Social Meaning and Linguistic Variation

The “third wave” of variation study, spearheaded by the sociolinguist Penelope Eckert, places its focus on social meaning, or the inferences that can be drawn about speakers based on how they talk. While social meaning has always been a concern of modern sociolinguistics, its aims and assumptions have not been explicitly spelled out until now. This pioneering book provides a comprehensive overview of the central tenets of variation study, examining several components of dialects, and considering language use in a wide variety of cultural and linguistic contexts. Each chapter, written by a leader in the field, posits a unique theoretical claim about social meaning and presents new empirical data to shed light on the topic at hand. The volume makes a case for why attending to social meaning is vital to the study of variation while also providing a foundation from which variationists can productively engage with social meaning.

Lauren Hall-Lew is Reader in Linguistics and English Language, University of Edinburgh. Her research focuses on differences in speech among speakers of different social backgrounds and in different social contexts.

Emma Moore is Professor of Sociolinguistics and British Academy Mid-Career Fellow (2019–2020). She researches the social meaning of syntax and has edited three other CUP volumes: Analysing Older English (2011); Language and A Sense of Place (2017); and Categories, Constructions, and Change in English Syntax (2019).

Robert J. Podesva is Associate Professor in the Department of Linguistics at Stanford University, where he directs the Interactional Sociophonetics Laboratory. His research examines the social significance of phonetic variation and its role in the construction of identity. He is co-editor (with Devyani Sharma) of Research Methods in Linguistics.
Social Meaning and Linguistic Variation

Theorizing the Third Wave

Edited by

Lauren Hall-Lew
University of Edinburgh

Emma Moore
University of Sheffield

Robert J. Podesva
Stanford University, California
Contents

Acknowledgments vii
List of Figures viii
List of Tables xii
List of Contributors xiv

1 Social Meaning and Linguistic Variation: Theoretical Foundations
 LAUREN HALL-LEW, EMMA MOORE, AND ROBERT J. PODESVA 1

Part I Where Is (Social) Meaning?

2 Social Meaning and Sound Change
 LAUREN HALL-LEW, AMANDA CARDOSO, AND EMMA DAVIES 27

3 The Social Meaning of Syntax
 EMMA MOORE 54

4 The Social Meaning of Semantic Properties
 ANDREA BELTRAMA AND LAURA STAUM CASASANTO 80

5 Pragmatics and the Third Wave: The Social Meaning of Definites
 ERIC K. ACTON 105

6 The Cognitive Structure behind Indexicality: Correlations in
 Tasks Linking /s/ Variation and Masculinity
 KATHRYN CAMPBELL-KIBLER 127

Part II The Structure of Social Meaning 151

7 Sociolinguistic Signs as Cognitive Representations
 ANNETTE D’ONOFRIO 153
vi Contents

8 Perceptions of Style: A Focus on Fundamental Frequency and Perceived Social Characteristics 176
KATIE DRAGER, KATE HARDEMAN-GUTHRIE, RACHEL SCHUTZ, AND IVAN CHIK

9 Features, Meanings, and Indexical Fields 203
MARIE MAEGAARD AND NICOLAI PHARAO

10 Reconciling Seemingly Conflicting Social Meanings 222
ROEY J. GAFTER

11 Biographical Indexicality: Personal History as a Frame of Reference for Social Meaning in Variation 243
DEVYANI SHARMA

Part III Meaning and Linguistic Change 265

12 Emergence of Social Meaning in Sociolinguistic Change 267
QING ZHANG

13 Multiethnolect and Dialect in and across Communities 292
PIA QUIST

14 Changing Language, Changing Character Types 315
REBECCA LURIE STARR

15 Social Meaning and the Temporal Dynamics of Sound Change 338
MEREDITH TAMMINGA

16 The Role of the Body in Language Change 363
ROBERT J. PODESVA

17 Afterword 382
PENELOPE ECKERT

Index 388
Acknowledgments

This volume has been a long time coming. We owe its progress to the gracious help of many. We want to thank Katherine Hilton and Zuzana Elliott for their work on the entire volume: to Katherine for formatting the papers into a single volume and identifying terminological inconsistencies between chapters, and to Zuzana for her help with compiling the index. We would like to thank all the external reviewers of chapters: Jenny Cheshire, Lynn Clark, Paul Foulkes, Sophie Holmes-Elliott, Sam Kirkham, Erez Levon, Claire Nance, Chris Potts, Teresa Pratt, Barbora Soukup, Lauren Squires, Meghan Sumner, Walt Wolfram, Alan Yu, and Lal Zimman, as well as one anonymous reviewer of the complete manuscript.

Finally, we dedicate this volume to our colleague, mentor, and friend, Penny Eckert. Each chapter has grown from a seed that she has planted and nurtured with passionate intellect. This book exists because of her profound influence on the field in which we work and her profound influence on each of us personally.
Figures

2.1 GOAT GAMM predictions for F2 trajectories for women by year of birth, by primary phonological environment, controlling for speech style.

2.2 GOAT GAMM predictions for F2 trajectories for men by year of birth, by primary phonological environment, controlling for speech style.

2.3 BOAT GAMM predictions for F2 trajectories for women by year of birth, by ethnicity, controlling for speech style.

2.4 BOAT F2 trajectories for women by intersectional category.

2.5 BOAT F2 single-point measurements for ‘Emily’ and ‘Irene’, by style task. Interview speech is in the lightest grey, and wordlist speech is in black.

2.6 BOAT F2 single-point measurements for ‘Emily’ and ‘Molly’, by topic. Talk about ethnicity is in light grey, all other talk is dark grey.

2.7 Proposed, partial indexical field change for variation in the English goa t vowel in the Sunset District neighbourhood of San Francisco in the late twentieth century.

3.1 The location of Bolton relative to Greater Manchester (the bolded outline), the city of Manchester, and the rest of England. (This work is based on data provided through EDINA UKBORDERS with the support of the ESRC and JISC and uses boundary material which is copyright of the Crown. © Crown Copyright/database right 2017. An Ordnance Survey/EDINA supplied service.)

3.2 The communities of practice at Midlan High.

3.3 Negative concord by social class.

3.4 Negative concord by CofP.

3.5a The proportion of negative concord by topic for the Geeks. [Raw Ns are given within each bar.]

3.5b The proportion of negative concord by topic for the Populars. [Raw Ns are given within each bar.]

viii
List of Figures

3.5c The proportion of negative concord by topic for the Townies. [Raw Ns are given within each bar.] 66

3.6 Distribution of topics by CoF in sentences containing negation by postverbal indeterminates. [Raw Ns for each topic are given above each bar; percentages were calculated by dividing the number of times each topic was discussed by the total numbers of sentences containing negation with postverbal indeterminates, and multiplying by 100.] 67

3.7a Percentage of vernacular features occurring in Geek sentences containing negation with postverbal indeterminates. [The Ns above each bar show the number of vernacular features as a proportion of the total number of possible occurrences with a specific type of negation.] 70

3.7b Percentage of vernacular features occurring in Popular sentences containing negation with postverbal indeterminates. [The Ns above each bar show the number of vernacular features as a proportion of the total number of possible occurrences with a specific type of negation.] 70

3.7c Percentage of vernacular features occurring in Townie sentences containing negation with postverbal indeterminates. [The Ns above each bar show the number of vernacular features as a proportion of the total number of possible occurrences with a specific type of negation.] 70

6.1 /s/ production across gender of speaker (a) and phonemic boundary used for low masculinity vs high masculinity sod/shod talker (b). 140

6.2 Effects on perceived masculinity of /s/ placement (a) and low/high masculinity sod/shod talker (b). 141

6.3 Effects of listeners /s/ production on speaker evaluation effect for male (a) and female (b) participants. 143

6.4 Effect of sod/shod response pattern on speaker evaluations of /s/ placement (a) and sod/shod response pattern (b). 143

7.1 Between-subjects experimental conditions. 159

7.2 Frequency accurate responses in Business Professional prime conditions, by old versus new item status and trap backness. 166

7.3 Proportion ‘old’ responses, by social prime, backness, and old versus new item status. 169

8.1 Probability of identifying a talker as heterosexual, based on the estimated probabilities from the model presented in Table 8.3. 186

8.2 Tag clouds of responses to Kamamalu in the lower pitch guise when talking about the weather, when perceived as a lesbian (in the left panel) and as a gay man (in the right panel). 189
List of Figures

8.3 Tag clouds representing Fiatuina’s perceived style in the work clip when she was perceived as a heterosexual woman with a multiethnic background, in the lower pitch guise (on the left) and the higher pitch guise (on the right). 190

8.4 Tag clouds representing Stanchmonsta’s style in the places clip when he was perceived as a gay man, in the lower pitch guise (on the left) and the higher pitch guise (on the right). 192

8.5 Tag clouds representing Jeffrey’s perceived style in the friend clip when he was perceived as a heterosexual man, in the lower pitch guise (on the left) and the higher pitch guise (on the right). 193

8.6 Tag clouds representing Kent’s perceived style in the friend clip when he was perceived as a heterosexual man with Hawaiian or Pacific Islander ancestry, in the lower pitch guise (on the left) and the higher pitch guise (on the right). 194

11.1 Two dimensions of variation in the individual. 244
11.2 Zakaria in interview with an American host (based on fig. 3 in Sharma 2018). 248
11.3 Shift to IndE when countering doubt with Indian audience. 249
11.4 Two dimensions of indexical contrast (inter- and intra-individual) for three sample individuals in a speech community. 259

12.1 Use of the local variants in two professional groups. Factor weights for rhotacization, lenition, and interdental; proportion for neutral tone. 272
12.2 Use of the local variants among the yuppies. 273
13.1 Map of Denmark with the island of Funen and Odense where Vollsmose is situated. 295
13.2 Sociogram of class 9A. Grayed boxes indicate boys. 298
13.3 Sociogram of class 9B. Grayed boxes indicate boys. 298
13.4 Number of sequences coded as ‘stacato’ per speaker. 301
13.5 Number of sequences coded as Funen intonation per speaker. 303
13.6 The (t) variable, participant distribution. 306
14.1 Postvocalic rhoticity by style and age group (N = 34). 323
14.2 Postvocalic rhoticity by style and Heartlander identity for 21–29 age group only (N = 18). 324
14.3 NORM (Thomas & Kendall 2007) plot of cot, caught, caw, court, core, low, and coat lexical sets, wordlist data by age group (vowels normalized using Bark Difference Metric). 325
14.4 NORM plot of cot, caught, caw, court, and core lexical sets among the 21–29 age group wordlist data, by Heartlander identity (vowels normalized using Bark Difference Metric). 327
15.1 A variation score, reproduced from Podesva (2008: 6). 340
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2</td>
<td>British English LFI across ordered utterances, reproduced from fig. 8 of Sharma and Rampton (2011: 18).</td>
</tr>
<tr>
<td>15.3</td>
<td>Speaker random smooths by vowel.</td>
</tr>
<tr>
<td>15.4</td>
<td>Schematic illustration of temporal sensitivity and temporal extremity.</td>
</tr>
<tr>
<td>15.5</td>
<td>Dimensions of dynamism in six Philadelphia vowel changes.</td>
</tr>
<tr>
<td>15.6</td>
<td>PRICE and GOAT in speaker 13A.</td>
</tr>
<tr>
<td>15.7</td>
<td>PRICE in speakers 13A (solid lines/arrows) and 13B (dashed lines/arrows).</td>
</tr>
<tr>
<td>15.8</td>
<td>Hypothesized partial indexical field for PRICE-raising; the social/affective meanings in bold text in the center are those associated with raised PRICE.</td>
</tr>
<tr>
<td>16.1</td>
<td>Screenshot from dyadic recording illustrating capture of head-on images for each participant.</td>
</tr>
<tr>
<td>16.2</td>
<td>Effect of smiling on GOAT F2.</td>
</tr>
<tr>
<td>16.3</td>
<td>Open-jaw setting during speech (left) and when not speaking (right) (Pratt & D’Onofrio 2017: 19).</td>
</tr>
<tr>
<td>16.4</td>
<td>Interaction between F1 (lowering) and age (generation).</td>
</tr>
<tr>
<td>16.5</td>
<td>V-shaped trajectories for GOAT indicating extensive lowering.</td>
</tr>
</tbody>
</table>
Tables

2.1 Predictors and levels included in Generalized Additive Mixed Models (GAMMs).

<table>
<thead>
<tr>
<th>Table 2.1</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictors and levels included in Generalized Additive Mixed Models (GAMMs).</td>
<td>31</td>
</tr>
</tbody>
</table>

2.2 Social subcategories of women for the second-wave analysis.

<table>
<thead>
<tr>
<th>Table 2.2</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social subcategories of women for the second-wave analysis.</td>
<td>36</td>
</tr>
</tbody>
</table>

3.1 Distribution of sentential negation types at Midlan High by CofP.

<table>
<thead>
<tr>
<th>Table 3.1</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution of sentential negation types at Midlan High by CofP.</td>
<td>62</td>
</tr>
</tbody>
</table>

4.1 Factor 1: scale targeted by totally.

<table>
<thead>
<tr>
<th>Table 4.1</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1: scale targeted by totally.</td>
<td>90</td>
</tr>
</tbody>
</table>

4.2 Differential ratings for positively correlated attributes for totally.

<table>
<thead>
<tr>
<th>Table 4.2</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential ratings for positively correlated attributes for totally.</td>
<td>92</td>
</tr>
</tbody>
</table>

4.3 Differential ratings for negatively correlated attributes for totally.

<table>
<thead>
<tr>
<th>Table 4.3</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential ratings for negatively correlated attributes for totally.</td>
<td>92</td>
</tr>
</tbody>
</table>

4.4 Differential ratings for positively correlated attributes for -issimo.

<table>
<thead>
<tr>
<th>Table 4.4</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential ratings for positively correlated attributes for -issimo.</td>
<td>95</td>
</tr>
</tbody>
</table>

4.5 Perception for negatively affective attributes: differentials.

<table>
<thead>
<tr>
<th>Table 4.5</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perception for negatively affective attributes: differentials.</td>
<td>95</td>
</tr>
</tbody>
</table>

5.1 Aggregate the-% for US House Representatives by party (Acton 2019: table 1).

<table>
<thead>
<tr>
<th>Table 5.1</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate the-% for US House Representatives by party (Acton 2019: table 1).</td>
<td>119</td>
</tr>
</tbody>
</table>

5.2 Comparison of aggregate the-% in the House Proceedings and McLaughlin Group, organized by speaker’s political leaning (Acton 2019: table 4).

<table>
<thead>
<tr>
<th>Table 5.2</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison of aggregate the-% in the House Proceedings and McLaughlin Group, organized by speaker’s political leaning (Acton 2019: table 4).</td>
<td>120</td>
</tr>
</tbody>
</table>

6.1 Factor analysis of MRAS responses. Loadings range from 0 to 1, with higher loadings indicating stronger contribution from the item to this factor.

<table>
<thead>
<tr>
<th>Table 6.1</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor analysis of MRAS responses. Loadings range from 0 to 1, with higher loadings indicating stronger contribution from the item to this factor.</td>
<td>138</td>
</tr>
</tbody>
</table>

7.1 F1 and F2 values for stimuli used in memory paradigm.

<table>
<thead>
<tr>
<th>Table 7.1</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 and F2 values for stimuli used in memory paradigm.</td>
<td>161</td>
</tr>
</tbody>
</table>

7.2 Summary of fixed effects from generalized linear mixed effect model predicting response accuracy, for Business Professional social prime conditions only (N = 396).

<table>
<thead>
<tr>
<th>Table 7.2</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of fixed effects from generalized linear mixed effect model predicting response accuracy, for Business Professional social prime conditions only (N = 396).</td>
<td>165</td>
</tr>
</tbody>
</table>

7.3 Fixed effects, generalized linear model predicting ‘old’ responses in entire dataset (N = 787).

<table>
<thead>
<tr>
<th>Table 7.3</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects, generalized linear model predicting ‘old’ responses in entire dataset (N = 787).</td>
<td>168</td>
</tr>
</tbody>
</table>

8.1 Overview of self-reported talker demographics, with self-selected pseudonyms.

<table>
<thead>
<tr>
<th>Table 8.1</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of self-reported talker demographics, with self-selected pseudonyms.</td>
<td>181</td>
</tr>
</tbody>
</table>
8.2 Model fit to the perceived gender of the talker, with gender treated as binary. A higher estimated coefficient indicates a greater likelihood of identifying the talker as a man. 185

8.3 Model fit to the perceived sexual orientation of the talker, with sexual orientation treated as binary (i.e., gay/lesbian vs heterosexual). A greater estimated coefficient indicates a higher likelihood of perceiving the talker as heterosexual. 185

8.4 Perceived ethnicity for Stanchmonsta in the places clip when he was identified as a gay man in the lower and higher pitch guises. Slashes are used to separate labels for responses when the talker was perceived as multiethnic. 187

8.5 Perceived ethnicity for Jeffrey in the friend clip when he was identified as a heterosexual man in the lower and higher pitch guises. 188

9.1 Average ratings on a scale of 1–5 for the guises used in Pharao et al. (2014). 205

9.2 Average ratings on a scale of 1–5 of guises (after Pharao & Maegaard 2017). 208

9.3 Average ratings on a scale of 1–5 for the STREET guises with female voices. 211

9.4 Average ratings on a scale of 1–5 for the MODERN guises with female voices. 212

11.1 Biographic indexicality and language change. 257

12.1 N-th and n+1st Order Indexicality of Standard Putonghua and Cosmopolitan Mandarin. Adapted from Table 5.3 in Zhang (2018: 166). 286

13.1 The variable (t). χ2-test showed a significant gender difference, p < 0.001. 302

13.2 The variable (et). χ2-test shows a significant gender difference, p < 0.001. 304

13.3 Staccato and Funen intonation. Names in italics indicate boys. 305

15.1 Dependent variable measures, Ns, and visual orientation of the six vowel changes. 347

16.1 Summary of mixed-effects linear regression model of GOAT F2. 369

16.2 Summary of mixed-effects linear regression model on F2 of GOAT. 373
Contributors

ERIC K. ACTON, Eastern Michigan University
ANDREA BELTRAMA, University of Pennsylvania
KATHRYN CAMPBELL-KIBLER, The Ohio State University
AMANDA CARDOSO, The University of British Columbia
IVAN CHIK, University of Hawai‘i at Mānoa
EMMA DAVIES, University of Edinburgh
ANNETTE D’ONOFRIO, Northwestern University
KATIE DRAGER, University of Hawai‘i at Mānoa
PENELOPE ECKERT, Stanford University
ROEY J. GAFTER, Ben-Gurion University
LAUREN HALL-LEW, University of Edinburgh
KATE HARDEMAN-GUTHRIE, University of Hawai‘i at Mānoa
MARIE MAEGAARD, University of Copenhagen
EMMA MOORE, University of Sheffield
ROBERT J. PODESVA, Stanford University
NICOLAI PHARAO, University of Copenhagen
PIA QUIST, University of Copenhagen
RACHEL SCHUTZ, University of Hawai‘i at Mānoa
DEVYANI SHARMA, Queen Mary, University of London
REBECCA LURIE STARR, National University of Singapore
LAURA STAUM-CASASANTO, Cornell University
MEREDITH TAMMINGA, University of Pennsylvania
QING ZHANG, University of Arizona