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Abstract

This contribution covers the topic of my talk at the 2016-17 Warwick-

EPSRC Symposium: “PDEs and their applications”. As such it con-

tains some already classical material and some new observations. The

main purpose is to compare several avatars of the Kato criterion for

the convergence of a Navier–Stokes solution, to a regular solution of

the Euler equations, with numerical or physical issues like the presence

(or absence) of anomalous energy dissipation, the Kolmogorov 1
3 law

or the Onsager C0, 1
3 conjecture. Comparison with results obtained after

September 2016 and an extended list of references have also been added.

1.1 Introduction and uniform estimates.

In this contribution I will describe the main topics of my talk at the 2016-

17 Warwick-EPSRC Symposium: PDEs in Fluid Mechanics in Septem-

ber 2016. Most of these issues are the results of a long term collaboration

with Edriss Titi. I will also comment on some more recent (after Septem-

ber 2016) results (also collaboration with Edriss Titi and several other

coworkers). In the same way I am going to include (mostly with no de-

tails) some recent results of other researchers and an extended list of

references whenever they contribute to the understanding of the prob-

lems. Eventually one of the guidelines is the comparison between the

use of weak convergence and the use of a statistical theory of turbulence.

Hence the paper is organized as follows. After introducing some basic and

well-known estimates, the zero viscosity limit of solutions of the Navier–
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2 C. Bardos

Stokes equations is considered with no-slip boundary condition but in

the presence, for the same initial data, of a Lipschitz solution of the Eu-

ler equations. This leads to an extension of Kato’s theorem and to the

introduction of several (equivalent) criteria for convergence to a smooth

solution and for the absence of anomalous energy dissipation. Compar-

ison of these criteria with physical observations or classical ansatz are

made. In particular emphasis is given to the issue of the anomalous en-

ergy dissipation which leads to the comparison with the Kolmogorov 1
3

law in the statistical theory of turbulence. Then this leads to the issue

of the Onsager C0, 1
3 conjecture.

As a starting point consider solutions of the Euler equations and of

the Navier–Stokes equations in a space-time domain

Ω× [0, T ] ⊂ R
d × R

+
t , d = 2, 3.

We assume that the boundary ∂Ω is a C1 manifold with �n(x) denoting

the outward normal at any point x in ∂Ω. Then we introduce the function

d(x) = d(x, ∂Ω) = inf
y∈∂Ω

|x− y| ≥ 0

and the set

Uη = {x ∈ Ω , d(x) < η},

which have the following classical geometrical properties.

Proposition 1.1 For 0 < η < η0 small enough d(x)|Uη
∈ C1(Uη)

and for any x ∈ Uη there exists a unique point σ(x) ∈ ∂Ω such that

d(x) = |x− σ(x)| . Moreover for every x ∈ Uη we have

x = σ(x)− d(x)�n(σ(x)) and ∇xd(x) = −�n(σ(x)). (1.1)

To focus on the boundary effects, first, we consider a smooth (Lip-

schitz) solution u(x, t) of the incompressible Euler equations with the

impermeability condition:

∇ · u = 0 and ∂tu+ u · ∇u+∇p = 0 in Ω× [0, T ]

and u · �n = 0 on ∂Ω× [0, T ] .
(1.2)

The value of such solution for t = 0 is denoted by u0(x) = u(x, 0). For

the same initial data uν(x, 0) = u0(x) and for any ν > 0 one considers a

family uν(x, t) of Leray–Hopf solutions of the Navier–Stokes equations
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with the no-slip boundary condition:

∂tuν + uν · ∇uν − ν∆uν +∇pν = 0 and ∇ · uν = 0 in Ω× [0, T ]

with uν = 0on ∂Ω× [0, T ].
(1.3)

For Lipschitz solutions of the Euler equations we have the obvious

energy balance relation

∫

Ω

|u(x, t)|2
2

dx =

∫

Ω

|u(x, 0)|2
2

dx, for all t ∈ [0, T ], (1.4)

while for any Leray–Hopf solution of the Navier–Stokes equations we

obtain
∫

Ω

|uν(x, t)|2
2

dx+ν

∫ t

0

∫

Ω

|∇uν(x, s)|2 dx ds ≤
∫

Ω

|uν(x, 0)|2
2

dx, (1.5)

for all t ∈ [0, T ].

It is well known that in dimension two the solution uν is smooth,

unique and (1.5) is actually an equality instead of an inequality. The is-

sue of the regularity of the solutions of (1.3) plays no role in the present

contribution which focuses on the zero viscosity limit. It turns out there

are no other estimates uniformly valid for all positive ν, and in partic-

ular for ν going to zero, other that the one that follows from (1.3). It

implies the existence of (may be not unique) limits, in the weak star

L∞(0, T ;L2(Ω)) topology, of subsequence of solutions uν of (1.3). Any

such limit is denoted by uν , and the main question is whether or not we

have

uν = u in Ω× [0, T ].

As shown in Kato (1972) and Constantin (2005), in the absence of phys-

ical boundaries (torus or the whole space) uν converges to u.

In the presence of physical boundaries, this is much more subtle. The

obvious difficulty comes from the fact that when ν → 0 only the imper-

meability boundary condition remains while (here τ denotes the tangen-

tial component at the boundary) the relation (uν)τ = 0 does not persist.

Therefore the solution has to become singular near the boundary. It cre-

ates a shear flow near the boundary, in solutions of (1.3), which generates

vorticity that may propagate inside the domain by the advection term

and by the effect of the pressure. This turns out to be the most natural

way to generate turbulence (even homogeneous turbulence far from the

boundary).
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4 C. Bardos

For any Lipschitz vector field w we denote by S(w) its symmetric

stress tensor

S(w) =
∇w + (∇w)⊥

2
.

Denote by (·, ·) the L2(Ω) scalar product. Then since both uν and u

are divergence-free Lipschitz vector fields and since u is tangent to the

boundary of Ω we obtain, by integration by parts, the classical formula

(uν · ∇uν − u · ∇u, uν − u) = (uν − u, S(u)(uν − u)). (1.6)

From (1.2) and (1.3) we also have

∂t(uν − u) + uν · ∇uν − u · ∇u− ν∆uν +∇pν −∇p = 0. (1.7)

Taking the L2(Ω) inner product of (1.7) with (uν − u) and observing

that on the boundary Ω we have uν = 0 and u · �n = 0, thanks to (1.6),

we obtain

d

dt

1

2
|uν − u|2L2(Ω) + ν

∫

Ω

|∇uν |2 dx

≤ |(uν − u, S(u)(uν − u))|+ ν

∫

Ω

(∇uν : ∇u) dx

− ν

∫

∂Ω

(∂�nuν)τ · u dσ.
(1.8)

The analysis of the term

−ν

∫

∂Ω

(∂�nuν)τ · u dσ,

which appears in the right-hand side of (1.8) is, in this section and in the

next one, the cornerstone of this contribution. We observe that (∂�nuν)τ
is the tangential component of the stress at the boundary. It creates a

shear flow near the boundary and generates vorticity. In order to see

this more clearly notice that since (uν)τ = 0 on the boundary of Ω we

obtain the following equality

−(∂�nuν)τ · u = (∇∧ uν) · (�n ∧ u). (1.9)

Therefore all the considerations concerning the left hand-side of (1.9) do

have their counterpart on the right-hand side, i.e. in terms of the trace

of the vorticity of uν on ∂Ω .

Moreover, from (1.8) it follows the very easy, but essential result.
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Proposition 1.2 Let u be a Lipschitz solution of the Euler equations

(1.2) and uν the solutions of the Navier–Stokes equations (1.3) with

initial data uν(x, 0) = u(x, 0) = u0(x). Then under the hypothesis

lim sup
ν→0

∫ T

0

−ν

∫

∂Ω

(∂�n · uν)τu dσ dt

= lim sup
ν→0

ν

∫ T

0

∫

∂Ω

−((∂�nuν)τ · uτ )− dσ dt ≤ 0

(1.10)

any weak limit uν coincides with u in Ω× [0, T ].

In the proposition and throughout the paper we use (X)− = inf(0, X).

Proof From (1.8), using the Cauchy–Schwarz and Young inequalities

we deduce that

|uν − u|2L2(Ω)(t)+ ν

∫ t

0

∫

Ω

|∇uν(x, s)|2 dx ds

≤ ν

∫ t

0

∫

Ω

|∇u|2 dx ds

+ 2|S(u)|L∞(Ω×[0,T ])

∫ t

0

|(uν − u)(s)|2L2(Ω) ds

+ 2

∫ t

0

−ν

∫

∂Ω

(∂�nuν)τ · u dσ ds.

(1.11)

Then, under the hypothesis (1.10), we have

lim sup
ν→0

|(uν−u)(t)|2L2(Ω)

≤|S(u)|L∞(Ω×[0,T ])

∫ t

0

lim sup
ν→0

|(uν − u)(s)|2L2(Ω) ds,
(1.12)

which implies, by Gronwall’s inequality, that

lim sup
ν→0

|(uν − u)(t)|2L2(Ω) = 0, for all t ∈ [0, T ],

and consequently, the relation

|uν − u|2L2(Ω)(t) ≤ lim sup
ν→0

|(uν − u)(t)|2L2(Ω) (1.13)

implies uν = u in Ω× [0, T ].
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6 C. Bardos

1.2 Kato criterion for convergence to the regular

solution.

In a remarkable paper Kato (1984) related the convergence to the smooth

solution of the Euler equations to the absence of anomalous energy dis-

sipation in a boundary layer of size ν. At present it turns out that this

criterion (this is the object of the Theorem 1.3 below) has several equiv-

alent forms (see Theorem 4.1 in Bardos & Titi (2013) and Constantin

et al (2018) for more references). Some of these equivalent forms (in

particular the above hypothesis (1.10)) have natural physical interpre-

tations.

Theorem 1.3 Assume the existence of a Lipschitz solution u(x, t) of

the incompressible Euler equations in Ω×]0, T [. Let uν(x, t) be a Leray–

Hopf weak solution of the Navier–Stokes equations (1.3) with no slip

boundary condition, that coincides with u at the time t = 0. Define the

region

Uν = Ω ∩ {d(x, ∂Ω) < ν}.

Then the following facts are equivalent:

lim
ν→0

ν

∫ T

0

∫

∂Ω

((∂�nuν)τ · uτ )− dσ dt = 0, (1.14a)

uν(t) → u(t) in L2(Ω) uniformly in t ∈ [0, T ], (1.14b)

uν(t) → u(t) weakly in L2(Ω) for each t ∈ [0, T ], (1.14c)

lim
ν→0

ν

∫ T

0

∫

Ω

|∇uν(x, t)|2 dx dt = 0, (1.14d)

lim
ν→0

ν

∫ T

0

∫

Uν

|∇uν(x, t)|2 dx dt = 0, (1.14e)

lim
ν→0

1

ν

∫ T

0

∫

Uν

|(uν(x, t))τ |2 dx dt = 0, and (1.14f)

lim
ν→0

ν

∫ T

0

∫

∂Ω

(
∂uν

∂�n
(σ, t))τ · w(σ, t) dσ dt = 0

for all w(x, t) ∈ Lip(∂Ω× [0, T ]) tangent to ∂Ω.

(1.14g)
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Proof The proof is an updated version (cf. Bardos & Titi, 2013) of the

basic result of Kato (1984). First observe that (1.14a) is (with w = u) a

direct consequence of (1.14g).

The fact that (1.14a) implies (1.14b) was observed in the previous

section, while (1.14c) clearly follows from (1.14b).

From (1.14c), for any 0 < t < T, we deduce

lim
ν→0

2ν

∫ t

0

∫

Ω

|∇uν(x, s)|2 dx ds

≤
∫

Ω

|u(x, 0)|2 dx− lim inf
ν→0

∫

Ω

|uν(x, t)|2 dx

≤
∫

Ω

|u(x, 0)|2 dx−
∫

Ω

|u(x, t)|2 dx ≤ 0,

(1.15)

which gives (1.14d) from which (1.14e) easily follows, as Uν ⊂ Ω.

Since uν = 0 on ∂Ω×]0, T [ the estimate (1.14f) is deduced from (1.14e)

using the Poincaré inequality.

The only non trivial statement is the fact that (1.14f) implies (1.14g)

and its proof is inspired by the construction of Kato (1984). We introduce

a cut-off function

Θ ∈ C∞(R), with Θ(0) = 1 and Θ(s) = 0 for s > 1. (1.16)

Then, with ν < η0 , use Proposition 1.1 to extend w to a Lipschitz,

divergence-free, tangent to the boundary vector field ŵν according to

the formula:

ŵν(x, t) = 0, for x /∈ Uν ,

ŵν(x, t) = ∇∧ (�n(σ) ∧ w(σ, t)d(x, ∂Ω)Θ(
d(x, ∂Ω)

ν
)),

for x = σ(x)− d(x, ∂Ω)�n(σ(x)) ∈ Uν .

(1.17)

Multiplication of the Navier–Stokes equation satisfied by uν and inte-

grating by part gives

ν

∫

∂Ω

(
∂uν

∂�n
(σ, t))τw(σ, t) dσ

= ν(∇uν ,∇ŵν)L2(Ω) − (uν ⊗ uν ,∇ŵν)L2(Ω) + (∂tuν , ŵν)L2(Ω) .
(1.18)

To show that the right-hand side of (1.18) goes to 0 with ν observe that,

the only non trivial terms to consider are those that contain the highest

power of ν−1.

We have the following estimates, where C denotes any constant which
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depends on the geometry and on the Jacobian of the transformation

defined on Uν by the relation x = σ(x)− d(x, ∂Ω)�n(σ(x)).

ν

∣

∣

∣

∣

∫ T

0

∫

Uν

|(∇uν ,∇ŵν)| dx dt
∣

∣

∣

∣

= −ν

∣

∣

∣

∣

∣

∫ T

0

∫

Uν

uν : ∆ŵν dx dt

∣

∣

∣

∣

∣

≤ νC

∫ T

0

∫ ν

0

∫

σ∈∂Ω

|(uν)τ (σ, s)||w(σ)|
s

ν3
|Θ′′′

(
s

ν
)| ds dσdt

+ o(ν)
(1.19)

and

∣

∣

∣

∣

∣

∫ T

0

∫

Uν

(uν ⊗ uν ,∇ŵν)L2(Ω) dt

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ T

0

∫

Uν

((uν)τ (uν)n∂n(ŵτ ) dx dt

∣

∣

∣

∣

∣

+ o(ν)

≤ C

∫ T

0

∫ ν

0

∫

σ∈∂Ω

|(uν)τ (σ, s)||(uν)n(σ, s)||w(σ, t)|
s

ν2
Θ

′′

(
s

ν
) ds dσ dt

+ o (ν).
(1.20)

Therefore using Cauchy–Schwarz we obtain from (1.19)

∣

∣

∣

∣

ν

∫ T

0

∫

Uν

(∇uν ,∇ŵν) dx dt

∣

∣

∣

∣

≤ C
1

ν2

(

∫ T

0

∫ ν

0

∫

σ∈∂Ω

|(uν)τ (σ, s)|2 ds dσ dt

)
1

2

×
(

∫ T

0

∫

∂Ω

∫ ν

0

s2 ds dσ dt

)
1

2

≤ C

(

1

ν

∫ T

0

∫ ν

0

∫

σ∈∂Ω

|(uν)τ (σ, s)|2 ds dσ dt

)
1

2

(1.21)

and similarly for (1.20) we have
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∣

∣

∣

∣

∣

∫ T

0

∫

Uν

|(uν ⊗ uν ,∇ŵν)| dx dt
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ T

0

∫

Uν

((uν)τ (uν)n∂n(ŵτ ) dx dt

∣

∣

∣

∣

∣

+ o(ν)

≤ C

∫ T

0

∫ ν

0

∫

σ∈∂Ω

|(uν)τ (σ, s)||(uν)n(σ, s)||w(σ, t)|
s

ν2
Θ

′′

(
s

ν
) ds dσ dt

+ o(ν)

≤ C

ν

∫ T

0

∫ ν

0

∫

σ∈∂Ω

|(uν)τ (σ, s)||(uν)n(σ, s)||w(σ, t)| ds dσ dt+ o(ν)

≤ C

(

1

ν

∫ T

0

∫ ν

0

∫

σ∈∂Ω

|(uν)τ (σ, s)|2 ds dσdt
)

1

2

×
(

1

ν

∫ T

0

∫ ν

0

∫

σ∈∂Ω

|(uν)n(σ, s)|2 ds dσ dt

)
1

2

+ o(ν).

(1.22)

Moreover, since uν = 0 on ∂Ω , with the Poincaré inequality, we have
∫ T

0

∫ ν

0

∫

∂Ω

|(uν)n(σ, s, t)|2 ds dσ dt

≤ ν2
∫ T

0

∫ ν

0

∫

∂Ω

|(uν)n|2 ds dσ dt ≤ C‖u0(x)‖2L2(Ω).

(1.23)

Therefore the last term of both (1.21) and (1.22) is uniformly bounded

by

C
1

ν

∫ T

0

∫

Uν

|(uν(x, t))τ |2 dx dt+ o(ν)

and this shows that (1.14f) implies (1.14g), completing the proof.

1.3 Mathematical and physical interpretation of

Theorem 1.3

1.3.1 Recirculation

Since uν = 0 on ∂Ω and u is tangent to the boundary, the fact that

(
∂uν

∂�n
(σ, t))τuτ = ((∇∧ uν) ∧ �n) · u < 0
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Laminar regime

Prandlt boundary layer recirculation and triple-deck ansatz

Figure 1.1 Laminar flow with recirculation around an airfoil.

for ν small enough, indicates that somewhere near the boundary the

viscous flows uν go in the opposite direction to the base flow u that

solves the Euler equations, or equivalently that this flow exhibits some

backward vorticity. This configuration is known as “recirculation” and

does not prevent the fluid from remaining laminar or from having an

asymptotic behavior given by the Euler equations, as long as such recir-

culation is not too big. And this moderate recirculation, shown in Figure

1.1, corresponds to the hypothesis (1.10).

1.3.2 The Prandtl equations and the Stewartson

triple-deck ansatz.

As already observed, in the zero-viscosity limit, the boundary condition

(uν)τ = 0 may not persist; hence some type of singularity has to appear

near the boundary. However, for linear parabolic problems of the form

∂tuν − ν∆uν = 0, uν(x, 0) = u0(x), uν(x, t)|∂Ω = 0 (1.24)

and also, for the linearised Navier–Stokes equations (cf. Ding & Jiang,

2018), the solution converges strongly away from the boundary and near

the boundary, in a layer B√
ν = {x ∈ Ω, d(x, ∂Ω) <

√
ν} of size

√
ν. It

can be described in the laminar regime by a “parabolic scaling”, that is,
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