<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N$ space</td>
<td>23</td>
</tr>
<tr>
<td>$S$ space</td>
<td>22</td>
</tr>
<tr>
<td>$U^p$ spaces</td>
<td>191</td>
</tr>
<tr>
<td>$U^s_p$ spaces</td>
<td>192</td>
</tr>
<tr>
<td>$V^p$ spaces</td>
<td>197</td>
</tr>
<tr>
<td>admissible pair</td>
<td>12</td>
</tr>
<tr>
<td>almost-periodic solution</td>
<td></td>
</tr>
<tr>
<td>energy-critical</td>
<td>85</td>
</tr>
<tr>
<td>mass-critical</td>
<td>122</td>
</tr>
<tr>
<td>asymptotic orthogonality</td>
<td>77</td>
</tr>
<tr>
<td>bilinear Strichartz estimate</td>
<td>56</td>
</tr>
<tr>
<td>first proof</td>
<td>106</td>
</tr>
<tr>
<td>second proof</td>
<td>107</td>
</tr>
<tr>
<td>conservation of energy</td>
<td>36</td>
</tr>
<tr>
<td>conservation of mass</td>
<td>34</td>
</tr>
<tr>
<td>conservation of momentum</td>
<td>35</td>
</tr>
<tr>
<td>core</td>
<td>77</td>
</tr>
<tr>
<td>critical Sobolev space</td>
<td>41</td>
</tr>
<tr>
<td>dispersive estimate</td>
<td>5</td>
</tr>
<tr>
<td>double Duhamel lemma</td>
<td>93</td>
</tr>
<tr>
<td>dyadic cubes</td>
<td>111</td>
</tr>
<tr>
<td>dyadic interval</td>
<td>18</td>
</tr>
<tr>
<td>first bilinear estimate in two dimensions</td>
<td>217</td>
</tr>
<tr>
<td>Fourier inversion for Schwartz functions</td>
<td>3</td>
</tr>
<tr>
<td>Fourier transform</td>
<td>1</td>
</tr>
<tr>
<td>fractional product rule</td>
<td>42</td>
</tr>
<tr>
<td>frequency-localized interaction Morawetz estimate</td>
<td>166</td>
</tr>
<tr>
<td>Galilean invariant bilinear estimate</td>
<td>104</td>
</tr>
<tr>
<td>Galilean Littlewood–Paley projection</td>
<td>147</td>
</tr>
<tr>
<td>Galilean norm</td>
<td>192</td>
</tr>
<tr>
<td>Galilean transformation</td>
<td>9</td>
</tr>
<tr>
<td>interaction Morawetz estimate</td>
<td>96</td>
</tr>
<tr>
<td>inverse Fourier transform</td>
<td>2</td>
</tr>
<tr>
<td>linear Schrödinger equation</td>
<td>1</td>
</tr>
<tr>
<td>Littlewood–Paley decomposition</td>
<td>6</td>
</tr>
<tr>
<td>Littlewood–Paley kernel</td>
<td>8</td>
</tr>
<tr>
<td>Littlewood–Paley theorem</td>
<td>7</td>
</tr>
<tr>
<td>local conservation</td>
<td>34</td>
</tr>
<tr>
<td>local well-posedness</td>
<td>70</td>
</tr>
<tr>
<td>long-time perturbations</td>
<td>71</td>
</tr>
<tr>
<td>long-time Strichartz estimate</td>
<td>148</td>
</tr>
<tr>
<td>long-time Strichartz seminorm</td>
<td>148</td>
</tr>
<tr>
<td>long-time Strichartz spaces</td>
<td>193</td>
</tr>
<tr>
<td>mass bracket</td>
<td>34</td>
</tr>
<tr>
<td>mass density</td>
<td>34</td>
</tr>
<tr>
<td>momentum bracket</td>
<td>34</td>
</tr>
<tr>
<td>momentum density</td>
<td>34</td>
</tr>
<tr>
<td>Morawetz estimate</td>
<td>49</td>
</tr>
<tr>
<td>Parseval identity</td>
<td>4</td>
</tr>
<tr>
<td>perturbation lemma</td>
<td>43, 67</td>
</tr>
<tr>
<td>perturbation lemma for the mass-critical problem</td>
<td>26</td>
</tr>
<tr>
<td>Plancherel identity</td>
<td>4</td>
</tr>
<tr>
<td>profile decomposition, energy-critical</td>
<td>77</td>
</tr>
<tr>
<td>pseudoconformal conservation law</td>
<td>37</td>
</tr>
<tr>
<td>pseudoconformal transformation</td>
<td>39</td>
</tr>
<tr>
<td>Radon transform</td>
<td>107</td>
</tr>
<tr>
<td>rapid cascade solution</td>
<td>127</td>
</tr>
<tr>
<td>scale</td>
<td>77</td>
</tr>
<tr>
<td>scaling</td>
<td>10, 41</td>
</tr>
<tr>
<td>scattering</td>
<td>25</td>
</tr>
<tr>
<td>scattering size function</td>
<td>73</td>
</tr>
<tr>
<td>scenarios, energy-critical</td>
<td>86</td>
</tr>
<tr>
<td>scenarios, mass-critical</td>
<td>126</td>
</tr>
<tr>
<td>Schwartz space</td>
<td>2</td>
</tr>
<tr>
<td>second bilinear estimate in two dimensions</td>
<td>223</td>
</tr>
<tr>
<td>self-similar solution</td>
<td>126</td>
</tr>
</tbody>
</table>
Index

small data scattering for the energy-critical problem, 64
small intervals, 148
soliton-like solution, 127
Strichartz estimates, 14
Strichartz space, 22
well-posedness, 24
Whitney decomposition, 18