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Introduction

1.1 Introduction

As we described in the preface, the theory of approximate groups can be

thought of as describing those subsets of groups that are ‘approximately

closed’. We start by presenting a preliminary notion of approximate

closure: small doubling . Given two sets A,B inside a group G we define

their product set AB = {ab : a ∈ A, b ∈ B}. We also write A−1 for

the set of inverses of elements of A, and write An and A−n to denote

the iterated product sets defined recursively by A0 = {1}, An = AAn−1

and A−n = (A−1)n. The study of product sets began in the setting of

abelian groups, where one traditionally uses additive notation. Thus, if

G is abelian we define the sum set A+ B = {a+ b : a ∈ A, b ∈ B} and

the difference set A−B = {a− b : a ∈ A, b ∈ B}. We also write −A for

the set of inverses of elements of A, and write nA and −nA in place of

An and A−n, respectively.

To say that a finite set A is closed under taking products is then to

say that A2 = A. One way to define ‘approximate’ closure is to say that

A2 is not too much larger than A. To get a feel for what this might

mean in practice, let us consider for a moment what might be thought

of as ‘extremal’ or ‘typical’ for the size of A2. It is not difficult to see

what the extremal possibilities for |A2| are in terms of |A|: it is clear

that |A| ≤ |A2| ≤ |A|2, and in general neither bound can be improved.

Indeed, if A is a finite subgroup of G then |A2| = |A|, while if G is the

free group generated by A then |A2| = |A|2.

It turns out that the quadratic upper bound on the size of A2 is in fact

typical in some sense. For example, we show in Section 2.1 that if A is a

set of size k chosen uniformly at random from an interval {1, . . . , n} ⊂ Z
with n much larger than k then E[|A2|] is close to k2/2. This suggests
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2 Introduction

that a ‘generic’ set A should have |A2| comparable to |A|2, and so it is

sets for which

|A2| = o(|A|2) (1.1.1)

that we should view as being ‘exceptional’.

The theory of approximate groups is essentially concerned with the

extreme case of (1.1.1) in which |A2| is linear in |A|, in the sense that

|A2| ≤ K|A| (1.1.2)

for some fixed K ≥ 1. Since (1.1.2) represents ‘non-random’ behaviour,

we can expect such sets to exhibit a certain amount of ‘structure’. One

of the principal aims of approximate-group theory, and of this book, is

to describe this structure in as much detail as possible.

Of course, one type of structure satisfying (1.1.2) is a finite subgroup,

for which we may even take K = 1. Another trivial example is if A

itself has size at most K. Let us reassure ourselves, though, that the

theory of sets satisfying (1.1.2) is more general than just the theory of

finite subgroups and ‘small’ sets. Indeed, it is easy to see that the set

A = {−n, . . . , n} ⊂ Z satisfies |A + A| ≤ 2|A|, and so the group Z
contains arbitrarily large finite sets of small doubling, even though it

contains no non-trivial subgroups. We will develop and generalise this

example in Chapter 3.

Since it is the key property that we will be investigating, we now give

a name to those sets satisfying (1.1.2).

Definition 1.1.1 (small doubling) Given a finite subset A of a group

we call the quantity |A|2/|A| the doubling constant of A. If the doubling

constant of A is at most a given constant K then we often say simply

that A is a set of doubling at most K, or even merely a set of small

doubling.

As we shall explain in some detail in Chapter 2, in some contexts,

and particularly in the case of non-abelian groups, it is convenient for

technical reasons to replace Definition 1.1.1 with a slightly stronger def-

inition, due to Tao, which gives its name both to this book and to the

theory.

Definition 1.1.2 (approximate group) A subset A of a group G is

said to be a K-approximate subgroup of G, or simply a K-approximate

group, if A−1 = A and 1 ∈ A, and if there exists X ⊂ G with |X| ≤ K

such that A2 ⊂ XA.
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Note in particular that a finite K-approximate group has doubling at

most K. The conditions A−1 = A and 1 ∈ A are largely for notational

convenience. On the one hand, assuming that A−1 = A avoids the need

to distinguish between positive and negative iterated products, allowing

us to replace an untidy-looking expression such as A2A−3AA−1A3 ∪

A−4A3A−1 with the more succinct A10, for example. On the other hand,

assuming that 1 ∈ A means that we have the nesting A ⊂ A2 ⊂ A3 ⊂

· · · , which is also convenient at times. The existence of X ⊂ G with

|X| ≤ K such that A2 ⊂ XA is more serious, however. Indeed, we

shall see in Chapter 2 that one can construct sets of bounded doubling

that fail to be K-approximate groups for arbitrarily large K, so being a

finite approximate group is strictly stronger than having small doubling.

However, when introducing the definition of approximate groups Tao

showed that the study of sets of small doubling nonetheless essentially

reduces to the study of approximate groups in a certain precise way; in

Theorem 2.5.6 we present a strengthening of this reduction that follows

from work of Petridis.

One specific advantage of Definition 1.1.2 over Definition 1.1.1 that

is worth emphasising at this point is that it applies without modifica-

tion to infinite subsets of groups. Indeed, there has recently begun to

emerge a theory of infinite approximate groups in certain particular con-

texts (see [6], for example). Nonetheless, the theory of finite approximate

groups is far more developed than the theory of infinite approximate

groups, and is the focus of this book.

In Chapter 2 we motivate and develop Definitions 1.1.1 and 1.1.2

in more detail, in particular deriving some of their elementary proper-

ties. In Chapter 3 we look in detail at some specific examples of sets of

small doubling and approximate groups. In the largest part of the book,

comprising Chapters 4–10, we prove a number of results describing the

structure of approximate subgroups in various classes of group. Finally,

in Chapter 11 we present some applications of approximate groups to

geometric group theory.

1.2 Historical Discussion

In this section we very briefly present the historical context of the ma-

terial of this book. We stress that this is designed to give the reader

an overall feel for the development of the theory, rather than to be a

comprehensive history.
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4 Introduction

Much of the early progress on classifying sets of small doubling focused

on abelian groups. The theory was initiated in the 1960s by Freiman [26],

who in particular gave an essentially complete classification of sets of

small doubling in the integers. The theory was subsequently developed

considerably by Ruzsa, who amongst other things gave a simpler proof of

Freiman’s theorem [55]. Ruzsa’s work was brought to the attention of a

wider audience when Gowers [30, 31] applied it in his celebrated proof of

a theorem of Szemerédi [61] concerning arithmetic progressions in dense

sets of integers. In the mid 2000s, Green and Ruzsa [35] generalised

Freiman’s theorem to arbitrary abelian groups; we present their result

in Chapter 4.

Another important early result on abelian groups was the so-called

sum–product theorem of Bourgain, Katz and Tao [10]. This roughly

states that a subset of Fp cannot simultaneously have small additive

doubling and small multiplicative doubling, unless it is either very small

or already almost all of Fp. One of the tools used in the proof was a re-

sult from Gowers’s work on Szemerédi’s theorem, refining work of Balog

and Szemerédi and now often known as the Balog–Szemerédi–Gowers

theorem. We introduce this briefly as Theorem 2.1.5. We discuss sum–

product theorems further in Section 9.2.

At around the same time as Green and Ruzsa’s generalisation of

Freiman’s theorem, efforts began in earnest to generalise these concepts

and results to non-abelian groups. Some of the first work in this direc-

tion was by Helfgott [39], who showed that a generating subset of A of

SL2(Z/pZ) does not even satisfy the weaker version |A| ≤ c|A|1+ε of

(1.1.1), unless it is already close to the whole of SL2(Z/pZ). Amongst

the tools used by Helfgott were aspects of Ruzsa’s theory, the Bourgain–

Katz–Tao sum–product theorem, and the Balog–Szemerédi–Gowers the-

orem. Helfgott’s result is of particular interest because of its use by Bour-

gain and Gamburd [9] to construct so-called expander graphs , one of the

most celebrated applications of the theory.

The first systematic account of the elementary theory of sets of small

doubling in non-abelian groups was Tao’s foundational work [62]. This

work also introduced the notion of approximate groups and proved their

essential equivalence to small doubling (although as we note in Re-

mark 2.4.8 the definition of approximate groups was to some extent

anticipated by Green and Ruzsa). We present much of this material in

Chapter 2.

After Tao’s work there were a number of papers in fairly quick succes-

sion proving Freiman- or Helfgott-type results for various non-abelian
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groups, such as soluble groups (Tao [65]), free groups (Razborov [50]

and Safin [57]), torsion-free nilpotent groups (Breuillard–Green [12]),

and various linear groups (Breuillard–Green [13, 14] and Gill–Helfgott

[28]). We present some of these results in this book; for example, in

Chapter 6 we generalise the result of [12] to arbitrary nilpotent groups,

and in Chapter 9 we present the result of [13].

There has also been much subsequent work on generalising Helfgott’s

work and its applications to expansion, notably by Pyber and Szabó [49]

and Breuillard, Green and Tao [16]. We describe this briefly in an ap-

pendix to Chapter 11, but Tao’s book [66] already gives an excellent and

comprehensive account of this work, so we refer the interested reader to

that source for the details rather than repeating them here.

It turns out that many of the results discussed above are somewhat

reminiscent of a phenomenon seen in the related context of polynomial

growth. A subset A of a group exhibits polynomial growth if there exists a

polynomial p such that |An| ≤ p(n) for all n ∈ N. One slightly imprecise

but intuitively useful way of comparing this to Definition 1.1.1 is that

whilst Definition 1.1.1 says that A ‘grows slowly’ when it is multiplied

by itself once, polynomial growth means that A ‘grows slowly’ when it is

multiplied by itself any number of times. Moreover, a famous theorem of

Gromov describing the structure of sets of polynomial growth exploits

the easily checked fact that if A is such a set then there are infinitely

many n for which An has small doubling. Gromov’s theorem states that if

A has polynomial growth then the group generated by A has a nilpotent

subgroup of finite index (for readers unfamiliar with nilpotence, we give

a detailed introduction in Chapter 5). As we will see in this book, many

of the results listed above show that sets of small doubling in the groups

under consideration also have a significant amount of nilpotent structure

in some sense.

Helfgott and Lindenstrauss conjectured that these similarities between

Gromov’s theorem and results on sets of small doubling were not coinci-

dental, and that in fact an arbitrary approximate subgroup should have

a large amount of nilpotent structure in a precise sense. This was finally

proved in 2011 by Breuillard, Green and Tao [18]. Their result, which we

state in Chapter 7, essentially describes the structure of an arbitrary ap-

proximate group. It also leads to a refinement of Gromov’s theorem, and

in turn to various other applications to geometric group theory, some of

which we describe in Chapter 11.

We end this historical note by emphasising that the history of approx-

imate groups is still being written. In particular, the reader should not
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6 Introduction

interpret the existence of the Breuillard–Green–Tao result as meaning

that the theory is complete. Indeed, whilst that result is very general,

as we explain in Chapter 7 its conclusion is rather imprecise in a partic-

ular, quantitative sense. Indeed, even the optimal classification of sets

of small doubling in abelian groups is not yet known, and, as we said in

the preface, essentially all of the results of this type that we present in

this book have room for improvement.

1.3 Bounds and Asymptotic Notation

The larger K is in Definitions 1.1.1 and 1.1.2, the weaker they become.

We can therefore expect that the structure of a set satisfying Defini-

tion 1.1.1 or 1.1.2 that we are able to obtain should become ‘rougher’

as K increases. A big part of the results we present will be to quantify

this increased ‘roughness’. For example, in Theorem 2.2.1 we show that

if A is a finite subset of a group satisfying Definition 1.1.1 with K < 3
2

then there exists a subgroup H such that A lies in a coset of H and

|A|/|H| ≥ 1/K. Thus, A is a ‘large’ proportion of a coset of a subgroup,

and the meaning of ‘large’ depends on K in a precise, quantified way.

At times, however, the precise expression we obtain in terms of K

is less important than the overall form it takes. For example, if one

result says that A is a subset of a certain structure H with |A|/|H| ≥

exp(−15K3+logK), and another says the same thing but with |A|/|H| ≥

K−17/100, the fact that the first bound is exponential but the second

is merely polynomial is far more important than the precise values of

the constants or exponents in these expressions. In this specific setting,

one might reasonably choose simply to say that there exist absolute

constants c, C > 0 such that |A|/|H| ≥ cK−C in the case of the first

result or |A|/|H| ≥ exp(−CKC) in the case of the second (to say that

a constant is absolute here means that it does not depend in any way

on A or K). We therefore deploy the some standard shorthand notation

to abbreviate bounds such as these in a way that emphasises the im-

portant ‘shape’ of the bound without the distraction of inconsequential

constants and exponents, as follows.

We follow the standard convention that ifX,Y are real, variable quan-

tities then X ≪ Y and Y ≫ X each mean that there exists a constant

C > 0 such that X is always at most CY . Thus, for example, one may

write 10n2 ≪ n3 for n ∈ N because, for example, 10n2 ≤ 10n3 for every
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n ∈ N. We call C the constant implicit in or implied by the ≪ or ≫

notation.

The notation O(Y ) denotes a quantity that is at most a certain con-

stant multiple of Y , while Ω(X) denotes a quantity that is at least a

certain positive constant multiple of X. Thus, for example, we write

A ⊂ BO(1) to mean that there exists a constant C and a number m ≤ C

such that A ⊂ Bm, or say that a subgroup H is of index O(m) in G

to mean that there exists a constant C such that [G : H] ≤ Cm. Tech-

nically the O and Ω notation could be used to replace the ≪ and ≫

notation, but we tend to opt for ≪ and ≫ where possible.

In the ≪,≫, O,Ω notation, if the constant in question depends on

some other variable z then we indicate this with a subscript, for example

X ≪z Y or Oz(Y ).

The reader may find it a useful exercise to check that he or she has

understood the above notation by verifying that

KK ≤ exp(KO(1))

for K > 0, a bound that we use frequently in the book without explicit

mention.

Despite the importance of the bounds in many of the theorems we

prove, in a number of cases where we have the option to simplify an

argument at the expense of making the bounds worse we opt to do so,

a trade-off one would usually not make in a research paper, but which

suits the pedagogical aims of this book. Nonetheless, we always provide

references to arguments giving the best bounds the author is aware of.

1.4 General Notation

We assume familiarity with the basic concepts, definitions and results

from group theory that can be found in a book such as Hall [38] or

Robinson [51]. In particular, we assume familiarity with the definition

of a free group as given in [38, §7.1], for example.
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8 Introduction

Here is a list of specific notation and definitions that we use in this

book.

• We write

N = {1, 2, . . .},

N0 = N ∪ {0},

[n] = {1, . . . , n},

[n]0 = {0, . . . , n},

[n]± = {−n, . . . , n}.

• We write C× for the set of non-zero complex numbers. Given a prime

p, we also write (Z/pZ)× for the set of non-zero elements of Z/pZ. In
each case these sets form groups under the operation of multiplication.

• Given a subset A of an abelian group and n ∈ N we define the dilate

n ·A via n ·A = {na : a ∈ A}.

• Given a subset A of a setX, we write 1A : X → {0, 1} for the indicator

function of A defined via

1A(x) =

{

1 if x ∈ A

0 if x /∈ A.

Given a function f : X → Y into some other set Y , we write f |A :

A → Y for the restriction of f to A.

• Given x > 0 and c ∈ R we write logc x to mean (log x)c.

• We use expectation notation to write averages over finite sets. Specif-

ically, given a finite set X and a function f : X → C we define

Ex∈Xf(x) =
1

|X|

∑

x∈X

f(x).

• In general we write 1 for the identity element of any group. The main

exception to this is that we normally write abelian groups additively, in

which case we write 0 for the identity element. When we occasionally

use alternative symbols we always state this explicitly.

• Given two sets A,B, we write A ⊂ B to mean that A is a subset of B.

This allows the possibility that A = B. Given groups G,H, we write

H < G to mean that H is a subgroup of G, and H⊳G to mean that H

is a normal subgroup of G, again in each case allowing the possibility

that A = B. To indicate that A ⊂ B with no possibility of equality

we write A � B.

www.cambridge.org/9781108470735
www.cambridge.org


Cambridge University Press
978-1-108-47073-5 — Introduction to Approximate Groups
Matthew C. H. Tointon 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press
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• We define the rank of a finitely generated group to be the size of the

smallest or joint-smallest generating set.

• Given a group G and a subset X ⊂ G we write 〈X〉 for the subgroup

of G generated by X. If X is written with braces then we drop the

braces when using the 〈 · 〉 notation, for example writing 〈x1, . . . , xr〉

instead of 〈{x1, . . . , xr}〉.

• Given a group G with a subgroup H < G, we write HG for the

normal closure of H in G, that is the smallest normal subgroup of G

containing H.

• We define the commutator [x, y] of two elements in a group G via

[x, y] = x−1y−1xy. We also indicate conjugation using exponents,

defining xy = y−1xy, and more generally Y x = {x−1yx : y ∈ Y }

for a subset Y ⊂ G.

• Let G be a group. Given a subgroup H < G, we denote by NG(H)

the normaliser of H in G; thus

NG(H) = {g ∈ G : Hg = H}.

Given a subset X ⊂ G, we denote by CG(X) the centraliser of X in

G; thus

CG(H) = {g ∈ G : [g, x] = 1 for every x ∈ X}.

Given, in addition, a normal subgroup N ⊳G, we write

CG/N (X) = {g ∈ G : [g, x] ⊂ N for every x ∈ X}.

1.5 Miscellaneous Results

Here are some standard results that are too general to belong in any

particular chapter of this book, but useful to be able to refer to. Some

proofs are left as exercises, and some are outsourced to standard texts.

Theorem 1.5.1 (fundamental theorem of finitely generated abelian

groups [51, 4.2.10]) Let G be a finitely generated abelian group. Then

there exist r ∈ N0, primes p1, . . . , pr, and m0, . . . ,mr ∈ N0 such that

G ∼= Zm0 ⊕ Z/pm1

1 Z⊕ · · · ⊕ Z/pmr

r Z.

Recall that a subgroup C of a group G is characteristic if ψ(C) = C

for every ψ ∈ Aut (G).

Lemma 1.5.2 Let C ⊳N ⊳G be groups such that N is normal in G

and C is characteristic in N . Then C is normal in G.
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10 Introduction

Lemma 1.5.3 Let N,H ⊳G be normal subgroups of a group G. Then

CG/N (H) is also normal in G.

Given a finite set X and functions f, g : X → C, translating the

Cauchy–Schwarz inequality into the expectation notation described in

the preface gives

|Ex∈Xf(x)g(x)|2 ≤ (Ex∈X |f(x)|2)(Ex∈X |g(x)|2). (1.5.1)

We also have |
∑

x∈X f(x)|2 = |
∑

x∈X 1X(x)f(x)|2, and so the usual

Cauchy–Schwarz inequality gives
∣

∣

∣

∣

∣

∑

x∈X

f(x)

∣

∣

∣

∣

∣

2

≤ |X|
∑

x∈X

|f(x)|2. (1.5.2)

Theorem 1.5.4 (Fubini’s theorem [5, Theorem 18.3]) Let f : Rd → R
be a measurable function, and suppose that

∫

x∈Rd

|F (x)| dx < ∞.

Then, viewing Rd as Rm × Rd−m, we have
∫

x∈Rd

F (x) dx =

∫

x1∈Rm

∫

x2∈Rd−m

F (x1, x2) dx2 dx1

=

∫

x2∈Rd−m

∫

x1∈Rm

F (x1, x2) dx1 dx2.
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