi(x)$ and $\bar{\psi}(x)$.

In Minkowski space–time, we follow the γ -matrix conventions of the books of Peskin and Schroeder (1997), Srednicki (2007), Zee (2010), Schwartz (2014), and others,

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}, \quad \gamma^{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}, \quad \{\gamma^{\mu}, \gamma^{5}\} = 0,$$

which in the chiral basis amount to

$$\gamma^0 = \left(\begin{array}{cc} 0 & \mathbbm{1} \\ \mathbbm{1} & 0 \end{array} \right), \quad \gamma^i = \left(\begin{array}{cc} 0 & \sigma^i \\ -\sigma^i & 0 \end{array} \right), \quad \gamma^5 = \left(\begin{array}{cc} -\mathbbm{1} & 0 \\ 0 & \mathbbm{1} \end{array} \right).$$

xxiii Preface

In order to distinguish them from γ -matrices in Euclidean space-time, we arrange things such that γ -matrices in Minkowski space-time occur exclusively with upper indices.

A 4-component Dirac spinor $\psi(x)$ is built from a left- and a right-handed 2-component Weyl spinor, $\psi_L(x)$ and $\psi_R(x)$,

$$\begin{split} \psi(x) &= \begin{pmatrix} \psi_{\mathrm{L}}(x) \\ \psi_{\mathrm{R}}(x) \end{pmatrix}, \ \bar{\psi}(x) = \left(\bar{\psi}_{\mathrm{R}}(x), \bar{\psi}_{\mathrm{L}}(x)\right), \ P_{\mathrm{L}} = \frac{1}{2}\left(1 - \gamma^{5}\right), \ P_{\mathrm{R}} = \frac{1}{2}\left(1 + \gamma^{5}\right), \\ \begin{pmatrix} \psi_{\mathrm{L}}(x) \\ 0 \end{pmatrix} &= P_{L}\psi(x), \quad \begin{pmatrix} 0 \\ \psi_{\mathrm{R}}(x) \end{pmatrix} = P_{R}\psi(x). \end{split}$$

Left- and right-handed Weyl spinors are associated with the matrices $\bar{\sigma}^{\mu}$ and σ^{μ} , respectively,

$$\gamma^{\,\mu} = \left(\begin{array}{cc} 0 & \sigma^{\,\mu} \\ \bar{\sigma}^{\,\mu} & 0 \end{array} \right), \quad \sigma^{\,\mu} = (\mathbbm{1}, \vec{\sigma})\,, \quad \bar{\sigma}^{\,\mu} = (\mathbbm{1}, -\vec{\sigma})\,.$$

A Majorana spinor results from a Dirac spinor by imposing the constraints

$$\psi_{\mathrm{L}}(x) = -\mathrm{i}\sigma^2\bar{\psi}_{\mathrm{R}}(x)^{\mathsf{T}}, \quad \bar{\psi}_{\mathrm{L}}(x) = \psi_{\mathrm{R}}(x)^{\mathsf{T}}\mathrm{i}\sigma^2.$$

Here, as well as in other places in the book, T denotes transpose.

The γ -matrices in Euclidean space–time result from a Wick rotation. They are Hermitian, $\gamma_{\mu}^{\dagger}=\gamma_{\mu}$, and obey the relations

$$\{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu}, \quad \gamma_5 = -\gamma_1\gamma_2\gamma_3\gamma_4, \quad \{\gamma_{\mu}, \gamma_5\} = 0.$$

In the chiral basis, they take the form

$$\gamma_i = \begin{pmatrix} 0 & -i\sigma^i \\ i\sigma^i & 0 \end{pmatrix}, \quad \gamma_4 = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix}, \quad \gamma_5 = \begin{pmatrix} -\mathbb{1} & 0 \\ 0 & \mathbb{1} \end{pmatrix}.$$

Euclidean γ -matrices will be used with lower indices only.

The Euclidean variants of the matrices σ^{μ} and $\bar{\sigma}^{\mu}$ again carry lower Lorentz indices only,

$$\gamma_{\mu} = \left(\begin{array}{cc} 0 & \sigma_{\mu} \\ \bar{\sigma}_{\mu} & 0 \end{array} \right), \quad \sigma_{\mu} = \left(-\mathrm{i}\,\vec{\sigma}\,, \mathbb{1} \right), \quad \bar{\sigma}_{\mu} = \left(\mathrm{i}\,\vec{\sigma}\,, \mathbb{1} \right).$$

• Discrete symmetries C, P, and T:

In Euclidean space–time, charge conjugation C, parity P, and time reversal T act on left- and right-handed Weyl fermion fields as

$$\begin{split} ^{C}\psi_{R}(x) &= \mathrm{i}\sigma^{2}\bar{\psi}_{L}(x)^{\mathsf{T}} = ^{c}\psi_{L}(x) \,, \quad ^{C}\bar{\psi}_{R}(x) = -\psi_{L}(x)^{\mathsf{T}}\mathrm{i}\sigma^{2} = ^{c}\bar{\psi}_{L}(x) \,, \\ ^{C}\psi_{L}(x) &= -\mathrm{i}\sigma^{2}\bar{\psi}_{R}(x)^{\mathsf{T}} = ^{c}\psi_{R}(x) \,, \quad ^{C}\bar{\psi}_{L}(x) = \psi_{R}(x)^{\mathsf{T}}\mathrm{i}\sigma^{2} = ^{c}\bar{\psi}_{R}(x) \,, \\ ^{P}\psi_{R}(x) &= \psi_{L}(-\vec{x},x_{4}), \quad ^{P}\bar{\psi}_{R}(x) = \bar{\psi}_{L}(-\vec{x},x_{4}), \\ ^{P}\psi_{L}(x) &= \psi_{R}(-\vec{x},x_{4}), \quad ^{P}\bar{\psi}_{L}(x) = \bar{\psi}_{R}(-\vec{x},x_{4}), \\ ^{T}\psi_{R}(x) &= \mathrm{i}\sigma^{2}\bar{\psi}_{R}(\vec{x},-x_{4})^{\mathsf{T}}, \quad ^{T}\bar{\psi}_{R}(x) = \psi_{R}(\vec{x},-x_{4})^{\mathsf{T}}\mathrm{i}\sigma^{2}, \\ ^{T}\psi_{L}(x) &= \mathrm{i}\sigma^{2}\bar{\psi}_{L}(\vec{x},-x_{4})^{\mathsf{T}}, \quad ^{T}\bar{\psi}_{L}(x) = \psi_{L}(\vec{x},-x_{4})^{\mathsf{T}}\mathrm{i}\sigma^{2}. \end{split}$$

xxiv Preface

The resulting, discrete transformations for Euclidean Dirac spinor fields are

$${}^{C}\psi(x) = C\bar{\psi}(x)^{\mathsf{T}}, \quad {}^{C}\bar{\psi}(x) = -\psi(x)^{\mathsf{T}}C^{-1}, \quad C = \begin{pmatrix} -\mathrm{i}\sigma^{2} & 0 \\ 0 & \mathrm{i}\sigma^{2} \end{pmatrix},$$

$${}^{P}\psi(x) = P\psi(-\vec{x}, x_{4}), \quad {}^{P}\bar{\psi}(x) = \bar{\psi}(-\vec{x}, x_{4})P^{-1}, \quad P = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix},$$

$${}^{T}\psi(x) = T\bar{\psi}(\vec{x}, -x_{4})^{\mathsf{T}}, \quad {}^{T}\bar{\psi}(x) = -\psi(\vec{x}, -x_{4})^{\mathsf{T}}T^{-1}, \quad T = \begin{pmatrix} 0 & \mathrm{i}\sigma^{2} \\ \mathrm{i}\sigma^{2} & 0 \end{pmatrix}.$$

• Higgs field:

We use three equivalent parametrizations of the Standard Model Higgs field, as a complex doublet,

$$\Phi(x) = \begin{pmatrix} \Phi^+(x) \\ \Phi^0(x) \end{pmatrix}, \quad \Phi^+(x), \, \Phi^0(x) \in \mathbb{C},$$

as a 4-component, real field

$$\vec{\phi}(x) = (\phi_1(x), \phi_2(x), \phi_3(x), \phi_4(x)) \in \mathbb{R}^4,$$

$$\Phi^+(x) = \phi_2(x) + i \phi_1(x), \quad \Phi^0(x) = \phi_4(x) - i \phi_3(x),$$

and as a 2×2 matrix, proportional to an SU(2) matrix,

$$\begin{aligned} \mathbf{\Phi}(x) &= \begin{pmatrix} \Phi^{0}(x)^{*} & \Phi^{+}(x) \\ -\Phi^{+}(x)^{*} & \Phi^{0}(x) \end{pmatrix} \\ &= \phi_{4}(x) \, \mathbb{1} + \mathrm{i} \left[\phi_{1}(x) \tau^{1} + \phi_{2}(x) \tau^{2} + \phi_{3}(x) \tau^{3} \right]. \end{aligned}$$

Glossary

The following acronyms are frequently used throughout the book:

QED Quantum Electrodynamics QCD Quantum Chromodynamics

IR infrared UV ultraviolet

Some important physical scales are:

G Newton's constant

 $M_{\rm Planck}$ Planck scale

Λ_c cosmological constant

 Λ_{QCD} QCD scale

v vacuum expectation value of the Higgs field

> Preface XXV

> > Relevant integer-valued parameters include:

number of quark colors $N_{\rm c}$ $N_{\rm f}$ number of quark flavors

 N_{g} number of fermion generations

Some important physical parameters are:

λ self-coupling of the Higgs field

strong SU(3)_c color gauge coupling $g_{\rm s}$

weak $SU(2)_L$ gauge coupling g

g' $U(1)_Y$ hypercharge gauge coupling

e unit of the electric charge

Weinberg angle θ_{W}

QCD vacuum-angle

QED vacuum-angle $\theta_{\rm QED}$

 $\theta_{\rm C}$ Cabibbo angle

 f_u , f_d , f_c , f_s , f_t , f_b quark Yukawa couplings

 m_u , m_d , m_c , m_s , m_t , m_b quark masses

> f_e, f_μ, f_τ charged lepton Yukawa couplings

 m_e, m_μ, m_τ charged lepton masses

pion decay constant

The fields of the Standard Model, including only the first fermion generation, are:

 $\Phi(x)$, $\Phi(x)$, $\vec{\phi}(x)$ three equivalent forms of the Higgs field

 $G_{\mu}(x)$ SU(3)_c gluon field

 $W_{\mu}(x)$ SU(2)_L electroweak gauge field

 $B_{\mu}(x)$ U(1)_Y weak hypercharge gauge field

 $A_{\mu}(x)$ U(1)_{em} photon field

 $Z_{\mu}(x)$ neutral Z-boson field

 $W_u^{\pm}(x)$ charged W-boson field

 $e_{\rm R}(x), \; \bar{e}_{\rm R}(x) \;\; {
m right-handed} \; {
m SU}(2)_L {
m -singlet} \; {
m electron} \; {
m fields}$

 $l_{\rm L}(x) = \begin{pmatrix} v_{\rm L}(x) \\ e_{\rm L}(x) \end{pmatrix}, \quad \bar{l}_{\rm L}(x) = (\bar{v}_{\rm L}(x), \bar{e}_{\rm L}(x)) \quad \text{left-handed SU}(2)_L\text{-doublet lepton fields}$

 $u_{\rm R}(x), \bar{u}_{\rm R}(x), d_{\rm R}(x), \bar{d}_{\rm R}(x) \quad \text{right-handed SU}(2)_L \text{-singlet quark fields} \\ q_{\rm L}(x) = \begin{pmatrix} u_{\rm L}(x) \\ d_{\rm I}(x) \end{pmatrix}, \quad \bar{q}_{\rm L}(x) = \begin{pmatrix} \bar{u}_{\rm L}(x), \bar{d}_{\rm L}(x) \end{pmatrix} \quad \text{left-handed SU}(2)_L \text{-doublet quark fields}$