Mathematical Modelling and Simulation in Chemical Engineering

In order to model systems, understanding the basic principles and governing laws is essential for making suitable assumptions required to reduce the complexity of a system. Mathematical modelling and simulation tools provide a solid foundation for upgraded system performance. This book bridges the gap by elaborating the essential concepts, including differential equation models and development of model equations, useful for improved system functioning.

The analytical and numerical techniques for solving various mathematical model equations, including nonlinear algebraic equations, initial value ordinary differential equations (ODEs) and boundary value ODEs are discussed here. There is a detailed discussion on optimization methods and sensitivity analysis. In addition, numerous MATLAB/Scilab applications are interspersed throughout the text and several case studies involving full details of simulation are presented. The accompanying website will host additional MATLAB/Scilab problems, model question papers, simulation exercises, tutorials and projects. This book will be useful for students of chemical engineering, mechanical engineering, instrumentation engineering and mathematics.

M. Chidambaram was Professor at the Department of Chemical Engineering, Indian Institute of Technology, Chennai. He also served as Director, National Institute of Technology, Tiruchirappalli during 2005–10. He taught for more than 25 years, and has written several books. His areas of interest include instrumentation and process control, computer control of processes, process analysis and simulation. Professor Chidambaram is the co-author of Relay Autotuning for Identification and Control (Cambridge University Press, 2014).
Mathematical Modelling and Simulation in Chemical Engineering

M. Chidambaram
Contents

Figures xi
Tables xv
Preface xvii

1. Introduction to Mathematical Modelling 1
   1.1 Mathematical Model 1
   1.2 Development of Mathematical Model 3
   1.3 Simulation 5
       1.3.1 Nonlinear differential equations 5
   1.4 Conservation of Mass/Energy/Momentum 6
   1.5 Random Processes 8
   1.6 Black Box Model and Grey Box Model 9
   Review Problems 10

2. Model Development for Simple Systems 11
   2.1 Settling Velocity of a Particle 11
   2.2 Cooling of a Small Sphere in a Stagnant Fluid 13
   2.3 Vaporization from a Single Droplet in Quiescent Air 13
       2.3.1 Droplet vaporization by convection flow 15
   2.4 Parallel Couette Flow 15
   2.5 Plane Poiseuille Flow 16
       2.5.1 Plane Poiseuille flow with slip 17
   2.6 Modelling of a Surge Tank 18
### Contents

2.7 Rapid Thermal Processing 19
2.8 Modelling of a pH Process 20
2.9 Modelling of a Long Chain Polymerization Reaction 22
2.10 Diffusion of Dopants in the Semiconductor Substrate 23
  2.10.1 Constant surface concentration 24
  2.10.2 Constant total dopant 24
2.11 Modelling of a Transport Reactor 25
  2.11.1 Numerical evaluation and discussion 26
2.12 PDE Model for Tubular Reactor with Axial Dispersion Model 29

**Review Problems** 30

3. Model Development for Complex Systems 31
  3.1 Isothermal Continuously Stirred Tank Reactor (CSTR) 31
    3.1.1 Linearization of a nonlinear system 32
    3.1.2 Linearization of coupled ODEs 33
  3.2 Bioreactor Modelling 35
  3.3 Magnetic Levitation System 36
  3.4 Balancing a Stick on a Finger 38
  3.5 Cholette’s Model with Input Multiplicities 39
  3.6 Isothermal CSTR with Input Multiplicities 40
  3.7 Model for Predators and Prey Populations 42
  3.8 Weather Forecasting 43
  3.9 Population Model 45
    3.9.1 Two competing species 46
  3.10 Epidemiological Model 48
  3.11 Non-isothermal Continuous Stirred Tank Reactor 49
  3.12 The Belousov–Zhabotinski (Oscillating) Reaction 51
  3.13 Breathing Model 52
  3.14 Nonlinear Phenomena 53
  3.15 One Route to Chaos: Period Doubling 54

**Review Problems** 56

4. Analytical Solutions of Model Equations 57
  4.1 Homogeneous ODEs with Constant Coefficients 57
  4.2 Non-homogeneous ODE with Constant Coefficients 59
    4.2.1 Particular integrals: method of variation of parameters 60
  4.3 Application of Laplace Transform to Solve a Linear PDE 61
    4.3.1 Important theorems 62
    4.3.2 Solution of linear ODE 62

© in this web service Cambridge University Press

www.cambridge.org
Contents

4.4 Series Solution of Variable Coefficient Linear ODE 66
  4.4.1 Equations with coefficients asymptotic to constants 67
  4.4.2 Summary of the series solution method 68
4.5 The Sturm–Liouville Equation 69
4.6 Method of Separation of Variables 70
4.7 Types of Boundary Conditions 72

Review Problems 73

5. Numerical Solutions of Model Equations 75
  5.1 Newton–Raphson (NR) Method 75
    5.1.1 Scalar equation 75
    5.1.2 Multivariable equations 76
  5.2 Runge–Kutta (RK) Methods for IVP ODEs 78
    5.2.1 Development of second-order algorithm 78
    5.2.2 Fourth-order algorithms 79
    5.2.3 The Runge–Kutta method 80
    5.2.4 Conversion to state variable form 80
    5.2.5 Coupled higher order models 81
    5.2.6 Runge–Kutta implicit method 82
    5.2.7 Predictor–corrector method 82
  5.3 Solution of Second-order Nonlinear BVP ODEs 83
  5.4 Coupled Two Point BVP ODEs 84
  5.5 Method of Parameter Differentiation 85
  5.6 MPD for Simultaneous Equations 86
  5.7 Finite Difference Scheme Method for Nonlinear BVP ODEs 87
  5.8 Conversion of a PDE into a Set of IVP ODEs 90

Review Problems 91

6. Modelling and Simulation: Case Studies 93
  6.1 Axial and Radial Mixing of Catalyst in a Bubble Column Slurry Contactor (BCSC) 93
  6.2 Analysis of Transport Reactors with Catalyst Deactivation 97
    6.2.1 Model equations and solution 97
    6.2.2 Hydrodynamic and mass transfer considerations 99
  6.3 Modelling BCSR for Hydrogenation of α-Methyl Styrene 102
    6.3.1 Dispersion model 102
    6.3.2 Application to the experimental data 103
    6.3.3 Evaluation 105
  6.4 Non-catalytic Reactions in Flow BCSR 105
## Contents

6.4.1 Mathematical model and analytical solution
6.4.2 Comparison between cocurrent and countercurrent BCSRs

Appendix

### 7. Discrimination of Mathematical Models
- 7.1 Modelling Deactivation Disguised Kinetics
- 7.2 Modelling of Hydro-treating of Asphaltenes
  - 7.2.1 Assumptions and model equations
  - 7.2.2 Model description
  - 7.2.3 Periodic operation
  - 7.2.4 Results and discussions
- 7.3 Modelling Autocatalytic Polymerization Reactions
  - 7.3.1 Model equations
  - 7.3.2 Periodic operation
  - 7.3.3 Results and discussions

Review Problems

### 8. Sensitivity Analysis
- 8.1 Introduction
- 8.2 Calculation of Sensitivity
- 8.3 Computation Aspects of Local Sensitivity
  - 8.3.1 Direct differential method
  - 8.3.2 Finite difference method
  - 8.3.3 The Green’s function method
- 8.4 Examples
- 8.5 FAST Program
- 8.6 Dependence of the Solution of a Set of Nonlinear Equations on a Parameter
- 8.7 The General Parameter Mapping (GPM)
- 8.8 Sensitivity Analysis in Process Control

Review Problems

### 9. Optimization Methods
- 9.1 Optimization of a Function of a Single Variable
- 9.2 Optimization of a Function of Multi-variables
- 9.3 Optimization in Model Reduction
- 9.4 Optimization in Model Fitting
- 9.5 Unconstrained Optimization Methods
  - 9.5.1 Newton’s method
  - 9.5.2 Steepest descent method
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5.3</td>
<td>Levenberg–Marquardt algorithm</td>
<td>162</td>
</tr>
<tr>
<td>9.6</td>
<td>Constrained Optimization</td>
<td>162</td>
</tr>
<tr>
<td>9.6.1</td>
<td>The method of Lagrange multipliers</td>
<td>162</td>
</tr>
<tr>
<td>9.7</td>
<td>The Mathematical Programming</td>
<td>164</td>
</tr>
<tr>
<td>9.8</td>
<td>Converting Inequality Constraint to Equality Constraint</td>
<td>166</td>
</tr>
<tr>
<td>9.9</td>
<td>Kuhn–Tucker Conditions</td>
<td>168</td>
</tr>
<tr>
<td>9.10</td>
<td>Multi-objectives Optimization Problem</td>
<td>170</td>
</tr>
<tr>
<td>9.11</td>
<td>Random Search Optimization Techniques</td>
<td>171</td>
</tr>
<tr>
<td>9.11.1</td>
<td>Luus and Jaakola (L–J) method</td>
<td>172</td>
</tr>
<tr>
<td>9.11.2</td>
<td>Conley method</td>
<td>172</td>
</tr>
<tr>
<td>9.11.3</td>
<td>Simulation results</td>
<td>173</td>
</tr>
<tr>
<td>9.12</td>
<td>Linear Least Square Curve Fitting</td>
<td>174</td>
</tr>
<tr>
<td>9.13</td>
<td>Variable Transformation to Get a Linear Equation</td>
<td>176</td>
</tr>
<tr>
<td>9.14</td>
<td>Set-point Weighted PI/PID Controllers</td>
<td>178</td>
</tr>
</tbody>
</table>

**Review Problems**

10. Simulation Using Matlab/Scilab

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>MATLAB (MATrix LABoratory)</td>
<td>187</td>
</tr>
<tr>
<td>10.2</td>
<td>Types of ODEs Solvers</td>
<td>189</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Stiff problems</td>
<td>189</td>
</tr>
<tr>
<td>10.3</td>
<td>Matlab Programs with Examples</td>
<td>190</td>
</tr>
<tr>
<td>10.4</td>
<td>Parameter Estimation</td>
<td>200</td>
</tr>
<tr>
<td>10.5</td>
<td>Constrained Optimization Problem</td>
<td>205</td>
</tr>
<tr>
<td>10.6</td>
<td>PDE Solver in Matlab</td>
<td>206</td>
</tr>
<tr>
<td>10.7</td>
<td>SCILAB</td>
<td>208</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Development of Scilab</td>
<td>208</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Functions of Scilab</td>
<td>209</td>
</tr>
<tr>
<td>10.7.3</td>
<td>ODE package in Scilab</td>
<td>209</td>
</tr>
<tr>
<td>10.8</td>
<td>Optimization Programs in Scilab</td>
<td>210</td>
</tr>
<tr>
<td>10.8.1</td>
<td>Optim</td>
<td>210</td>
</tr>
<tr>
<td>10.8.2</td>
<td>Fsolve</td>
<td>210</td>
</tr>
</tbody>
</table>

**Review Problems**

11. Model Based Control

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Need for Control Systems</td>
<td>215</td>
</tr>
<tr>
<td>11.2</td>
<td>Feedback Control Systems</td>
<td>215</td>
</tr>
<tr>
<td>11.3</td>
<td>Transfer Function Models</td>
<td>217</td>
</tr>
<tr>
<td>11.4</td>
<td>Stability of Closed Loop System</td>
<td>219</td>
</tr>
<tr>
<td>11.5</td>
<td>Design of Controllers for Stable Systems</td>
<td>222</td>
</tr>
</tbody>
</table>
Contents

11.6 Design of PI/PID Controllers for Unstable Systems 225
11.7 Control of Unstable Bioreactor 226
11.8 Controller Design by Synthesis Method 227
Review Problems 232

References 235

Index 243
Figures

Fig. 1.1 Input, system and response 2
Fig. 1.2 Principle of mathematical modelling 4
Fig. 1.3 Serial structure of a grey-box model with black box model 10
Fig. 1.4 Parallel structure of a grey-box model with black box model 10
Fig. 2.1 Force balance on a spherical particle in a liquid 12
Fig. 2.2 Sketch of system involved in evaporation of a spherical droplet 14
Fig. 2.3 Fluid in shear flow 15
Fig. 2.4 Flow between two stationary plates, plane Poiseuille flow 16
Fig. 2.5 Surge tank 18
Fig. 2.6 Rapid thermal processing 19
Fig. 2.7 Schematic diagram of the neutralization process 20
Fig. 2.8 Schematic diagram of a typical open-tube diffusion system 23
Fig. 2.9 Transport reactor for gas–solid catalyzed gas phase reaction 25
Fig. 2.10 Effect of particle diameter on the gas reactant conversion 27
Fig. 2.11 Effect of particle diameter on the fractional solid hold up 27
Fig. 2.12 Effect of $\rho_p$ and $V_G$ on $X$ versus $dp$ 28
Fig. 2.13 Control volume in a tubular reactor 29
Fig. 3.1 Isothermal CSTR for single reaction 31
Fig. 3.2 $x_2$ versus $x_1$ local behaviour from a linear system 34
<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 3.3a</td>
<td>Local information of system with 4 equilibrium states</td>
<td>34</td>
</tr>
<tr>
<td>Fig. 3.3b</td>
<td>The full phase portrait from the solution of a nonlinear dynamical system</td>
<td>35</td>
</tr>
<tr>
<td>Fig. 3.4</td>
<td>Schematic representation of the example CSTB</td>
<td>35</td>
</tr>
<tr>
<td>Fig. 3.5</td>
<td>Schematic of the MAGLEV system</td>
<td>37</td>
</tr>
<tr>
<td>Fig. 3.6</td>
<td>Stick balancing</td>
<td>38</td>
</tr>
<tr>
<td>Fig. 3.7</td>
<td>Schematic representation of the Cholette’s model of a CSTR</td>
<td>39</td>
</tr>
<tr>
<td>Fig. 3.8</td>
<td>Isothermal CSTR for consecutive reaction</td>
<td>40</td>
</tr>
<tr>
<td>Fig. 3.9</td>
<td>Steady state $x_2$ versus $u$</td>
<td>41</td>
</tr>
<tr>
<td>Fig. 3.10</td>
<td>Sustained oscillatory behaviour of prey and predator population densities</td>
<td>43</td>
</tr>
<tr>
<td>Fig. 3.11</td>
<td>An illustration of convection according to Lorenz’s equation</td>
<td>44</td>
</tr>
<tr>
<td>Fig. 3.12</td>
<td>Chaotic behaviour of Lorenz equation</td>
<td>45</td>
</tr>
<tr>
<td>Fig. 3.13</td>
<td>Phase plane diagram for the system</td>
<td>47</td>
</tr>
<tr>
<td>Fig. 3.14</td>
<td>Non-isothermal CSTR</td>
<td>49</td>
</tr>
<tr>
<td>Fig. 3.15</td>
<td>Sustained oscillatory response of CSTR [$c$ versus $\theta$]</td>
<td>50</td>
</tr>
<tr>
<td>Fig. 3.16</td>
<td>The oscillatory behaviour of carbon dioxide content</td>
<td>53</td>
</tr>
<tr>
<td>Fig. 3.17</td>
<td>A period doubling sequence for the Rossler equations</td>
<td>55</td>
</tr>
<tr>
<td>Fig. 4.1</td>
<td>Steps in solving a linear PDE by Laplace transform</td>
<td>62</td>
</tr>
<tr>
<td>Fig. 4.2</td>
<td>Solution of the Eq. (4.87)</td>
<td>68</td>
</tr>
<tr>
<td>Fig. 4.3</td>
<td>Graphs of tan $\lambda a$ and $-\kappa \lambda /h$</td>
<td>72</td>
</tr>
<tr>
<td>Fig. 5.1</td>
<td>Grids along the X-axis</td>
<td>87</td>
</tr>
<tr>
<td>Fig. 6.1</td>
<td>Control element</td>
<td>93</td>
</tr>
<tr>
<td>Fig. 6.2</td>
<td>Comparison of dispersion model with the experimental data</td>
<td>97</td>
</tr>
<tr>
<td>Fig. 6.3</td>
<td>Effect of catalyst decay velocity constant on verses behaviour</td>
<td>100</td>
</tr>
<tr>
<td>Fig. 6.4</td>
<td>Effect of particle diameter on the particle residence time</td>
<td>101</td>
</tr>
<tr>
<td>Fig. 6.5</td>
<td>Comparison of conversions predicted by the dispersion model with the</td>
<td>103</td>
</tr>
<tr>
<td>Fig. 6.6</td>
<td>Concentration distribution of solid particles from the dispersion model</td>
<td>103</td>
</tr>
<tr>
<td>Fig. 6.7</td>
<td>Effect of particle diameter on the mean residence time of the particles</td>
<td>108</td>
</tr>
<tr>
<td>Fig. 6.8</td>
<td>Effect of particle diameter on the average conversion. Concurrent flow...</td>
<td>109</td>
</tr>
<tr>
<td>Fig. 6.9</td>
<td>(a) Average conversion versus particle dispersion coefficient</td>
<td>109</td>
</tr>
<tr>
<td>Fig. 6.10</td>
<td>Effect of particle diameter on the average conversion</td>
<td>110</td>
</tr>
<tr>
<td>Fig. 6.11</td>
<td>Average conversion versus particle dispersion coefficient. Countercurrent flow...</td>
<td>111</td>
</tr>
</tbody>
</table>
Figures

Fig. 6.12  Comparison of average conversion of cocurrent and countercurrent flow BCSRs 111
Fig. 7.1  Periodic inlet concentration function 123
Fig. 7.2  Opposing trends shown by deactivation disguised kinetic models under periodic operation 124
Fig. 7.3  Increasing trend for model I and resonance behaviour for model II 124
Fig. 7.4  Forcing function in the feed concentrations 129
Fig. 7.5  Average conversion of asphaltenes under periodic operation 130
Fig. 7.6  First type of periodic input concentration of reactant in monomer (M) 132
Fig. 7.7  Average conversion of total propagators (R) under periodic operation 133
Fig. 7.8  Substrate concentration (top figure) and parameter sensitivities (bottom figure) 147
Fig. 9.1  Function of a single variable 153
Fig. 9.2  System description for Example 9.1 154
Fig. 9.3  Circuit for Example 9.2 155
Fig. 9.4  $y$ versus $x$ for Example 9.18 176
Fig. 9.5  $y$ versus $x$ for Example 9.19 177
Fig. 9.6  The response (solid) with $b = 0.63$ and (--) with $b = 1$ 181
Fig. 10.1  Output for problem 10.6 193
Fig. 10.2  Output for problem 10.10 196
Fig. 10.3  Solution of the delayed logistic equation 197
Fig. 10.4  Output for problem 10.12 via algebraic equation solver 199
Fig. 10.5  Output for problem 10.13 via ODE solver 200
Fig. 10.6  Output for problem 10.21 using Scilab 211
Fig. 11.1  Block diagram of a feedback control system 216
Fig. 11.2  Typical response of a closed loop system 217
Fig. 11.3  Block diagram of an open loop system for obtaining the process reaction curve 218
Fig. 11.4  Response comparison of the delay plus first order model with that of the actual system 219
Fig. 11.5  Stabilization of the unstable steady-state 227
Fig. 11.6  Block diagram for simple feedback control system 228
## Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Model classification</td>
<td>4</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Forms of model equations</td>
<td>5</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Comparisons of deterministic and stochastic signals</td>
<td>8</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Values of parameters used for simulation</td>
<td>28</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Particular solution for simple forcing functions</td>
<td>60</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Laplace transform of some functions</td>
<td>62</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Analytical solutions for ( X_D ) and ( X_B ) for ash layer diffusion controlled and chemical reaction controlled steps</td>
<td>112</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Parameters used for numerical evaluation</td>
<td>113</td>
</tr>
<tr>
<td>Table 9.1</td>
<td>Classification of optimization problems</td>
<td>152</td>
</tr>
<tr>
<td>Table 9.2</td>
<td>Results for Example 6</td>
<td>158</td>
</tr>
<tr>
<td>Table 11.1</td>
<td>Magnitude and phase angle for simple transfer function models</td>
<td>221</td>
</tr>
<tr>
<td>Table 11.2</td>
<td>Equation for ( k_{\text{max}} ) and ( \omega_c ) for some of the transfer function models</td>
<td>224</td>
</tr>
</tbody>
</table>
Preface

This course book on mathematical modelling and simulation has been structured for undergraduate and postgraduate students of Chemical Engineering. It can also be used as a reference book for Instrumentation and Control Engineering, Mechanical Engineering, and Mathematics.

The requirements for modelling a system are: first, an understanding of the underlying physics of the systems and the laws governing it; second, an ability to make suitable assumptions to analyze the system while retaining the valid and realistic description of its behaviour. The aim of this text is to provide readers such practice through several simple examples for setting up model equations followed by their solutions by either analytical or numerical techniques. Wherever possible, analytical methods are provided. For the numerical solution, Matlab/Scilab routines are used.

The first chapter introduces the basic steps in mathematical modelling. Chapter 2 presents the development of mathematical models for simple systems. It provides discussions through several examples making use of mass balance, energy balance or momentum balance equations. In addition, one example for a transport reactor is also given to analyze the problem in detail. The development of partial differential equation with the associated boundary conditions is given for an isothermal tubular reactor with the axial dispersion model.

Chapter 3 provides several examples illustrating the modelling of systems with complex behaviour. Systems exhibiting output multiplicity behaviour, input multiplicity behaviour, and oscillatory behaviour, etc., are discussed.

Chapter 4 presents commonly occurring linear differential equation models and the analytical solution of such equations. The series solutions are given for variable coefficient linear ODEs. Application of the Laplace transform method to solve linear partial differential equation is presented. The solution of a linear partial differential equation (PDE), by the method of separation variable, is also discussed with examples.
Chapter 5 presents the basics of the numerical solution of nonlinear algebraic equations, IVP nonlinear ODEs, BVP nonlinear ODEs, and nonlinear PDE model equations with examples.

Chapter 6 provides case studies involving variable coefficient ODEs, and PDEs with the details on the simulation of such systems.

Chapter 7 poses the problem of discriminating model equations for systems. The use of the periodic operation, to discriminate the model equations, is proposed with the simulation results.

Chapter 8 elucidates the sensitivity analysis of model equations. The direct differentiation method and the finite difference method are discussed.

Chapter 9 provides an overview of optimization methods by analytical methods and numerical methods. Several examples are given for the optimization problems. An introduction is given to the multi-objective optimization methods and the random search optimization method. The importance of estimating model parameters from the output of the system is brought out with examples.

In Chapter 10, the use of Matlab and Scilab routines is discussed to solve the mathematical model equations with several examples.

Chapter 11 provides an introduction to transfer function models, the development of simple model equations and the mathematical methods required to design PI/PID controllers for stable and unstable systems with examples.

Chapters 1, 2, 4, 5, a part of chapter 8, and a part of chapter 10 can be used for an undergraduate level course in any engineering discipline, and Chapters 3, 5, 7, 9 and 11 can be used for a postgraduate level course in the Chemical Engineering program. Chapters 2, 3, 5, 9 and 11 can be considered at the postgraduate level for students from Mechanical Engineering, Instrumentation and Control Engineering, and Mathematics. For all the above disciplines, Chapter 10 can be marked for self-study, with two hours for demonstrating the simulation examples.

It is a pleasure to acknowledge the contributions of the people who helped the author in writing this book. The book owes much to the numerous authors of original research papers and textbooks. The author gratefully acknowledges the assistance provided by his students Thanga Mani, Peela V. V. K. S. Ganesh, E. Rajeshkannan, Vivek Shankar Pinnamaraju, the course assistance for the course processes analysis and simulation, and Aditya Sarkar Kantha (NIT-Warangal), an intern. The author thanks his research scholars Chandrasekhar Besta, S. Nikita, C. Sankar Rao, V. Dhanya Ram and Simi Santosh for their assistance.

The author is thankful for the support received from the Department of Chemical Engineering, IIT Madras, and the support received from the Centre for Continuing Education, IIT Madras for providing the financial assistance for writing the book. The author thanks Cambridge University Press and the editors involved in the process for their professionalism, for successfully publishing the book.