

Introduction to Quantum Field Theory

This textbook offers a detailed and uniquely self-contained presentation of quantum and gauge field theories. Writing from a modern perspective, the author begins with a discussion of advanced dynamics and special relativity before guiding students steadily through the fundamental principles of relativistic quantum mechanics and classical field theory. This foundation is then used to develop the full theoretical framework of quantum and gauge field theories. The introductory, opening half of the book allows it to be used for a variety of courses, from advanced undergraduate to graduate level, and students lacking a formal background in more elementary topics will benefit greatly from this approach. Williams provides full derivations wherever possible and adopts a pedagogical tone without sacrificing rigor. Worked examples are included throughout the text and end-of-chapter problems help students to reinforce key concepts. A fully worked solutions manual is available online for instructors.

Anthony G. Williams is Professor of Physics at Adelaide University, Australia. He has worked extensively in the areas of hadronic physics and computational physics, studying quark and gluon substructure. For this work, he was awarded the Walter Boas Medal by the Australian Institute of Physics in 2001 and elected Fellow of the American Physical Society in 2002. In 2020, he became the deputy director of the Centre for Dark Matter Particle Physics of the Australian Research Council.

Introduction to Quantum Field Theory

Classical Mechanics to Gauge Field Theories

ANTHONY G. WILLIAMS

University of Adelaide

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,
New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/highereducation/isbn/9781108470902
DOI: 10.1017/9781108585286

© Anthony G. Williams 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2023

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

 $\label{lem:analytication} A\ catalogue\ record\ for\ this\ publication\ is\ available\ from\ the\ British\ Library.$

ISBN 978-1-108-47090-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface	page xv
1 Lorentz and Poincaré Invariance	1
2 Classical Mechanics	57
3 Relativistic Classical Fields	156
4 Relativistic Quantum Mechanics	205
5 Introduction to Particle Physics	315
6 Formulation of Quantum Field Theory	365
7 Interacting Quantum Field Theories	503
8 Symmetries and Renormalization	600
9 Nonabelian Gauge Theories	693
Appendix	728
References	754
Index	764

٧

Detailed Contents

Prefac	ce	XV
Org	xvi	
Ho	w to Use This Book	xvii
Ack	cnowledgments	xviii
1 Lore	entz and Poincaré Invariance	1
1.1	Introduction	1
	1.1.1 Inertial Reference Frames	1
	1.1.2 Galilean Relativity	2
1.2	Lorentz and Poincaré Transformations	4
	1.2.1 Postulates of Special Relativity and Their Implications	4
	1.2.2 Active and Passive Transformations	12
	1.2.3 Lorentz Group	14
	1.2.4 Poincaré Group	36
	1.2.5 Representation-Independent Poincaré Lie Algebra	40
1.3	Representations of the Lorentz Group	45
	1.3.1 Labeling Representations of the Lorentz Group	45
	1.3.2 Lorentz Transformations of Weyl Spinors	46
1.4	Poincaré Group and the Little Group	47
	1.4.1 Intrinsic Spin and the Poincaré Group	47
	1.4.2 The Little Group	48
Sur	nmary	53
Pro	blems	54
2 Class	sical Mechanics	57
2.1	Lagrangian Formulation	57
	2.1.1 Euler-Lagrange Equations	58
	2.1.2 Hamilton's Principle	64
	2.1.3 Lagrange Multipliers and Constraints	67
2.2	Symmetries, Noether's Theorem and Conservation Laws	69
2.3	Small Oscillations and Normal Modes	73
2.4	Hamiltonian Formulation	78
	2.4.1 Hamiltonian and Hamilton's Equations	78
	2.4.2 Poisson Brackets	80
	2.4.3 Liouville Equation and Liouville's Theorem	84
	2.4.4 Canonical Transformations	85
2.5	Relation to Quantum Mechanics	88
	Relativistic Kinematics	95

۷ii

viii Detailed Contents

2.7	Electromagnetism		99
	2.7.1 Maxwell's Equation	ons	99
	2.7.2 Electromagnetic V	Vaves	105
	2.7.3 Gauge Transforma	ations and Gauge Fixing	109
2.8	Analytic Relativistic Mech	nanics	117
2.9	Constrained Hamiltonian	Systems	126
	2.9.1 Construction of th	e Hamiltonian Approach	126
	2.9.2 Summary of the D	Pirac-Bergmann Algorithm	144
	2.9.3 Gauge Fixing, the	Dirac Bracket and Quantization	148
	2.9.4 Dirac Bracket and	Canonical Quantization	150
Sui	nmary		152
Pro	blems		152
3 Rela	ntivistic Classical Fields		156
3.1	Relativistic Classical Scale	ar Fields	156
3.2	Noether's Theorem and Sy	ymmetries	166
	3.2.1 Noether's Theorem	m for Classical Fields	166
	3.2.2 Stress-Energy Ten	sor	174
	3.2.3 Angular Momentu	ım Tensor	176
	3.2.4 Intrinsic Angular	Momentum	179
	3.2.5 Internal Symmetri	es	181
	3.2.6 Belinfante-Rosent	Feld Tensor	182
	3.2.7 Noether's Theorem	m and Poisson Brackets	183
	3.2.8 Generators of the	Poincaré Group	184
3.3	Classical Electromagnetic	Field	185
	3.3.1 Lagrangian Formu	lation of Electromagnetism	185
		nulation of Electromagnetism	188
Sui	nmary		201
Pro	blems		202
4 Rela	ntivistic Quantum Mechanics		205
4.1	Review of Quantum Mech	nanics	205
	4.1.1 Postulates of Quan	ntum Mechanics	205
		and Antilinear Operators	212
	4.1.3 Symmetry Transfo	ormations and Wigner's Theorem	215
	4.1.4 Projective Represe	entations of Symmetry Groups	216
	4.1.5 Symmetry in Quan	ntum Systems	221
	4.1.6 Parity Operator		222
	4.1.7 Time Reversal Op	erator	223
	4.1.8 Additive and Mult	tiplicative Quantum Numbers	229
	4.1.9 Systems of Identic	cal Particles and Fock Space	232
	4.1.10 Charge Conjugation		236
	4.1.11 Interaction Picture	e in Quantum Mechanics	239
	4.1.12 Path Integrals in (Quantum Mechanics	241
4.2	Wavepackets and Dispersi	on	248

ix Detailed Contents

	4 3	Klein-	Gordon Equation	254
	15	4.3.1	_	254
			Conserved Current	257
			Interaction with a Scalar Potential	260
			Interaction with an Electromagnetic Field	262
	4.4		Equation	264
		4.4.1	Formulation of the Dirac Equation	265
		4.4.2	Probability Current	268
		4.4.3	Nonrelativistic Limit and Relativistic Classical Limit	268
		4.4.4	Interaction with an Electromagnetic Field	270
		4.4.5		274
		4.4.6	1	277
		4.4.7	J 1	278
		4.4.8		283
		4.4.9		284
			Covariant Interactions and Bilinears	286
			Poincaré Group and the Dirac Equation	287
	4.5		nd T: Discrete Transformations	289
	7.5	4.5.1		289
			Charge Conjugation	291
			Time Reversal	295
			CPT Transformation	298
	46		ty and Weyl and Majorana Fermions	300
	1.0		Helicity	300
			Chirality	301
		4.6.3	•	302
		4.6.4		304
		4.6.5	1	306
			Weyl Spinor Notation	307
	47		onal Topics	311
		mary	ondi Topics	313
		olems		313
5	Intro	duction 1	to Particle Physics	315
•			lew of Particle Physics	315
	5.2		andard Model	319
		5.2.1	Development of Quantum Electrodynamics (QED)	319
		5.2.2	Development of Quantum Chromodynamics (QCD)	322
		5.2.3	Development of Electroweak (EW) Theory	329
		5.2.4	Quark Mixing and the CKM Matrix	335
		5.2.5	Neutrino Mixing and the PMNS Matrix	338
		5.2.6	Majorana Neutrinos and Double Beta Decay	344
	5.3		sentations of $SU(N)$ and the Quark Model	346
	2.3	5.3.1	Multiplets of <i>SU(N)</i> and Young Tableaux	346
		5.3.2	Quark Model	358
		- · - · -	V	550

Χ

Detailed Contents

		nmary olems		363 363
6		ormulation of Quantum Field Theory		
	6.1	Lesson	s from Quantum Mechanics	365
		6.1.1	Quantization of Normal Modes	366
		6.1.2	Motivation for Relativistic Quantum Field Theory	370
	6.2	Scalar	Particles	370
		6.2.1	Free Scalar Field	371
		6.2.2	Field Configuration and Momentum Density Space	382
		6.2.3	Covariant Operator Formulation	383
		6.2.4	Poincaré Covariance	388
		6.2.5	Causality and Spacelike Separations	392
		6.2.6	Feynman Propagator for Scalar Particles	394
		6.2.7	Charged Scalar Field	399
			Wick's Theorem	404
			Functional Integral Formulation	407
			Euclidean Space Formulation	412
		6.2.11	Generating Functional for a Scalar Field	413
	6.3	Fermio		417
		6.3.1	Annihilation and Creation Operators	418
		6.3.2	Fock Space and Grassmann Algebra	419
		6.3.3	Feynman Path Integral for Fermions	427
		6.3.4	Fock Space for Dirac Fermions	428
		6.3.5	Functional Integral for Dirac Fermions	432
		6.3.6	Canonical Quantization of Dirac Fermions	436
		6.3.7	Quantum Field Theory for Dirac Fermions	446
		6.3.8	Generating Functional for Dirac Fermions	453
	6.4			457
		6.4.1	Canonical Quantization of the Electromagnetic Field	457
		6.4.2	Fock Space for Photons	458
		6.4.3	Functional Integral for Photons	466
		6.4.4	Gauge-Fixing	468
		6.4.5	Covariant Canonical Quantization for Photons	476
	6.5		e Vector Bosons	484
		6.5.1	Classical Massive Vector Field	485
		6.5.2	Normal Modes of the Massive Vector Field	489
		6.5.3	Quantization of the Massive Vector Field	490
		6.5.4	Functional Integral for Massive Vector Bosons	494
	~	6.5.5	Covariant Canonical Quantization for Massive Vector Bosons	497
		nmary		498
	Prob	olems		499
7	Inter	acting Qu	uantum Field Theories	503
	7.1	_	al Spectrum of States	503
	7.2	-	Lehmann Spectral Representation	507

Χİ

7.2	G 44 -	in Com Coding of Day	510
7.3		ring Cross-Sections and Decay Rates	510
	7.3.1	Cross-Section Polating the Cross Section to the C Matrix	511
	7.3.2	C	520
	7.3.3	•	527
	7.3.4		528
7.4	7.3.5	1	532
7.4		ction Picture and Feynman Diagrams	533
	7.4.1	Interaction Picture	534
	7.4.2	,	537
7.5	7.4.3	•	544
7.5		ating Invariant Amplitudes	546
		LSZ Reduction Formula for Scalars	546
		LSZ for Photons	557
7.0	7.5.3		564
7.6	•	nan Rules	569
	7.6.1		570
	7.6.2		572
	7.6.3	Example Tree-Level Results	578
	7.6.4		586
	7.6.5	r	587
α .	7.6.6	Unstable Particles	594
	nmary blems		596
PIO	bleins		597
8 Sym	metries a	and Renormalization	600
8.1	Discre	te Symmetries: P, C and T	600
	8.1.1	Parity	600
	8.1.2	Charge Conjugation	608
	8.1.3	Time Reversal	613
	8.1.4	The CPT Theorem	618
	8.1.5	Spin-Statistics Connection	623
8.2	Genera	ating Functionals and the Effective Action	625
	8.2.1	Generating Functional for Connected Green's Functions	625
	8.2.2	The Effective Action	627
	8.2.3	Effective Potential	631
	8.2.4	Loop Expansion	632
8.3	Schwi	nger-Dyson Equations	633
	8.3.1	Derivation of Schwinger-Dyson Equations	633
	8.3.2	Ward and Ward-Takahashi Identities	636
8.4	Renor	malization	642
	8.4.1	Superficial Degree of Divergence	642
	8.4.2	Superficial Divergences in QED	645
8.5		malized QED	648
	8.5.1	QED Schwinger-Dyson Equations with Bare Fields	650
	8.5.2		655
	853	Renormalization Group	659

Detailed Contents

xii Detailed Contents

0		661
8.	6 Regularization	661
	8.6.1 Regularization Methods	661
0	8.6.2 Dimensional Regularization	664
8.	· · · · · · · · · · · · · · · · · · ·	666
	8.7.1 Renormalized Perturbation Theory for ϕ^4	666
	8.7.2 Renormalized Perturbative Yukawa Theory	671
	8.7.3 Renormalized Perturbative QED	672
	8.7.4 Minimal Subtraction Renormalization Schemes	681
	8.7.5 Running Coupling and Running Mass in QED	683
0	8.7.6 Renormalization Group Flow and Fixed Points	685
8.		686
	9 Casimir Effect	690
	ummary	691
Pı	roblems	692
9 No	onabelian Gauge Theories	693
9.	1 Nonabelian Gauge Theories	693
	9.1.1 Formulation of Nonabelian Gauge Theories	693
	9.1.2 Wilson Lines and Wilson Loops	696
	9.1.3 Quantization of Nonabelian Gauge Theories	697
9.	2 Quantum Chromodynamics	698
	9.2.1 QCD Functional Integral	698
	9.2.2 Renormalization in QCD	701
	9.2.3 Running Coupling and Running Quark Mass	703
	9.2.4 BRST Invariance	706
	9.2.5 Lattice QCD	708
9.	3 Anomalies	715
9.	4 Introduction to the Standard Model	719
	9.4.1 Electroweak Symmetry Breaking	719
	9.4.2 Quarks and Leptons	722
Sı	ummary	725
Pı	roblems	726
Appe	ndix	728
	.1 Physical Constants	728
	.2 Notation and Useful Results	728
	A.2.1 Levi-Civita Tensor	729
	A.2.2 Dirac Delta Function and Jacobians	729
	A.2.3 Fourier Transforms	730
	A.2.4 Cauchy's Integral Theorem	730
	A.2.5 Wirtinger Calculus	731
	A.2.6 Exactness, Conservative Vector Fields and Integrating Factors	731
	A.2.7 Tensor and Exterior Products	732
А	.3 Dirac Algebra	734
	.4 Euclidean Space Conventions	736
	5 Feynman Parameterization	738
		, 50

xiii	Detailed Contents		
	A.6 Dimensional Regularization	739	
	A.7 Group Theory and Lie Groups	743	
	A.7.1 Elements of Group Theory	743	
	A.7.2 Lie Groups	745	
	A.7.3 Unitary Representations of Lie Groups	748	
	A.8 Results for Matrices	752	
	References	754	
	Index	764	

Preface

The Standard Model of particle physics unites three of the four known forces of nature into a single, elegant theory. It is arguably the most successful physical theory devised to date. The accuracy with which the Standard Model can reproduce the measurements of precise experiments is remarkable. It describes the electromagnetic, weak and strong interactions, but it does not account for the gravitational interaction. We understand that the Standard Model is not the final word, but the path to physics beyond the Standard Model is not yet clear. We therefore set the Standard Model as our end point here.

The primary purpose of this book is to provide a single coherent framework taking us from the postulates of special relativity, Newton's laws and quantum mechanics through to the development of quantum field theory, gauge field theories and the Standard Model. The presentation is as self-contained as possible given the need to fit within a single volume. While building an understanding of quantum field theory, gauge field theories and the Standard Model is the final goal here, we have attempted to include all essential background material in a self-contained way.

There is an emphasis on showing the logically flowing development of the subject matter. In order to achieve this we have attempted to provide proofs of all key steps. Where appropriate these have been separated out from the main text in boxes. The reason for this is that the proofs sometimes require a careful mathematical discussion, and this can distract from the flow of the physical arguments. Students seeing this material for the first time can overlook the more difficult boxed proofs on a first reading while concentrating on the physics. They can be comfortable knowing that the particular result can be proved and then can come back and absorb that proof later as desired. Problem sets are provided at the end of each chapter to build familiarity and understanding of the material and practice in its application.

A word of encouragement to students: Much knowledge that is worthwhile is not easily won. If some piece of mathematics initially seems too challenging, then absorb the physical consequence of the result, move on, and come back to the maths later. Discussing with others is always helpful. This author remembers well when he did not understand what is written in these pages and the challenge of needing to overcome that. The hope is that enough handholds have been provided that with some effort and through discussions with others any student of quantum field theory can follow the arguments presented.

Conventions and notation: The notation and conventions that we typically follow are those of Peskin and Schroeder (1995) and Schwartz (2013). The conventions in Bjorken and Drell (1964), Bjorken and Drell (1965) and Greiner (2000) are very similar to each other and differ from our notation in the normalization choices for field operators and Dirac spinors and in their not including a factor of i in the definition of Feynman propagators. Itzykson and Zuber (1980) and Sterman (1993) use different normalization conventions again. We and the above books use the 'West coast' metric, $g^{\mu\nu} = \text{diag}(1, -1, -1, -1)$, whereas Brown (1992), Srednicki (2007) and Weinberg (1995) use the 'East coast' metric, $g^{\mu\nu} = \text{diag}(-1, 1, 1, 1)$. Here we denote the electric charge as q as done in

xvi Preface

Aitchison and Hey (2013) to avoid confusion. The electron charge is then $q=-e\equiv -|e|$, where for us e will always mean the magnitude of the charge of the electron. Some texts choose e negative and some have mixed or inconsistent usage of the sign. Comparing the covariant derivative with ours, $D^{\mu}=\partial^{\mu}+iqA^{\mu}$, will immediately reveal the choice in each text. One needs to carefully compare equations when moving between texts, keeping these issues in mind. To know that one has the correct sign for q in D^{μ} one can relate it back to the Lorentz force equation in Eq. (4.3.67) or to the Maxwell equations $\partial_{\mu}F^{\mu\nu}=j^{\nu}$ as we and Aitchison and Hey (2013) have done.

Further reading: Due to the breadth of material covered in this single volume there has been a need to focus on the essentials of quantum and gauge field theories. By construction there is more than enough material for any year-long course in quantum and gauge field theories; however, there are topics and applications that could not be included here. A reader who has understood this text will be able to pick up other texts on quantum field theory and readily understand them. Both Peskin and Schroeder (1995) and Schwartz (2013) contain similar conventions and notation, so by design it is straightforward to supplement this book with examples and applications from each of these texts. Srednicki (2007), Weinberg (1995) and Weinberg (1996) provide additional applications and detail using the 'East coast' spacetime metric. For the advanced reader Weinberg's books contain insights and gems of knowledge not readily found elsewhere. A very accessible overview of quantum field theory is given in Zee (2010). There are many other very worthwhile texts and a partial list of these is given at the beginning of Chapter 6.

Organization of the Book

The first four chapters of the book lay out the foundations and structures required for the following chapters. It opens with a discussion of special relativity and Lorentz and Poincaré invariance in Chapter 1, which begins with Einstein's postulates and ends with a discussion of the representations of the Poincaré group used to classify fundamental particles. In Chapter 2 the treatment of classical point mechanics begins with Newton's laws and is developed into analytic mechanics in both its Lagrangian and Hamiltonian formulations. The normal modes of small oscillations of classical systems are treated. The analytic mechanics approach is subsequently extended to include special relativity in the special case of a single particle in an external potential. The discussion of electromagnetism in Sec. 2.7 begins from the traditional form of Maxwell's equations and moves to the relativistic formulation of electromagnetism and the consequent need to understand gauge transformations and gauge fixing. The relation of different unit systems in electromagnetism is given. Chapter 2 ends with a discussion of the Dirac-Bergmann algorithm needed to treat Hamiltonian descriptions of singular systems, which will become relevant for understanding the canonical quantization of gauge fields and fermions. The extension of classical point mechanics to classical relativistic fields is developed in Chapter 3, where the concepts of classical mechanics are extended to an infinite number of degrees of freedom. This was necessary because there is no consistent analytic mechanics formulation of a relativistic system with a finite number of degrees of freedom. We later come to understand that the quanta resulting from the quantization of the normal modes of these relativistic classical fields are the fundamental particles of the corresponding relativistic quantum field theory. A common unifying thread through all of these developments in Chapters 2 and 3 is Hamilton's principle of stationary action. Chapter 4 is devoted to the development of relativistic

xvii Preface

quantum mechanics. It begins with a review of the essential elements of quantum mechanics, including the derivation of the Feynman path integral approach to quantum mechanics. This chapter has detailed discussions of the Klein-Gordon equation, the Dirac equation, their interaction with external fields and their symmetries.

In the second part of the book we begin in Chapter 5 with a brief history and overview of particle physics to motivate the subsequent chapters. This historical perspective demonstrates the essential role of experimental discovery in driving the direction and development of the field. In Chapter 6 the formulation of free field theory is presented with explicit constructions given for scalar, charged scalar, fermion, photon and massive vector boson fields. In Chapter 7 we discuss the interaction picture, scattering cross-sections and Feynman diagrams and show how to evaluate treelevel diagrams for several theories of interest. In Chapter 8 we first consider the discrete symmetries of charge conjugation (C), parity inversion (P) and time reversal (T) and prove the CPT theorem. Then we turn to the essential elements of renormalization and the renormalization group including dimensional regularization and renormalized perturbation theory. This is followed by a discussion of spontaneous symmetry breaking, Goldstone's theorem and the Casimir effect. Finally, in Chapter 9 the extension of electromagnetism and quantum electrodynamics to nonabelian gauge theories is given. The example of quantum chromodymanics and its relation the strong interactions is then discussed and the lattice gauge theory approach to studies of nonperturbative behavior is introduced. The chapter concludes with a discussion of quantum anomalies and then finally with the construction of the Standard Model of particle physics.

How to Use This Book

This book is intended to be suitable for first-time students as well as for readers more experienced in the field. Some suggestions on how to use the material covered to build various courses are the following.

- (i) For a lecture course on **Special Relativity**: Secs. 1.1, 1.2 and some or all of the material from 1.4. Some aspects of Sec. 1.3 could be included for an advanced class. Careful selections of key results from Sec. 2.6 on relativistic kinematics and Sec. 2.7.1 on the relativistic formulation of Maxwell's equations might also be considered.
- (ii) For a lecture course on Classical and/or Analytic Mechanics: Secs. 2.1–2.7 form a sound basis. As needed, subsets of this material can be used depending on the length of the course. For an advanced class, selections of material on analytic relativistic mechanics and/or Sec. 2.9 on constrained Hamiltonian mechanics could also be included. Working through and summarizing these two advanced sections could also be assigned to students as undergraduate research or reading projects;
- (iii) For a course on **Advanced Dynamics and Relativity**: Core material from Secs. 1.1, 1.2 and Secs. 2.1–2.8 form the basis of a one-semester course that I taught over many years.
- (iv) For a course on **Relativistic Classical Field Theory**: Secs. 3.1–Sec. 3.3.1 are suitable for a lecture course. For a shorter course a focus on the key results and their proofs would be sufficient. For an advanced class in a longer course Sec. 3.3.2 could be included in the lectures, but this advanced material is also a candidate for a reading topic or small research project.

xviii Preface

- (v) For a course on **Relativistic Quantum Mechanics**: Secs. 4.2–4.6.5 contain all necessary course material. The review of quantum mechanics in Sec. 4.1 could be treated as assumed knowledge or some elements could be chosen for inclusion. Relevant sections of Sec. 4.1 could be assigned as reading topics in this course as well as in other courses.
- (vi) For a lecture course on Relativistic Quantum Mechanics and Particle Physics: Material on the Klein-Gordon and Dirac equations in Secs. 4.3, 4.4 and 4.5.1 can be combined with selected elements from Chapter 5 such as the Cabibbo-Kobayashi-Maskawa (CKM) matrix, neutrino mixing, the quark model of strongly interacting particles and representations of group theory.
- (vii) For a one-semester course on **Relativistic Quantum Field Theory**: Chapter 6 would form the core of such a course with an emphasis on Secs. 6.2–6.4. Technical sections such as the derivation of the functional integrals for fermions and photons could be abbreviated or omitted and the second part of Sec. 6.3.6 on the derivation of the Dirac fermion canonical anticommutation relations could be mentioned but not explicitly covered. Some of the important results in Secs. 7.1–7.6, including the Feynman rules and example tree-level cross-section calculations, could be summarized and included as course length allows.
- (viii) For a one-semester course on **Gauge Field Theories**: The remainder of Chapter 7 not covered above and the core material in Chapters 8 and 9 on renormalization, gauge field theories, Goldstone's theorem, quantum chromodynamics (QCD), anomalies and the Standard Model.
- (ix) For a full-year course on **Quantum and Gauge Field Theories**: Combine the material in the above two suggested courses and choose the division of material between semesters to best suit the pace of the lectures and the desired emphasis of the course.

Corrections to This Book

Despite the best efforts of all involved, there will be remaining errors in this book for which I am solely responsible. The current list of corrections along with the names of those who suggested them can be found at:

www.cambridge.org/WilliamsQFT

It would be greatly appreciated if anyone finding additional errors could please report them using the relevant corrections link provided on this website.

Acknowledgments

I offer my sincere thanks to the past and present colleagues and students who have contributed to my understanding of this material over the years. I acknowledge many useful conversations with Ross Young as well as with colleagues Rod Crewther, Paul Jackson, Derek Leinweber, Anthony Thomas, Martin White and James Zanotti. I also thank my former students Dylan Harries for help with proofreading and Ethan Carragher for both proofreading and his help preparing the solutions manual. I am also grateful to Daniel Murnane and Shanette De La Motte for assisting with the preparation of many of the figures. I thank Marc Henneaux, Don Sinclair and Kurt Sundermeyer

xix Preface

for contributing to my understanding of the Dirac-Begmann algorithm and constrained Hamiltonian dynamics as well as Steven Avery for sharing his notes on the application of these techniques to systems with fermions. I thank Herbert Neuberger for helpful discussions regarding Gribov copies and lattice BRST.

I am enormously grateful to Jan and Ellen for their constant encouragement, love and understanding through the long hours necessary for the preparation of this book.

