

Abbe, Ernst, 116–117 abstract concepts understanding in children, 13 Achterberg, Cheryl, 124–126 action role in meaningful learning, 12–13 active learning, 102 programs in colleges and universities, 134–136 promoting social responsibility, 136–137	Bartlett, Frederic, 74 behavioral psychology, 4–5, 9–10, 74 Berman, Sarah Black, 145 Big Bang, 61 Bowen, Barbara, 83–85 brain connections created during learning, 11–12 functional Magnetic Resonance Imaging
work of John Dewey, 117–118	(fMRI), 90–91
advance organizers, 75	grid cells, 90–91
Armstrong, Elizabeth, 144–145	Bretz, Stacey Lowery, 120–122
artificial intelligence (AI), 43	Briggs, Geoffrey, 50–51
ICONKAT, 45	Bruner, Jerome, 10, 76
assessment	Bush, George W., 116
multiple-choice questions, 117	business world
National Assessment of Educational Progress (NAEP), 129–130	helping people learn, 51–55
objective testing, 126–127	California
problems with, 126–129	Lompoc public schools, 102–104
test reliability, 127–128	Cañas, Alberto, 45-49, 58, 66, 104, 106-107,
test validity, 127–128	110, 155
True–False questions, 117	Cañas, Carmen, 106–107, 110
assimilation theory of cognitive learning. See	carbon dioxide
Ausubel, David	sources of, 147
astrobiology research program (NASA)	Carbonero, M. A., 138–139
concept maps, 59-63	children
Audio-tutorial (A-T) instruction, 13, 15–20 Ausubel, David, 9	ability to understand abstract concepts, 13 factors in effective meaningful learning,
advance organizers, 75	12-13
application of his learning theory, 76–83	language learning in young children, 1
Assimilation Theory of Learning, 5–13, 17,	why young children learn so quickly, 1–2 China
35, 37, 53, 74–76, 79, 92	
comment on the work of Joseph Novak,	educational programs, 110
96–97	Chomsky, Noam, 10
meaningful learning, 90	climate change, 74
obliterative subsumption principle, 6	helping people cope with, 147–150
progressive differentiation principle, 6	physical and social changes associated with,
subsumption principle, 6	147–148
superordinate learning, 90 autonomous vehicles, 148–150	clinical interviewing wait time for responses, 35
autonomous venicies, 140–130	wait time for responses, 33

clinical interviews	concepts
learning from planning and conducting,	influence of cultural context, 2
34-39	meaningful learning and, 1–2
CmapTools, 28-29, 66-68, 155	propositions associated with, 2-3
building a New Model for Education,	role in learning, 1–3
110–113	constructivism, 10, 53, 83, 87, 119
development of, 45-48	human constructivist view of epistemology,
getting started with, 47–51	87–91
widespread international use, 57–59	radical constructivism, 89
cognitive psychology, 76, 89	Cornell University
cognitive psychology revolution, 9–10, 18	research team, 76–83
cognitive theories of learning, 74, 76	start of work on a theory of education, 75–76
Coleridge, Samuel Taylor, 114	student protests in the 1960s, 84
Comte, Auguste, 87	Costa Rica
Conant, James, 9–10, 78, 87, 154	education in San Jose, 104–106
concept	Covid-19 pandemic
definition of, 1, 12	lessons from, 150–154
concept maps	Crabtree, G., 149
adding resources to, 28	creative learning, 11–12
business applications, 51-55	creative thinking
capturing expert knowledge, 43–44	helping people create new knowledge, 39-41
concept labels, 26–28	meaningful learning and, 90
creative insights from, 28-29	Vee diagrams, 87
crosslinks, 27	cultural context
definition of a concept, 12	influence on concept formation, 2
definition of a proposition, 24	curriculum development programs, 87
	curriculum development programs, 67
development of, 155	Dalar Parkara Tre Tre
employee training in the power industry,	Daley, Barbara, 145–146
66–70	Darwin, Charles, 73
examples, 29–31	deep learning, 11
First Pass Functional Imaging (FPFI),	Dewey, John, 117–119
43-45	digital revolution
focus question, 24	transformation of learning, 40–41
global maps, 28	DNA
helping a range of learners, 31–34	discovery of the structure of, 154
hierarchical organization, 26–27	Drake, Frank, 59
invention of the concept map tool, 14-20	Duncan, Arne, 131–132
linking words, 26	Dunn, Bruce, 42–43
making your own, 24–31	
math anxiety, 37	Edmondson, Kathy, 89–90, 132, 145
medical education and practice, 146	education
NASA Astrobiology program, 59–63	as a science, 4-5, 73-75
NASA Mars Exploration program, 50-51	history of, 116–119
plant pathology study, 40	need for a theory of education, 4-5
rules for making good maps, 24–29	New Model for, 110–113
security training for staff, 71–72	No Child Left Behind program (USA),
strategy for meaningful learning, 20–23	
	130–132
students' help in development of, 20–23	positive turning point, 132–133
sub-concepts, 27	promoting moral development and social
testing in other settings, 31–34	responsibility, 137–139 <i>See also</i> theory of
transforming learning in high school students,	education.
137	Educational Testing Service (ETS), 127
unique concept labels within a map, 27–28	Einstein, Albert, 93, 126
use of specific examples, 27	electric vehicles
weather forecasting, 63–66	shift towards, 147–150

electroencephalography (EEG), 42–43	self-driving cars, 148–150
Epignosis LLC, 136	social responsibility study of chemistry
evolution concept, 93	students, 120–122
expert knowledge	the journey forward, 154–156
capture using concept maps, 43-44	Calena Henry 102 102
Farrell John A 115	Galena, Henry, 102–103
Farrell, John A., 115	Gore, Alan, 147
Feigl, Herbert, 9	Gorman, James, 140–142
feminist movement, 83	Gowin, D. Bob, 74, 87, 89, 137, 145
Fensham, Peter, 31	Great Depression, 115, 152
First Pass Functional Imaging (FPFI) technology	greenhouse gases, 147
training program for, 43–45	grid cells in the brain, 90–91
use of concept maps, 43–45 Florida Institute for Human and Machine	Gurley, Laine, 137
	Holdeman H R 116
Cognition (IHMC), 45–49, 55–56, 59, 91,	Haldeman, H. R., 116
106, 155 employee training in the power industry,	Harvard Center for Cognitive Studies, 10 Harvard Private Universe Project, 128
66–70	Harvard Project Physics (HPP) course, 76
NASA Astrobiology program, 59–63	Hawking, Stephen, 114
robotics research, 51	Hilgard, E. R., 74
security training for staff, 71–72	history
training weather forecasters, 63–66	lessons from, 114–116
Ford, Kenneth, 43–45, 49	history of education
forgetting	lessons from, 116–119
distinction from obliterative subsumption, 6	Hoffman, Robert, 58, 63–66
fossil fuels	human constructivism theory of knowledge and
shift towards electric vehicles, 147–148	knowledge creation, 87–91
Fraser, Kym, 52	Humphrey, Hubert H., 115–116
Freire, Paulo, 138	Huston, Larry, 52–57
Frisendal, Thomas, 57–58	Huxley, Aldous, 114
Froebel, Friedrich, 117	
Fry, Gene, 150	IBM, 45-46
Fry, Jane Heinze, 150	Institute for Human and Machine Cognition
functional Magnetic Resonance Imaging (fMRI),	(IHMC). See Florida Institute for Human
90–91	and Machine Cognition
future developments	Integrated Constructivist Knowledge Acquisition
active learning programs in colleges and	Tool (ICONKAT), 45
universities, 134–136	Internet, 46, 111, 151
enhancing social responsibility,	invention of, 90
119–120	Iraq wars, 116
helping people cope with climate change,	Iuli, Rick, 89–90
147–150	
hopeful indicators, 139–140	Jager, Durk, 55–56
improving medical education and practice,	Johnson, Lyndon B., 115
142–146	Johnson, Mauritz, 85, 91
lessons from history, 114-116	Journal of Research in Science Teaching, 78
lessons from the Covid-19 pandemic,	
150-154	Kastrinos, William, 127
lessons from the history of education,	Kelly, Frederick, 126
116–119	Khan Academy, 152
movement towards research-based innovation	Knowledge Vee, 87–89, 137
in teaching, 133-134	Kohlberg, Lawrence, 138
outcomes of good education, 137-139	Korean War (1950s), 114
positive turning point in educational	Kuhn, Thomas, 78, 87
approaches, 132-133	Kuna Indians, 108

Laboratory Schools, 117–119 language learning in young children, 1	methane greenhouse gas properties, 147
learning	Middle East conflicts, 114, 116
active, 117–118, 136–137	Miller, George, 10
active learning programs in colleges and	Mintzes, Joel, 32, 134
universities, 134–136	misconceptions
building connections in the brain, 11–12	persistence among students, 128–129
continuum from rote to meaningful learning,	Moon, Brian, 58–59
10–12	moral development
creative learning, 11–12	outcome of good education, 137–139
	Morgan, Sarah, 145
deep learning, 11 discovering how to facilitate it, 1–3	Mork, Gordon, 74
facilitating meaningful learning, 13	Work, Gordon, /4
factors that contribute to successful learning, 3	NASA Astrobiology program
impact of the digital revolution, 40–41	NASA Astrobiology program concept maps, 59–63
insights from planning and conducting clinical	NASA Mars Exploration program
interviews, 34–39	concept maps, 50–51
role of action in meaningful learning, 12–13	Nasser, Darian, 146
role of concepts, 1–3	National Academy of Sciences (NAS),
rote learning, 2, 6, 10–12, 74–75, 90, 117	
superordinate learning, 90	133–134 National Assessment of Educational Progress
surface learning, 11	(NAEP), 129–130
understanding how people learn, 1–3	National Association for Research in Science
why young children learn so quickly, 1–2	Teaching (NARST), 78
See also meaningful learning.	National Research Council (NRC), 133–134
Learning Approach Questionnaire, 125 Learning How to Learn (Novak and Gowin,	National Science Foundation (NSF), 87, 98 National Science Teachers Association
1984), 87	(NSTA), 98
learning partners, 21	Neisser, Ulric, 10, 22
Learning Strategies Questionnaire, 96, 121–124	New Model for Education, 110–113
learning strategy	Nixon, Richard M., 115–116
for meaningful learning, 20–23	No Child Left Behind program (USA), 130–132
logical positivism, 9–10, 83, 87, 119	Nonaka, Ikujiro, 54
Ludwa, Ray, 55	nuclear power plants, 68
Lyft, 148	Nussbaum, Joseph (Yossi), 79–83, 90
Lytt, 140	1 vussbaum, joseph (10331), /9-03, 90
math anxiety	Obama, Barack, 131–132
concept map, 37	objective testing, 126–127
McAdams, Alan, 51–52	obliterative subsumption
meaningful learning, 15, 90	distinction from forgetting, 6
concepts and, 1-2	0 0
encouraging and facilitating, 13	Palmer, Christi, 40, 91
importance of, 93–94	Panama
in young children, 12–13	Project Conéctaté al Conocimiento,
involvement of thinking, feeling, and acting,	106–110
55-57	Pearl Harbor
learning strategy for, 20-23	bombing by the Japanese (1941), 114
medical education and practice, 142–146	Pepper, John, 45–54, 56
place on the learning continuum, 10–12	Perigean Technologies, 59
role of action, 12–13	personal computers
use of concept mapping, 20–23	invention of, 90
medical education and practice	Pestalozzi, Johann H., 117
improving, 142–146	Piaget, Jean, 10, 13, 18, 74, 82, 87, 138
Meinwald, J., 120–122	Popper, Karl, 87
metacognitive knowledge, 34–39	positivism, 9–10, 76, 87, 89, 119
3 3,71,77	* * * * * * * * * * * * * * * * * * * *

power industry	Smith, Mike, 144
use of concept maps for employee training	social responsibility
program, 66–70	chemistry students study, 120–122
problem-solving	outcome of active learning programs, 136–137
involvement of thinking, feeling and acting,	outcome of good education, 137–139
55-57	seeking to enhance, 119–120
Procter & Gamble, 52–55, 57	study of Schreyer Honors College students
Olestra product failure, 56	(Penn State University), 124–126
progressive differentiation, 6	Socrates, 116–117
proposition	solar energy, 150
definition of, 24	Spanish Flu, 150
propositions	The Structure of Scientific Revolutions (Kuhn), 78
role in concept formation, 2-3	students
protest movements (1960s), 115	role in development of concept maps, 20–23
Pruitt, Clarence, 78	subsumption principle, 6
psychology	superordinate learning, 90
changes in thinking and approaches, 9–10	surface learning, 11
cognitive psychology revolution, 9–10, 18	Suter, Mauri, 144
	Symington, David, 31–32
questioning	
wait time for responses, 35	Takeuchi, Hirotaka, 54
	Tamir, Pinchas, 77–79
radical constructivism, 89	Tarté, Gaspar, 106–107
Raven, Peter, 139-140	teaching approaches
Ravitch, Diane, 130–131	active learning, 102
reliability of tests, 127-128	active learning programs in colleges and
research-based innovation in teaching, 133-134	universities, 134-136
Ring, Donald, 79	Audio-tutorial (A-T) instruction, 13, 15-20
robotics research	China, 110
IHMC, 51	evolving patterns, 98–102
Rogers, Ed, 53	improving medical education and practice,
Roosevelt, Franklin D., 152	142–146
rote learning, 2, 6	Lompoc, California, public schools, 102–104
history of, 117	movement toward research-based innovation,
limitations of, 74-75	133-134
place on the learning continuum, 10–12	New Model for Education, 110–113
Rousseau, Jean-Jacques, 117	persistence of misconceptions among students,
Rowe, Mary Budd, 35	128–129
•	positive turning point, 132-133
Sagan, Carl, 59	problems with, 126–129
scaffolding concept (Vygotsky), 102	Project Conéctaté al Conocimiento, Panama,
school districts that support innovation, 140-142	106–110
Schreyer Honors College, Penn State University	San Jose, Costa Rica, 104–106
student study, 124–126	school districts that support innovation,
Schwab, Joseph, 75, 92-93	140-142
Science, 105-106, 149	study of exemplary school science facilities and
Science Education, 78	programs, 98–102
The Science Teacher, 139-140	timescale to evaluate, 105–106
security training	work of Lev Vygotsky, 102
use of concept maps, 71-72	team-based learning, 146
self-driving cars, 148–150	team-based problem-solving, 146
Shavelson, Richard, 129	terrorist attacks
Silesky, Otto, 104–105	security training for staff, 71-72
Skinner, B. F., 74	testing theories of education, 94–96
Small, Parker, 144	Theory and Methods of Education course, 77

Index 181

theory of education application of Ausubel's theory, 76-83 building a strong epistemological foundation, 83-84 comment by David Ausubel, 96-97 components of, 91 creating a coherent theory, 93-94 education as a science, 73-75 first effort to build, 84-87 five elements of education, 92-93 human constructivist view of epistemology, importance of meaningful learning, 93-94 move to Cornell to start work on, 75-76 need for a theoretical framework, 4-5 research team at Cornell University, 76-83 testing theories of education, 94-96 theory of curriculum and instruction, 91-93 Torrĵios, Martin, 106-108, 110 Toulmin, Stephen, 79, 83–85, 87 training programs use of First Pass Functional Imaging (FPFI) technology, 43-45

Trump, Donald, 74, 116, 137 Tyler, Ralph W., 85 Uber, 148 unemployment, 152 validity of tests, 127-128 Vee diagrams, 87–89, 137 Vietnam War, 114–116 von Glaserfeld, Ernst, 89 Vygotsky, Lev, 21, 102 wait time concept, 35 Walter, Emily, 134 Wandersee, James, 131 weather forecasting concept maps, 63-66 World Bank, 152-153 World War One, 114 World War Two, 114, 137–138 Zone of Proximal Development (Vygotsky), 102 Zoom, 151