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Linear Algebra

1.1 Numbers

The natural numbers are the positive integers and zero. Rational numbers are

ratios of integers. Irrational numbers have decimal digits dn

x =

∞
∑

n=mx

dn

10n
(1.1)

that do not repeat. Thus the repeating decimals 1/2 = 0.50000 . . . and 1/3 =

0.3̄ ≡ 0.33333 . . . are rational, while π = 3.141592654 . . . is irrational. Decimal

arithmetic was invented in India over 1500 years ago but was not widely adopted

in Europe until the seventeenth century.

The real numbers R include the rational numbers and the irrational numbers;

they correspond to all the points on an infinite line called the real line.

The complex numbers C are the real numbers with one new number i whose

square is −1. A complex number z is a linear combination of a real number x and

a real multiple iy of i

z = x + iy. (1.2)

Here x = Rez is the real part of z, and y = Imz is its imaginary part. One adds

complex numbers by adding their real and imaginary parts

z1 + z2 = x1 + iy1 + x2 + iy2 = x1 + x2 + i(y1 + y2). (1.3)

Since i2 = −1, the product of two complex numbers is

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 − y1 y2 + i(x1 y2 + y1x2). (1.4)

The polar representation of z = x + iy is

z = reiθ = r(cos θ + i sin θ) (1.5)
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2 1 Linear Algebra

in which r is the modulus or absolute value of z

r = |z| =
√

x2 + y2 (1.6)

and θ is its phase or argument

θ = arctan (y/x). (1.7)

Since exp(2π i) = 1, there is an inevitable ambiguity in the definition of the phase

of any complex number z = reiθ : for any integer n, the phase θ + 2πn gives the

same z as θ . In various computer languages, the function atan2(y, x) returns the

angle θ in the interval −π < θ ≤ π for which (x, y) = r(cos θ, sin θ).

There are two common notations z∗ and z̄ for the complex conjugate of a

complex number z = x + iy

z∗ = z̄ = x − iy. (1.8)

The square of the modulus of a complex number z = x + iy is

|z|2 = x2 + y2 = (x + iy)(x − iy) = z̄z = z∗z. (1.9)

The inverse of a complex number z = x + iy is

z−1 = (x + iy)−1 =
x − iy

(x − iy)(x + iy)
=

x − iy

x2 + y2
=

z∗

z∗z
=

z∗

|z|2
. (1.10)

Grassmann numbers θi are anticommuting numbers, that is, the anticommuta-

tor of any two Grassmann numbers vanishes

{θi , θ j } ≡ [θi , θ j ]+ ≡ θiθ j + θ jθi = 0. (1.11)

So the square of any Grassmann number is zero, θ2
i = 0. These numbers have

amusing properties (used in Chapter 20). For example, because θ1θ2 = − θ2θ1 and

θ2
1 = θ2

2 = 0, the most general function of two Grassmann numbers is

f (θ1, θ2) = a + b θ1 + c θ2 + d θ1θ2 (1.12)

and 1/(1 + a θi ) = 1 − a θi in which a, b, c, d are complex numbers (Hermann

Grassmann, 1809–1877).

1.2 Arrays

An array is an ordered set of numbers. Arrays play big roles in computer science,

physics, and mathematics. They can be of any (integral) dimension.

A 1-dimensional array (a1, a2, . . . , an) is variously called an n-tuple, a row

vector when written horizontally, a column vector when written vertically, or an

n-vector. The numbers ak are its entries or components.
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1.2 Arrays 3

A 2-dimensional array aik with i running from 1 to n and k from 1 to m is an

n ×m matrix. The numbers aik are its entries, elements, or matrix elements. One

can think of a matrix as a stack of row vectors or as a queue of column vectors. The

entry aik is in the i th row and the kth column.

One can add together arrays of the same dimension and shape by adding their

entries. Two n-tuples add as

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn) (1.13)

and two n × m matrices a and b add as

(a + b)ik = aik + bik . (1.14)

One can multiply arrays by numbers: Thus z times the 3-dimensional array ai jk

is the array with entries z ai jk . One can multiply two arrays together no matter

what their shapes and dimensions. The outer product of an n-tuple a and an

m-tuple b is an n × m matrix with elements

(a b)ik = ai bk (1.15)

or an m × n matrix with entries (ba)ki = bkai . If a and b are complex, then

one also can form the outer products (a b)ik = ai bk , (b a)ki = bk ai , and

(b a)ki = bk ai . The outer product of a matrix aik and a 3-dimensional array b jℓm

is a five-dimensional array

(a b)ik jℓm = aik b jℓm . (1.16)

An inner product is possible when two arrays are of the same size in one of

their dimensions. Thus the inner product (a, b) ≡ 〈a|b〉 or dot product a · b of

two real n-tuples a and b is

(a, b) = 〈a|b〉 = a · b = (a1, . . . , an) · (b1, . . . , bn) = a1b1 + · · · + anbn. (1.17)

The inner product of two complex n-tuples often is defined as

(a, b) = 〈a|b〉 = a · b = (a1, . . . , an) · (b1, . . . , bn) = a1 b1 + · · · + an bn (1.18)

or as its complex conjugate

(a, b)∗ = 〈a|b〉∗ = (a · b)∗ = (b, a) = 〈b|a〉 = b · a. (1.19)

The inner product of a vector with itself is nonnegative (a, a) ≥ 0.

The product of an m × n matrix aik times an n-tuple bk is the m-tuple b′ whose

i th component is

b′
i = ai1b1 + ai2b2 + · · · + ainbn =

n
∑

k=1

aikbk . (1.20)
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4 1 Linear Algebra

This product is b′ = a b in matrix notation.

If the size n of the second dimension of a matrix a matches that of the first

dimension of a matrix b, then their product a b is a matrix with entries

(a b)iℓ = ai1 b1ℓ + · · · + ain bnℓ =

n
∑

k=1

aik bkℓ. (1.21)

1.3 Matrices

Matrices are 2-dimensional arrays.

The trace of a square n × n matrix a is the sum of its diagonal elements

Tr a = tr a = a11 + a22 + · · · + ann =

n
∑

i=1

ai i . (1.22)

The trace of the product of two matrices is independent of their order

Tr (a b) =

n
∑

i=1

n
∑

k=1

aikbki =

n
∑

k=1

n
∑

i=1

bki aik = Tr (b a) (1.23)

as long as the matrix elements are numbers that commute with each other. It follows

that the trace is cyclic

Tr (a b c . . . z) = Tr (b c . . . z a) = Tr (c . . . z a b) = . . . (1.24)

The transpose of an n × ℓ matrix a is an ℓ × n matrix aT with entries
(

aT
)

i j
= a j i . (1.25)

Mathematicians often use a prime to mean transpose, as in a′ = aT, but physicists

tend to use primes to label different objects or to indicate differentiation. One may

show that transposition inverts the order of multiplication

(a b) T = bT aT. (1.26)

A matrix that is equal to its transpose

a = aT (1.27)

is symmetric, ai j = a j i .

The (hermitian) adjoint of a matrix is the complex conjugate of its transpose.

That is, the (hermitian) adjoint a† of an N × L complex matrix a is the L × N

matrix with entries

(a†)i j = a∗
j i . (1.28)
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1.3 Matrices 5

One may show that

(a b)† = b† a†. (1.29)

A matrix that is equal to its adjoint

ai j = (a†)i j = a∗
j i (1.30)

(and which must be a square matrix) is hermitian or self adjoint

a = a† (1.31)

(Charles Hermite 1822–1901).

Example 1.1 (The Pauli matrices) All three of Pauli’s matrices

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, and σ3 =

(

1 0

0 −1

)

(1.32)

are hermitian (Wolfgang Pauli 1900–1958).

A real hermitian matrix is symmetric. If a matrix a is hermitian, then the

quadratic form

〈v|a|v〉 =

N
∑

i=1

N
∑

j=1

v∗
i ai jv j ∈ R (1.33)

is real for all complex n-tuples v.

The Kronecker delta δi k is defined to be unity if i = k and zero if i �= k

δik =

{

1 if i = k

0 if i �= k
(1.34)

(Leopold Kronecker 1823–1891). The identity matrix I has entries Iik = δik .

The inverse a−1 of an n × n matrix a is a square matrix that satisfies

a−1 a = a a−1 = I (1.35)

in which I is the n × n identity matrix.

So far we have been writing n-tuples and matrices and their elements with lower-

case letters. It is equally common to use capital letters, and we will do so for the

rest of this section.

A matrix U whose adjoint U † is its inverse

U †U = UU † = I (1.36)
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6 1 Linear Algebra

is unitary. Unitary matrices are square.

A real unitary matrix O is orthogonal and obeys the rule

OTO = O OT = I. (1.37)

Orthogonal matrices are square.

An N × N hermitian matrix A is nonnegative

A ≥ 0 (1.38)

if for all complex vectors V the quadratic form

〈V |A|V 〉 =

N
∑

i=1

N
∑

j=1

V ∗
i Ai j V j ≥ 0 (1.39)

is nonnegative. It is positive or positive definite if

〈V |A|V 〉 > 0 (1.40)

for all nonzero vectors |V 〉.

Example 1.2 (Kinds of positivity) The nonsymmetric, nonhermitian 2 × 2 matrix

(

1 1

−1 1

)

(1.41)

is positive on the space of all real 2-vectors but not on the space of all complex

2-vectors.

Example 1.3 (Representations of imaginary and grassmann numbers) The 2 × 2

matrix
(

0 −1

1 0

)

(1.42)

can represent the number i since

(

0 −1

1 0

) (

0 −1

1 0

)

=

(

−1 0

0 −1

)

= −I. (1.43)

The 2 × 2 matrix
(

0 0

1 0

)

(1.44)

can represent a Grassmann number since

(

0 0

1 0

) (

0 0

1 0

)

=

(

0 0

0 0

)

= 0. (1.45)
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1.4 Vectors 7

To represent two Grassmann numbers, one needs 4 × 4 matrices, such as

θ1 =

⎛

⎜

⎜

⎝

0 0 1 0

0 0 0 −1

0 0 0 0

0 0 0 0

⎞

⎟

⎟

⎠

and θ2 =

⎛

⎜

⎜

⎝

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎞

⎟

⎟

⎠

. (1.46)

The matrices that represent n Grassmann numbers are 2n × 2n and have 2n rows and

2n columns.

Example 1.4 (Fermions) The matrices (1.46) also can represent lowering or anni-

hilation operators for a system of two fermionic states. For a1 = θ1 and a2 = θ2

and their adjoints a
†
1 and a

†
2 , the creation operaors, satisfy the anticommutation

relations

{ai , a
†
k } = δik and {ai , ak} = {a†

i , a
†
k } = 0 (1.47)

where i and k take the values 1 or 2. In particular, the relation (a
†
i )2 = 0 imple-

ments Pauli’s exclusion principle, the rule that no state of a fermion can be doubly

occupied.

1.4 Vectors

Vectors are things that can be multiplied by numbers and added together to form

other vectors in the same vector space. So if U and V are vectors in a vector space

S over a set F of numbers x and y and so forth, then

W = x U + y V (1.48)

also is a vector in the vector space S.

A basis for a vector space S is a set B of vectors Bk for k = 1, . . . , n in terms

of which every vector U in S can be expressed as a linear combination

U = u1 B1 + u2 B2 + · · · + un Bn (1.49)

with numbers uk in F . The numbers uk are the components of the vector U in the

basis B. If the basis vectors Bk are orthonormal, that is, if their inner products are

(Bk, Bℓ) = 〈Bk |Bℓ〉 = B̄k · Bℓ = δkℓ, then we might represent the vector U as the

n-tuple (u1, u2, . . . , un) with uk = 〈Bk |U 〉 or as the corresponding column vector.

Example 1.5 (Hardware store) Suppose the vector W represents a certain kind of

washer and the vector N represents a certain kind of nail. Then if n and m are natural

numbers, the vector

H = nW + m N (1.50)
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8 1 Linear Algebra

would represent a possible inventory of a very simple hardware store. The vector space

of all such vectors H would include all possible inventories of the store. That space is

a 2-dimensional vector space over the natural numbers, and the two vectors W and N

form a basis for it.

Example 1.6 (Complex numbers) The complex numbers are a vector space. Two of

its vectors are the number 1 and the number i ; the vector space of complex numbers is

then the set of all linear combinations

z = x1 + yi = x + iy. (1.51)

The complex numbers are a 2-dimensional vector space over the real numbers, and the

vectors 1 and i are a basis for it.

The complex numbers also form a 1-dimensional vector space over the complex

numbers. Here any nonzero real or complex number, for instance the number 1 can be

a basis consisting of the single vector 1. This 1-dimensional vector space is the set of

all z = z1 for arbitrary complex z.

Example 1.7 (2-space) Ordinary flat 2-dimensional space is the set of all linear

combinations

r = x x̂ + yŷ (1.52)

in which x and y are real numbers and x̂ and ŷ are perpendicular vectors of unit length

(unit vectors with x̂ · x̂ = 1 = ŷ · ŷ and x̂ · ŷ = 0). This vector space, called R
2, is a

2-d space over the reals.

The vector r can be described by the basis vectors x̂ and ŷ and also by any other set

of basis vectors, such as −ŷ and x̂

r = x x̂ + yŷ = −y(−ŷ) + x x̂. (1.53)

The components of the vector r are (x, y) in the
{

x̂, ŷ
}

basis and (−y, x) in

the
{

−ŷ, x̂
}

basis. Each vector is unique, but its components depend upon the

basis.

Example 1.8 (3-space) Ordinary flat 3-dimensional space is the set of all linear

combinations

r = x x̂ + yŷ + zẑ (1.54)

in which x, y, and z are real numbers. It is a 3-d space over the reals.

Example 1.9 (Matrices) Arrays of a given dimension and size can be added and

multiplied by numbers, and so they form a vector space. For instance, all complex

3-dimensional arrays ai jk in which 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, and 1 ≤ k ≤ 5 form a

vector space over the complex numbers.

Example 1.10 (Partial derivatives) Derivatives are vectors; so are partial derivatives.

For instance, the linear combinations of x and y partial derivatives taken at x = y = 0
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1.4 Vectors 9

a
∂

∂x
+ b

∂

∂y
(1.55)

form a vector space.

Example 1.11 (Functions) The space of all linear combinations of a set of functions

fi (x) defined on an interval [a, b]

f (x) =
∑

i

zi fi (x) (1.56)

is a vector space over the natural N, real R, or complex C numbers {zi }.

Example 1.12 (States in quantum mechanics) In quantum mechanics, if the prop-

erties of a system have been measured as completely as possible, then the system (or

our knowledge of it) is said to be in a state, often called a pure state, and is repre-

sented by a vector ψ or |ψ〉 in Dirac’s notation. If the properties of a system have not

been measured as completely as possible, then the system (or our knowledge of it)

is said to be in a mixture or a mixed state, and is represented by a density operator

(section 1.35).

If c1 and c2 are complex numbers, and |ψ1〉 and |ψ2〉 are any two states, then the

linear combination

|ψ〉 = c1|ψ1〉 + c2|ψ2〉 (1.57)

also is a possible state of the system.

A harmonic oscillator in its kth excited state is in a state described by a vector |k〉. A

particle exactly at position q is in a state described by a vector |q〉. An electron moving

with momentum p and spin σ is in a state represented by a vector | p, σ 〉. A hydrogen

atom at rest in its ground state is in a state |E0〉.

Example 1.13 (Polarization of photons and gravitons) The general state of a photon

of momentum 
k is one of elliptical polarization

|
k, θ, φ〉 = cos θ eiφ |
k,+〉 + sin θ e−iφ |
k,−〉 (1.58)

in which the states of positive and negative helicity |
k,±〉 represent a photon whose

angular momentum ±� is parallel or antiparallel to its momentum 
k. If θ = π/4+nπ ,

the polarization is linear, and the electric field is parallel to an axis that depends upon

φ and is perpendicular to 
k.

The general state of a graviton of momentum 
k also is one of elliptical polariza-

tion (1.58), but now the states of positive and negative helicity |
k,±〉 have angular

momentum ±2� parallel or antiparallel to the momentum 
k. Linear polarization again

is θ = π/4+nπ . The state |
k,+〉 represents space being stretched and squeezed along

one axis while being squeezed and stretched along another axis, both axes perpendic-

ular to each other and to 
k. In the state |
k,×〉, the stretching and squeezing axes are

rotated by 45◦ about 
k relative to those of |
k,+〉.
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10 1 Linear Algebra

1.5 Linear Operators

A linear operator A maps each vector V in its domain into a vector V ′ = A(V ) ≡

A V in its range in a way that is linear. So if V and W are two vectors in its domain

and b and c are numbers, then

A(bV + cW ) = bA(V ) + cA(W ) = bA V + cA W. (1.59)

If the domain and the range are the same vector space S, then A maps each basis

vector Bi of S into a linear combination of the basis vectors Bk

A Bi = a1i B1 + a2i B2 + · · · + ani Bn =

n
∑

k=1

aki Bk (1.60)

a formula that is clearer in Dirac’s notation (Section 1.12). The square matrix aki

represents the linear operator A in the Bk basis. The effect of A on any vector

V = u1 B1 + u2 B2 + · · · + un Bn in S then is

A V = A

n
∑

i=1

ui Bi =

n
∑

i=1

ui ABi =

n
∑

i,k=1

ui aki Bk =

n
∑

i,k=1

aki ui Bk . (1.61)

So the kth component u′
k of the vector V ′ = A V is

u′
k = ak1u1 + ak2u2 + · · · + aknun =

n
∑

i=1

aki ui . (1.62)

Thus the column vector u′ of the components u′
k of the vector V ′ = A V is the

product u′ = a u of the matrix with elements aki that represents the linear operator

A in the Bk basis and the column vector with components ui that represents the

vector V in that basis. In each basis, vectors and linear operators are represented

by column vectors and matrices.

Each linear operator is unique, but its matrix depends upon the basis. If we

change from the Bk basis to another basis B ′
i

B ′
i =

n
∑

ℓ=1

uki Bk (1.63)

in which the n × n matrix uℓk has an inverse matrix u−1
ki so that

n
∑

k=1

u−1
ki B ′

k =

n
∑

k=1

u−1
ki

n
∑

ℓ=1

uℓk Bℓ =

n
∑

ℓ=1

(

n
∑

k=1

uℓku−1
ki

)

Bℓ =

n
∑

ℓ=1

δℓi Bℓ = Bi

(1.64)
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