Principles of Engineering Economics with Applications

Engineering economics is an essential subject for engineers. A sound understanding of this subject is required for analyzing complex economic decision-making problems in several core engineering disciplines. Adapted to meet the syllabi requirements of most universities, the text introduces the fundamental concepts of engineering economics. It shows ways to calculate time value of money using cash-flow diagrams and it explains the procedure for making economy studies to select the best alternative. It also elaborates various methods to make replacement and retention decisions, calculate depreciation costs, evaluate public sector projects, perform economy studies considering inflation, arrive at make or buy decisions etc. It further explains project planning and scheduling through CPM and PERT. The concepts and applications of value engineering are also introduced. Various methods for making forecasts, cost estimation and analysis, and decision making under different environments are also discussed. The book is strong in its ability to relate abstract engineering and managerial concepts to real life situations.

Zahid A. Khan is a professor at the Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi. He has published more than 100 articles in national and international journals. His research interests include optimization of design and manufacturing processes parameters, artificial neural network (ANN), fuzzy modelling, and environmental ergonomics.

Arshad N. Siddiquee is a professor at the Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi. He served as Assistant Director at the All India Council of Technical Education (AICTE) from 2005 to 2007. He has published more than 100 articles in national and international journals. His research interests include materials structure property correlation, welding engineering, machining, optimization of design and process parameters using fuzzy modelling.

Brajesh Kumar is an associate professor at the National Institute of Financial Management (NIFM), Faridabad. His areas of interest include mathematical economics, business economics, managerial economics, computer applications in economics, research methodology, and econometrics.

Mustufa H. Abidi is a researcher at the Raytheon Chair for Systems Engineering (RCSE), Advanced Manufacturing Institute, King Saud University, Riyadh. His areas of interest include application of virtual reality techniques for sustainable product development, flexible manufacturing systems, micro-manufacturing, human-computer interaction, additive manufacturing, and reverse engineering.
Principles of Engineering Economics with Applications

2nd edition

Zahid A. Khan
Arshad N. Siddiquee
Brajesh Kumar
Mustufa H. Abidi
To Our Families
Contents

Foreword xv
Preface xix
Acknowledgments xxi

1 Engineering Economics: A Prologue 1
 1.1 Introduction 1
 1.2 Introduction to Economics 1
 1.3 Need to Study Economics 1
 1.4 Circular Flow of Economic Activities 2
 1.5 Circular Flow of Income in Different Sectors 6
 1.6 Demand Theory 7
 1.6.1 Law of Demand 8
 1.6.2 Assumptions Used in Defining Demand 8
 1.6.3 Demand Schedule 8
 1.6.4 Demand Curve 9
 1.6.5 Determinants of Demand 9
 1.7 Elasticity of Demand 10
 1.7.1 Price Elasticity of Demand 10
 1.7.2 Income Elasticity of Demand 15
 1.7.3 Cross Elasticity 17
 1.8 Supply 20
 1.8.1 Factors Affecting Supply: The Determinants of Supply 20
 1.8.2 Law of Supply 21
 1.8.3 Supply Schedule 21
 1.8.4 Supply Curve 22
 1.9 Definition and Scope of Engineering Economics 22
 1.9.1 Meaning of Engineering Economics 22
 1.9.2 Definition of Engineering Economics 22
 1.9.3 Concepts of Engineering Economics 23
 1.9.4 The Scope of Engineering Economics 23
 1.9.5 Engineering Economics Environment 23
 1.9.6 Types of Efficiency 24
 1.10 Consumer and Producer Goods and Services 25
 1.11 Necessities, Luxuries and Relation between Price and Demand 25
Contents

1.12 Relation between Total Revenue and Demand 27
1.13 Cost Concepts 28
1.14 Relation between Cost and Volume 29
1.15 The Law of Supply and Demand 33
1.16 The Law of Diminishing Marginal Returns 34
1.17 Break-Even Analysis 34
1.18 Profit-Volume (P/V) Chart and P/V Ratio 38
1.19 Competition or Market Structure 41

2. Fundamentals of Mathematics and Engineering Economics 45

2.1 Introduction 45
2.2 Theory of Consumer Behavior 46
2.3 Meaning of Utility 47
2.3.1 Nature of the Utility Function 47
2.3.2 Existence of Utility Function 48
2.3.3 The Cardinal Marginal Utility Theory 49
2.3.4 Equilibrium of the Consumer 50
2.4 Meaning of Demand 51
2.4.1 Demand Function 51
2.4.2 Quantity Demanded 51
2.4.3 Change in Demand 52
2.4.4 Law of Demand 52
2.4.5 Ordinary Demand Function 54
2.4.6 Compensated Demand Function 55
2.4.7 Reasons for Downward Slope of Demand Curve 55
2.5 Concept of Elasticity 56
2.5.1 Own Price Elasticity 56
2.5.2 Determinants of Price Elasticity 58
2.5.3 Income Elasticity of Demand 59
2.5.4 Cross-Price Elasticity of Demand 60
2.5.5 Engel Curve and Income Elasticity 61
2.5.6 Relationship between Price Elasticity and Marginal Revenue 63
2.6 Law of Diminishing Marginal Utility 63
2.7 Principle of Equi-marginal Utility 65
2.8 Indifference Curves Theory and Ordinal Utility Theory 67
2.8.1 Indifference Curves 67
2.8.2 Nature of Consumer Preferences 68
2.8.3 Indifference Map 69
2.8.4 Rate of Commodity Substitution 69
2.8.5 Properties of ICs 70
2.8.6 Budget Line 72
2.8.7 Consumer's Equilibrium or Maximization of Utility 72
2.8.8 Alternative Method of Utility Maximization 74
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9</td>
<td>Application and Uses of Indifference Curves</td>
<td>76</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Income and Leisure Choice</td>
<td>76</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Revealed Preference Hypothesis</td>
<td>77</td>
</tr>
<tr>
<td>2.9.3</td>
<td>Consumer’s Surplus</td>
<td>80</td>
</tr>
<tr>
<td>3.</td>
<td>Elementary Economic Analysis</td>
<td>83</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction: Theory of the Firm</td>
<td>83</td>
</tr>
<tr>
<td>3.2</td>
<td>Law of Supply</td>
<td>83</td>
</tr>
<tr>
<td>3.3</td>
<td>Concept of Elasticity of Supply</td>
<td>86</td>
</tr>
<tr>
<td>3.4</td>
<td>Meaning of Production</td>
<td>88</td>
</tr>
<tr>
<td>3.5</td>
<td>Production Function and its Types</td>
<td>90</td>
</tr>
<tr>
<td>3.5.1</td>
<td>General Production Function</td>
<td>90</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Cobb-Douglas Production Function</td>
<td>91</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Properties of Cobb-Douglas Production Function</td>
<td>93</td>
</tr>
<tr>
<td>3.5.4</td>
<td>CES Production Function</td>
<td>94</td>
</tr>
<tr>
<td>3.6</td>
<td>Producer’s Equilibrium</td>
<td>94</td>
</tr>
<tr>
<td>3.7</td>
<td>Concept of Isoquants</td>
<td>96</td>
</tr>
<tr>
<td>3.8</td>
<td>Marginal Rate of Technical Substitution</td>
<td>99</td>
</tr>
<tr>
<td>3.9</td>
<td>The Elasticity of Substitution</td>
<td>100</td>
</tr>
<tr>
<td>3.10</td>
<td>Iso-cost Line</td>
<td>101</td>
</tr>
<tr>
<td>3.11</td>
<td>Producer’s Surplus</td>
<td>102</td>
</tr>
<tr>
<td>3.12</td>
<td>Cost Minimization</td>
<td>102</td>
</tr>
<tr>
<td>3.13</td>
<td>Returns to Scale and Returns to Factor</td>
<td>107</td>
</tr>
<tr>
<td>3.14</td>
<td>Cost Theory and Estimation</td>
<td>108</td>
</tr>
<tr>
<td>3.15</td>
<td>Concept of Costs and their Types</td>
<td>108</td>
</tr>
<tr>
<td>3.16</td>
<td>Profits</td>
<td>110</td>
</tr>
<tr>
<td>3.16.1</td>
<td>Normal Profits</td>
<td>111</td>
</tr>
<tr>
<td>3.16.2</td>
<td>Economic Profits</td>
<td>111</td>
</tr>
<tr>
<td>3.17</td>
<td>Profit maximization</td>
<td>112</td>
</tr>
<tr>
<td>3.18</td>
<td>Market Structure and Degree of Competition</td>
<td>112</td>
</tr>
<tr>
<td>3.18.1</td>
<td>Perfect Competition</td>
<td>113</td>
</tr>
<tr>
<td>3.18.2</td>
<td>Monopoly</td>
<td>115</td>
</tr>
<tr>
<td>3.18.3</td>
<td>Monopolistic Competition</td>
<td>117</td>
</tr>
<tr>
<td>3.18.4</td>
<td>Oligopoly Models</td>
<td>118</td>
</tr>
<tr>
<td>3.18.5</td>
<td>Monopsony</td>
<td>120</td>
</tr>
<tr>
<td>4.</td>
<td>Interest Formulae and their Applications</td>
<td>123</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>123</td>
</tr>
<tr>
<td>4.2</td>
<td>Why Return to Capital is Considered?</td>
<td>123</td>
</tr>
<tr>
<td>4.3</td>
<td>Interest, Interest Rate and Rate of Return</td>
<td>123</td>
</tr>
<tr>
<td>4.4</td>
<td>Simple Interest</td>
<td>125</td>
</tr>
<tr>
<td>4.5</td>
<td>Compound Interest</td>
<td>126</td>
</tr>
<tr>
<td>4.6</td>
<td>The Concept of Equivalence</td>
<td>126</td>
</tr>
</tbody>
</table>
Contents

4.7 Cash Flow Diagrams 127
4.8 Terminology and Notations/Symbols 129
4.9 Interest Formula for Discrete Cash Flow and Discrete Compounding 132
 4.9.1 Interest Formulae Relating Present and Future Equivalent Values of Single Cash Flows 132
 4.9.2 Interest Formulae Relating a Uniform Series (Annuity) to its Present and Future Worth 135
4.10 Interest Formulae Relating an Arithmetic Gradient Series to its Present and Annual Worth 142
 4.10.1 Finding P when given G 143
 4.10.2 Finding A when given G 144
4.11 Interest Formulae Relating a Geometric Gradient Series to its Present and Annual Worth 148
4.12 Uniform Series with Beginning-of-Period Cash Flows 154
4.13 Deferred Annuities or Shifted Uniform Series 156
4.14 Calculations Involving Uniform Series and Randomly Placed Single Amounts 159
4.15 Calculations of Equivalent Present Worth and Equivalent Annual Worth for Shifted Gradients 161
4.16 Calculations of Equivalent Present Worth and Equivalent Annual Worth for Shifted Decreasing Arithmetic Gradients 165
4.17 Nominal and Effective Interest Rates 168
4.18 Interest Problems with Compounding More-Often-Than-Once Per Year 173
 4.18.1 Single Amounts 173
 4.18.2 Uniform Series and Gradient Series 175
 4.18.3 Interest Problems with Uniform Cash Flows Less-Often-Than Compounding Periods 176
 4.18.4 Interest Problems with Uniform Cash Flows More-Often-Than Compounding Periods 178

5. Methods for Making Economy Studies 185
 5.1 Introduction 185
 5.2 Basic Methods 185
 5.3 Present Worth (P.W.) Method 186
 5.4 Future Worth (F.W.) Method 188
 5.5 Annual Worth (A.W.) Method 190
 5.6 Internal Rate of Return (I.R.R.) Method 196
 5.7 External Rate of Return (E.R.R.) Method 199
 5.8 Explicit Reinvestment Rate of Return (E.R.R.R.) Method 203
 5.9 Capitalized Cost Calculation and Analysis 204
 5.10 Payback (Payout) Method 207

6. Selection among Alternatives 212
 6.1 Introduction 212
 6.2 Alternatives having Identical Disbursements and Lives 212
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3 Alternatives having Identical Revenues and Different Lives</td>
<td>221</td>
</tr>
<tr>
<td>6.3.1 Comparisons using the Repeatability Assumption</td>
<td>221</td>
</tr>
<tr>
<td>6.3.2 Comparisons using the Coterminated Assumption</td>
<td>225</td>
</tr>
<tr>
<td>6.4 Alternatives Having Different Revenues and Identical Lives</td>
<td>228</td>
</tr>
<tr>
<td>6.5 Alternatives Having Different Revenues and Different Lives</td>
<td>231</td>
</tr>
<tr>
<td>6.6 Comparison of Alternatives by the Capitalized Worth Method</td>
<td>234</td>
</tr>
<tr>
<td>6.7 Selection among Independent Alternatives</td>
<td>235</td>
</tr>
<tr>
<td>7. Replacement and Retention Decisions</td>
<td>241</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>241</td>
</tr>
<tr>
<td>7.2 Reasons for Replacement</td>
<td>241</td>
</tr>
<tr>
<td>7.3 Terminologies used in Replacement Study</td>
<td>242</td>
</tr>
<tr>
<td>7.4 Economic Service Life</td>
<td>242</td>
</tr>
<tr>
<td>7.5 Procedure for Performing Replacement Study</td>
<td>245</td>
</tr>
<tr>
<td>7.6 Replacement Study over a Specified Study Period</td>
<td>247</td>
</tr>
<tr>
<td>8. Depreciation</td>
<td>254</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>254</td>
</tr>
<tr>
<td>8.2 Depreciation Terminology</td>
<td>254</td>
</tr>
<tr>
<td>8.3 Methods of Depreciation</td>
<td>255</td>
</tr>
<tr>
<td>8.3.1 Straight Line (SL) Method</td>
<td>255</td>
</tr>
<tr>
<td>8.3.2 The Declining Balance (DB) Method</td>
<td>257</td>
</tr>
<tr>
<td>8.3.3 Sum-of-the-Years’-Digits (SYD) Method</td>
<td>260</td>
</tr>
<tr>
<td>8.3.4 The Sinking Fund Method</td>
<td>262</td>
</tr>
<tr>
<td>8.3.5 The Service Output Method</td>
<td>264</td>
</tr>
<tr>
<td>9. Economic Evaluation of Public Sector Projects</td>
<td>266</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>266</td>
</tr>
<tr>
<td>9.2 Benefit/Cost Analysis of a Single Project</td>
<td>267</td>
</tr>
<tr>
<td>9.3 Selection between Two Mutually Exclusive Alternatives using</td>
<td>269</td>
</tr>
<tr>
<td>Incremental B/C Analysis</td>
<td>269</td>
</tr>
<tr>
<td>9.4 Selection Among Multiple Mutually Exclusive Alternatives using</td>
<td>271</td>
</tr>
<tr>
<td>Incremental B/C Analysis</td>
<td>271</td>
</tr>
<tr>
<td>10. Economics Study Considering Inflation</td>
<td>276</td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>276</td>
</tr>
<tr>
<td>10.2 Effects of Inflation</td>
<td>276</td>
</tr>
<tr>
<td>10.3 Present Worth Calculations Adjusted for Inflation</td>
<td>278</td>
</tr>
<tr>
<td>10.4 Future Worth Calculations Adjusted for Inflation</td>
<td>281</td>
</tr>
<tr>
<td>10.5 Capital Recovery Calculations Adjusted for Inflation</td>
<td>284</td>
</tr>
<tr>
<td>11. Make or Buy Decision</td>
<td>286</td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>286</td>
</tr>
<tr>
<td>11.2 Feasible Alternatives for Launching New Products</td>
<td>286</td>
</tr>
<tr>
<td>11.3 Decisive Factors for Make or Buy Decision</td>
<td>287</td>
</tr>
</tbody>
</table>
Contents

11.3.1 Criteria for Make Decision 287
11.3.2 Criteria for Buy Decision 288
11.4 Techniques used to Arrive at Make or Buy Decision 288
11.4.1 Simple Cost Analysis 288
11.4.2 Economic Analysis 290
11.4.3 Break-Even Analysis 292

12. Project Management 297

12.1 Introduction 297
12.2 Phases of Project Management 297
12.2.1 Planning 297
12.2.2 Scheduling 298
12.2.3 Monitoring and Control 298
12.3 Bar or Gantt Charts 298
12.4 Network Analysis Technique 300
12.5 Critical Path Method (CPM) 301
12.5.1 Arrow Diagrams 301
12.5.2 Activity Description 304
12.5.3 Understanding Logic of Arrow Diagrams 305
12.5.4 Dummy Activities 307
12.6 Guidelines for Drawing Network Diagrams or Arrow Diagrams 308
12.7 CPM Calculations 311
12.7.1 Critical Path 312
12.7.2 Critical Activities 312
12.7.3 Non-critical Activities 312
12.7.4 Earliest Event Time 313
12.7.5 Latest Event Time 313
12.8 Calculation of the Earliest Occurrence Time of Events 313
12.9 Calculation of the Latest Occurrence Time of Events 318
12.10 Activity Times 324
12.10.1 Earliest Start Time 325
12.10.2 Earliest Finish Time 325
12.10.3 Latest Finish Time 325
12.10.4 Latest Start Time 326
12.11 Float 330
12.11.1 Types of Float 331
12.11.2 Negative Float 340
12.12 Identification of Critical Path 341
12.13 Program Evaluation and Review Technique (PERT) 343
12.13.1 PERT Activity Time Estimates 343
12.13.2 PERT Computations 344
12.13.3 Computation of Probabilities of Completion by a Specified Date 352
12.14 Project Crashing 358
12.14.1 Cost Slope 359
12.14.2 Cost of Crashing 359

13. Value Engineering 375

13.1 Introduction 375
13.2 Concept of Value Engineering 375
13.3 Nature and Measurement of Value 378
 13.3.1 The VE process 378
13.4 Origination Phase 379
 13.4.1 Organization 379
 13.4.2 Project Selection 379
 13.4.3 The VE Team 380
13.5 Project or Study Mission 380
 13.5.1 Product Definition and Documentation 380
13.6 Information Phase 380
 13.6.1 Qualitative Analysis of Value: Function Analysis 380
 13.6.2 Function Analysis Systems Technique (FAST) 381
 13.6.3 Constraints Analysis 384
13.7 Quantitative Analysis of Value – State 1 Value Measurement 384
 13.7.1 Cost Derivation 384
 13.7.2 Worth or Importance Derivation 384
 13.7.3 The Value Index 385
 13.7.4 Value Measurement Techniques 385
13.8 Innovation Phase 386
 13.8.1 Improvement of Value 386
13.9 Evaluation Phase 386
 13.9.1 Pre-screening: Qualitative Analysis of Value 386
 13.9.2 Quantitative Analysis of Value 386
13.10 Implementation Phase 387

14. Forecasting 388

14.1 Introduction 388
14.2 Basic Categories of Forecasting Methods 388
14.3 Extrapolative Methods 389
 14.3.1 Components of Demand 389
 14.3.2 Moving Average Method 390
 14.3.3 Weighted Moving Average Method 391
 14.3.4 Exponential Smoothing Methods 392
 14.3.5 Adaptive Methods 403
14.4 Causal or Explanatory Methods 403
 14.4.1 Regression Analysis 403
 14.4.2 Simple Regression Analysis 404
 14.4.3 Multiple Regression Analysis 413
Contents

14.5 Qualitative or Judgmental Methods
14.5.1 Build-up Method
14.5.2 Survey Method
14.5.3 Test Markets
14.5.4 Panel of Experts
14.6 Forecast Errors

15. Cost Estimation
15.1 Introduction
15.2 How Does an Organization Estimate Cost?
15.2.1 Cost Estimates
15.2.2 Cost Estimation Approach
15.2.3 Accuracy of Estimates
15.2.4 Cost Estimation Methods
15.3 Unit Method
15.4 Cost Indexes
15.5 Cost Estimation Relationships
15.5.1 Cost-Capacity Equation
15.5.2 Factor Method
15.5.3 Learning Curve
15.6 Estimation and Allocation of Indirect Cost

16. Decision Making
16.1 Introduction
16.2 Terminologies used in Decision Making
16.3 Steps in Decision Making
16.4 Decision Making Environment
16.5 Decision Making under Uncertainty
16.5.1 The Maximax Criterion
16.5.2 The Maximin Criterion
16.5.3 The Minimax Regret Criterion
16.5.4 The Realism Criterion (Hurwicz’s Rule)
16.5.5 Criterion of Insufficient Reason (Laplace’s Rule)
16.6 Decision Making under Risk
16.6.1 Expected Monetary Value (EMV)
16.6.2 Expected Opportunity Loss (EOL)
16.6.3 Expected Value of Perfect Information (EVPI)
16.7 Marginal Analysis
16.8 Decision Trees

Appendix A
Appendix B
Appendix C
Bibliography
Index
Foreword

In the face of cut-throat competition of the present day, businesses the world over have become more and more technical. Alongside other professionals, engineers play a key role in running businesses successfully across the globe. They play an important role in decision-making, both in the manufacturing and service industries. Most of these decisions are made primarily on the basis of economic factors and their assessment. It is often seen that decision-makers do not possess the required knowledge and skills related to engineering, and thus, they frequently call upon engineers to make technical-economic analyses and suggest recommendations. Engineering Economy is an important subject for aspiring as well as practicing engineers today, as the techniques and models thus adopted assist engineers and managers in making well-thought-out decisions. They can use the knowledge of this subject to analyse and draw conclusions as they work on projects of all kinds of complexities.

The success of engineering and business projects is usually measured in terms of financial efficiency. A project would be able to achieve maximum financial efficiency if it is properly planned and operated with respect to its technical, social and financial requirements. Since it is the engineers who understand the technical requirements of a project, they are best placed to assimilate the technical details with their knowledge of engineering economy to do an effective economic analysis and arrive at a sound managerial decision.

The present volume, comprising 16 chapters, covers many such issues pertaining to economic analysis of projects. Chapter 1 summarizes the basic principles of engineering economy and its applications. Chapter 2 describes the fundamental concepts of mathematics and engineering economics, which will help readers learn the basic mathematical concepts required for economic analysis. The roles of factors involved in economic analysis have been discussed at length in Chapter 3. Chapter 4 describes the key concept of value of money, on which economic analyses are based. Topics such as simple and compound interests, cash flow diagrams, determination of equivalent cash flow at different points in time, nominal and effective interest rates have also been explained here. Chapter 5 describes the basic methods that can be used by engineers to perform economy-studies. The methods that can be used for selecting the best alternative out of many, have been presented in Chapter 6. Chapter 7 describes the procedure to be followed to decide whether an organization should continue to use existing physical assets (such as a machine) or whether the asset should be replaced. The value of a physical asset depreciates, that is diminishes, with time; this concept of depreciation as well
Foreword

as the procedure for calculating depreciation costs have been described in Chapter 8. Chapter 9 describes different methods such as benefit-cost ratio for the economic evaluation of large public-sector projects. The concept of inflation and how it affects the worth of capital have been discussed in Chapter 10. Often organizations have to make decisions as to whether they should manufacture a component in-house or buy it from outside. The procedure of arriving at a make-or-buy-decision has been explained in Chapter 11. In Chapter 12, the focus is project management. Concepts such as CPM, PERT and project crashing have been described here to enable readers understand and apply these techniques for timely and economic completion of their projects. Chapter 13 presents a well-established technique, value engineering, adopted to reduce the cost of a product and increase its value. The success of an organization depends on how efficiently and effectively it can forecast the demand for its products.

Chapter 14, describes the underlying concepts, methods and models of forecasting. Chapter 15, explains the various types of costs and describes the different methods for cost estimation. The last chapter of the book, Chapter 16 discusses the various methods used for taking decisions under different decision-making environments. This book, highlights the principles and applications of economic analysis in a lucid manner, supported by a large number and wide range of engineering-oriented examples and end-of-chapter exercises. It covers the syllabi of undergraduate and postgraduate courses of major Indian and overseas universities. Special chapters such as Fundamentals of Mathematics and Engineering Economics, Elementary Economic Analysis, Project Management, Value Engineering, and Forecasting, covered in this book are rare in books of this kind, which makes it distinct from existing books.

Writing a book requires in-depth subject knowledge, dedication, sincere effort, sacrifices, and teaching and research experience. As head of the institution, I am aware that the first author of this volume, Dr Zahid Akhtar Khan, Professor in Mechanical Engineering, Jamia Millia Islamia, New Delhi, has more than 20 years of teaching and research experience. He has taught in overseas universities such as the University Sains Malaysia, Malaysia, and the King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia. Apart from teaching, he is actively involved in research and development activities. He has published more than 45 research papers in reputed national and international journals and over 20 papers in the proceedings of conferences held in India and abroad. In addition, he has also contributed chapters in three books related to Mechanical Engineering. VDM Verlag, a German publishing company, has published one of his monographs. Dr Khan has supervised several MTech dissertations and BTech projects. Presently he is supervising five PhD and three MTech. students. He and his colleague Mr Arshad Noor Siddiquee have been instrumental in developing quite a few laboratories, including the Metrology Lab, in the department and in preparing proposals for financial grants. This year they have submitted a proposal for SAP (worth ~75 lakh) to the University Grants Commission. They, along with their team of students, have filed a patent with the Controller General of Patents, Design and Trademarks, Government of India, for the designing and development of a convertible wheel chair.
Foreword

Dr Khan has been discharging additional duties as coordinator for the training and placement of postgraduate students; as member, sports committee of the faculty; in-charge of the faculty magazine 'Tech-Times'; in-charge of the Engineering workshop; member of the result analysis committee; member of the sub-purchase committee of the department; advisor of the students of Mechanical Engineering; and tabulator of the MTech and BTech results.

He has received international recognition: his biography has been published in 'Marqui's Who's Who in Science and Engineering, Tenth edition, 2008-09'. He has received the International Scientist of the Year 2008 award given by the International Biographical Centre, Cambridge, UK. He is a member of the Emerald Literati Network, UK, and is also on the panel of reviewers of international journals.

Arshad Noor Siddiquee, the second author of this book, has graduated from Government Engineering College, Jabalpur. He completed his MTech from the Indian Institute of Technology, Delhi, where he is currently pursuing this doctoral studies. He is presently working as an associate professor in the Department of Mechanical Engineering, Jamia Millia Islamia. He played a key role in the developmental phase of Glasgow University College in Oman during 1998-2001. He has had hands-on experience in the establishment and accreditation of technical institutions during his tenure at the All India Council for Technical Education (AICTE), New Delhi, in the capacity of an assistant director. Siddiquee has dexterously used his skills in making the Faculty of Engineering and Technology profile for ranking evaluation of institutions and also in making proposals for Petroleum Engineering and Aeronautical Engineering programmes. He has contributed chapters on engineering subjects to three books of reputed publishers and over 15 research papers to international journals. He is on the panel of reviewers for Elsevier and Springer journals.

Dr Brajesh Kumar, the third author, has worked in the Department of Expenditure, Ministry of Finance, Government of India, and is currently serving as an associate professor at the National Institute of Financial Management (NIFM), Faridabad. His areas of interest are managerial economics, financial econometrics and computer applications in economics. He has published several research works on managerial economics, and macro- and micro-economics. Dr Kumar is associated with various national and international organizations in different capacities; for instance, agro-expert, Federation of Indian Chambers of Commerce and Industry (FICCI); read group member, Centre for Trade and Development (CENTAD); and programme coordinator, civil servants from North-East Cadre.

I am extremely pleased to find that despite their most sincere involvement, commitment and dedication to teaching and research, the authors have put in so much effort in writing this extremely useful and timely book. This must have demanded of them time away from family, great sacrifices, pains and compromises. I have learnt that the range and content of the book has received excellent appreciation from its reviewers. It is an interesting fact that the market review of the publisher revealed that no single title in India is, so far, available to fulfill students' requirements in engineering economy. I have no doubt that this is a definitive text on the subject; that it would meet the genuine needs of students, teachers, and practising
Foreword

engineers and managers alike. I congratulate the authors for accomplishing this challenging task and wish them every success.

Najeeb Jung, IAS
Vice-Chancellor, Jamia Millia Islamia
Preface

ABOUT ENGINEERING ECONOMICS WITH APPLICATIONS

Engineers are required to provide economically feasible solutions to existing problems. To achieve this, engineers must possess knowledge of economy to evaluate the monetary consequences of the products, projects and processes that they design. Engineering design solutions do not exist in a vacuum but within the context of a business opportunity. Since almost every problem has multiple solutions, so the issue is: how does one rationally select a design with the most favorable economic result? The answer to this question is provided by engineering economy. Engineering economy, the analysis of the economic consequences of engineering decisions, is said to have originated in A. M. Wellington’s *The Economic Theory of Railway Location*, published in 1887. Engineering economy is now considered a part of the education of every engineer, as it provides a systematic framework for evaluating the economic aspects of competing design solutions. Just as engineers model the effect of temperature on cutting tools or the thermodynamic response of an air compressor, they must also model the economic impact of their recommendations. What is ‘engineering economy’ and why is it so important? The initial reaction of many engineering students to this question is, ‘money matters will be handled by someone else and I need not worry about these matters’. In reality, any engineering project must be, not only physically realizable but also economically affordable. Understanding and applying economic principles to engineering have never been more important. Engineering is more than a problem-solving activity focusing on the development of products, systems, and processes to satisfy a need or demand. Beyond function and performance, solutions must also be economically viable. Design decisions affect limited resources such as time, material, labor, capital and natural resources, not only initially i.e. during conceptual design but also through the remaining phases of the life cycle i.e. during detailed design, manufacture and distribution, service, retirement and disposal. Engineers should realize that the solution provided by them does not make sense and will not be acceptable, if it is not profitable.
EDUCATION LEVEL AND USE OF TEXT

The contents of this book have been designed in such a way that it serves two primary purposes: (i) to provide students with a sound understanding of the principles, basic concepts, and methodology of engineering economy; and (ii) to help students develop proficiency with these methods and with the processes for facilitating rational decisions they are likely to encounter in professional practice. Interestingly, an engineering economics with applications course may be a student's only college exposure to the systematic evaluation of alternative investment opportunities. In this respect, *Engineering Economics with Applications* is intended to serve as a basic text for classroom instruction and as well as a reference for use by practicing engineers in all areas (chemical, civil, computer, electrical, industrial, and mechanical engineering). The book is also useful for people engaged in the management of technical activities.

It is well suited for undergraduate as well as postgraduate courses in engineering economic analysis, project analysis, or engineering cost analysis. Additionally, because of its simple and easy to understand language, it is perfect for those who are studying the subject for the first time and on their own, and for those who simply want to review. The systematic approach used in the text design allows a practitioner unacquainted with economics and engineering principles to use the text to learn, understand, and correctly apply the principles and techniques for effective decision making.

SALIENT FEATURES OF THE BOOK

- Simple and easy to understand language.
- The concepts have been explained in a lucid manner.
- Numerous comprehensive real life examples appear throughout the book.
- Extended learning exercises, in the end-of-chapter problem sets.
- A large number of figures and diagrams enrich the text.
Acknowledgments

We are extremely grateful to the Almighty for thy blessings, which of course have been with us always, and for giving us the strength and dedication to complete this book to the best of our ability.

We are thankful to all people, including our colleagues and students, for extending their help and support in completing this book.

We are grateful to Raytheon Chair for Systems Engineering (RCSE), Advanced Manufacturing Institute for the funding. We would also like to thank our parent institutions for allowing us to complete this book.

We are extremely thankful to the Cambridge University Press, particularly Gauravjeet Singh Reen for his untiring efforts and continuous support, for timely publication of the book.

Last but not the least, we thank our beloved family members, who suffered a lot during completion of this book as we could not spend as much time with them we should have. We thank them for bearing with us.