A Student’s Guide to Newton’s Laws of Motion

Newton’s laws of motion, which introduce force and describe how it affects motion, are the gateway to physics – yet they are often misunderstood due to their many subtleties. Based on the author’s twenty years of teaching physics and engineering, this intuitive guide to Newton’s laws of motion corrects the many misconceptions surrounding this fundamental topic. Adopting an informal and pedagogical approach and a clear, accessible style, this concise text presents Newton’s laws in a coherent story of force and motion. Carefully scaffolded everyday examples and full explanations of concepts and equations ensure that all students studying physics develop a deep understanding of Newton’s laws of motion.

SANJOY MAHAJAN is Research Affiliate in the Mathematics Department and J-WEL Affiliate at the Jameel World Education Lab at the Massachusetts Institute of Technology. After having studied mathematics at the University of Oxford and physics at the California Institute of Technology, he has taught physics, mathematics, and engineering around the world, including at the African Institute for Mathematical Sciences and the University of Cambridge. He is the author of The Art of Insight in Science and Engineering (MIT Press) and Street-Fighting Mathematics (MIT Press).
Other books in the Student Guide series:

A Student’s Guide to the Schrödinger Equation, Daniel Fleisch
A Student’s Guide to General Relativity, Norman Gray
A Student’s Guide to Analytical Mechanics, John L. Bohn
A Student’s Guide to Atomic Physics, Mark Fox
A Student’s Guide to Waves, Daniel Fleisch, Laura Kinnaman
A Student’s Guide to Entropy, Don S. Lemons
A Student’s Guide to Dimensional Analysis, Don S. Lemons
A Student’s Guide to Numerical Methods, Ian H. Hutchinson
A Student’s Guide to Lagrangians and Hamiltonians, Patrick Hamill
A Student’s Guide to the Mathematics of Astronomy, Daniel Fleisch, Julia Kregonow
A Student’s Guide to Vectors and Tensors, Daniel Fleisch
A Student’s Guide to Maxwell’s Equations, Daniel Fleisch
A Student’s Guide to Fourier Transforms, J. F. James
A Student’s Guide to Data and Error Analysis, Herman J. C. Berendsen
A Student’s Guide to Newton’s Laws of Motion

SANJOY MAHAJAN
Massachusetts Institute of Technology
To John William Warren (1923–2016),
Senior Lecturer in Physics and Reader in Physics Education
at Brunel University, London,
whose works set me on
the path to understanding
Newton’s enchanting laws of motion
Contents

Preface
ix

Acknowledgments
xi

1 Newton’s Third Law: Forces Belong to Interactions
1.1 Using the Third Law
1.2 Classifying Forces
1.3 Important Forces
1.4 Force Magnitudes
1.5 Forces to Avoid
1.6 *Problems*
28

2 Freebody Diagrams: Representing Forces
2.1 Making Freebody Diagrams: A Foolproof Recipe
2.2 Practicing the Recipe
2.3 A Subtle Puzzle: Bumblebees in a Box
2.4 *Problems*
38

3 Newton’s First Law: Permission to Use Newton’s Second Law
3.1 Reference Frames
3.2 Applying the Test
3.3 Noninertial Frames
3.4 Making New Inertial Frames
3.5 *Problems*
46
4 Introducing Newton’s Second Law
4.1 Force Changes Motion 47
4.2 What Matters Is Net Force 49
4.3 More Mass Means Less Acceleration 50
4.4 Alternative Forms of the Second Law 51

5 Newton’s Second Law with Zero Acceleration
5.1 Standing on Level Ground 53
5.2 Standing on a Hill 55
5.3 Standing in a Steadily Descending Elevator 56
5.4 Bicycling on Level Ground 57
5.5 Sledding at Constant Velocity 64
5.6 Tension and Tension Forces 70
5.7 Pressure versus Depth in a Lake 80
5.8 Problems 84

6 Describing Changing Motion: Acceleration
6.1 Velocity 90
6.2 Acceleration Defined 95
6.3 Circular Motion at Constant Speed 101
6.4 Constant-Speed Motion around an Ellipse 107
6.5 Varying-Speed Motion around a Circle 109
6.6 Acceleration in General: A Summary 113
6.7 Problems 114

7 Newton’s Second Law with Changing Motion
7.1 Restoring Acceleration to Newton’s Second Law 116
7.2 Composite Bodies 141
7.3 Two-Dimensional Motion 143
7.4 Weight 152
7.5 Problems 165

8 What Comes Next
8.1 Noninertial Reference Frames 173
8.2 Torque and Rotation 180
8.3 Going beyond Newton’s Laws 185
8.4 Bon Voyage! 191
8.5 Problems 191

References 193
Index 195
Preface

Newton’s three laws of motion, the basis of almost all science and engineering, are one of the great achievements of human culture. Using them, we explain, predict, and plan the motion of bodies in the natural and in our human-created worlds. Doing so requires knowing how forces affect motion – knowledge embodied in Newton’s second law. Your fluency with this law is the ultimate goal of this book. But first you must know when this law is valid – knowledge provided by Newton’s first law. And understanding the first law requires a prior idea, interaction – embodied in Newton’s third law.

Thus, you will meet the three laws in the following order: (1) the third law, to introduce interaction; (2) the first law, to describe when the second law can even be used; (3) and finally the second law, to describe what forces do.

But, wait! Before studying the effect of force (the second law) or the idea of interaction (the third law), don’t you need to know what force is? No one has answered that question fully. Fortunately, we can understand and use Newton’s laws without a solution to that philosophical conundrum. All that we need to know is that a force is a push or a pull. Thus, a force has a strength, formally known as its magnitude, and a direction. Mathematically, force is a vector.

Now you are ready for Newton’s laws. To help you learn them, I have embedded throughout this book three types of questions. Questions preceded by a rightward-pointing triangle (>) are from me to you. They are what I would ask you in a one-to-one tutorial on Newton’s laws. Questions preceded by a leftward-pointing triangle (<) are from you to me. They are questions that students have asked or should ask me. For both types of triangle questions, but especially for the questions from me to you (>), try to answer the question before reading on for my explanation. In that way, you will learn Newton’s laws more quickly. (When my explanation is lengthy and the answer itself easy to miss, I point out the answer to the triangle question explicitly.)

ix
Preface

The third type of question is end-of-chapter problems. Like traditional homework problems, they ask you to apply the ideas that you have learned so far (including in earlier chapters!). Their solutions are available online. As with the triangle questions, try your hand before studying my solution, but do use my solutions as worked examples – one of the most effective ways to learn [20].

Newton’s laws are subtle. I have been studying them for over 30 years and teaching them for over 20 years. Only now do I understand many of their subtleties. This book will help you learn in weeks what I learned over decades, an attempt to fulfill the purpose of teaching described by the physicist Edwin Jaynes: to implant a way of thinking so that you, the student, can “learn in one year what the teacher learned in two” [10]. And you can. For I took detours, covered up deep misunderstandings with symbol manipulation and formalism, and fell into many conceptual traps – traps arising partly from what the physics educator J. W. Warren describes as the “incredible confusion of approach” [25, p. 45]. In the following chapters, we journey quickly and directly to the heart of this fascinating subject.

On y va!
I am grateful for help from many sides. The book has been typeset using Con-
\text{T\!e\!X}t, built on \text{T\!e\!X}; the friendly Con\text{T\!e\!X}t community, including Wolfgang
Schuster, Mikael Sundqvist, and Hans Hagen, have offered valuable advice
throughout. The Asymptote developers have provided a powerful and enjoyable
tool for making scientific figures. At Olin College, the Faculty Development
Program provided a writing grant, and Vincent Manno arranged a developmen-
tal leave at the right time. Deborah Beers-Jones has taught me about teaching
through teaching me piano. Dave Pritchard has for many years shared his wis-
dom about teaching Newton’s laws. Steve Holt and Dan Fleisch made insightful
comments on the entire text – as did Joshua Roth, who improved every page.
Simon Capelin, Nick Gibbons, and Roisin Munnelly at Cambridge University
Press provided valuable guidance throughout, and John King expertly edited
the final manuscript. Students in my Mechanics courses helped me clarify many
confusing parts. The Art of Insights group at MIT – Sheryl Barnes, Dave Dar-
moval, Denny Freeman, Woody Flowers, Warren Hoburg, Sanjay Sarma, and
Gerry Sussman – offered a stimulating forum to rethink the teaching of physics
and engineering. Arthur Eisenkraft introduced me to the fascination of physics.
J. W. Warren, in \textit{Understanding Force} [25] and other works, set me on the path
to understanding Newton’s laws. And Juliet, last in this list but first in my life,
encouraged me to become a writer.