Primary Mathematics: Integrating Theory with Practice provides a comprehensive introduction to teaching and learning mathematics in today’s classrooms. Closely aligned with the Australian Curriculum: Mathematics, this text covers the core learning areas of measurement, space and geometry, early number concepts, data and statistics, chance and probability, and patterns and algebra. The text also addresses key considerations for teachers, such as planning, assessment, diversity and teaching outside traditional contexts.

This third edition has been thoroughly revised and features three new chapters focusing on the general capabilities and cross-curricular priorities, implementing STEM strategies in the primary setting, and transition to practice. Each chapter highlights how the theory of teaching mathematics can be put into practice effectively and includes new guided reflective questions and student tasks. Learning is also supported through key term definitions, snapshot case studies and reflection points, while activities throughout each chapter inspire readers to put their knowledge into practice.

Written by an expert author team, Primary Mathematics remains an essential resource that will prepare and excite pre-service teachers for their future as mathematics educators.

Penelope Serow is Associate Professor in the School of Education at the University of New England.

Rosemary Callingham is Adjunct Associate Professor in the Faculty of Education at the University of Tasmania.

Tracey Muir is Associate Professor in the Faculty of Education at the University of Tasmania.
Primary Mathematics
Integrating Theory with Practice

3rd edition

Penelope Serow
Rosemary Callingham
Tracey Muir
Contents

ABOUT THE AUTHORS
X

HOW TO USE HOTMATHS WITH THIS BOOK
XI

ACKNOWLEDGEMENTS
XV

CHAPTER 1 Teaching mathematics today with tomorrow in mind
1
- Today’s classroom
 2
- The TPACK framework
 3
- Summary of chapters
 6
- How to use this book
 9

CHAPTER 2 Exploring early mathematical development
10
- Introduction
 10
- Early childhood mathematics pedagogy
 12
- Transition to school
 13
- The importance of play
 14
- Early number concepts
 14
- Linking with curriculum documents
 18
- Early number activities and strategies
 20
- Early operations with number
 31
- Extending early mathematical development beyond number
 36
- Conclusion
 39
- Guided student tasks
 39
- Further reading
 40

CHAPTER 3 Exploring measurement
41
- Introduction
 41
- Learning sequence for measurement
 41
- Establishing formulae for areas and volumes
 47
- Estimation
 49
- Conservation
 52
- Measurement topics
 53
- Using inquiry to develop an understanding of measurement
 67
- Conclusion
 69
- Guided student tasks
 70
- Further reading
 70

CHAPTER 4 Exploring geometry
71
- Introduction
 71
- Geometric concepts
 71
- Theoretical framework
 74
Contents

Geometry in the primary classroom 79
The van Hiele teaching phases 96
Conclusion 102
Guided student tasks 102
Further reading 103

CHAPTER 5 Exploring whole number computation 104
Introduction 104
Developing number sense 105
Operations with whole numbers 107
Conclusion 122
Guided student tasks 122
Further reading 123

CHAPTER 6 Part-whole numbers and proportional reasoning 125
Introduction 125
Background 126
Parts and wholes 127
Conclusion 140
Guided student tasks 140
Further reading 141

CHAPTER 7 Exploring patterns and algebra 142
Introduction 142
Linking with curriculum 143
Pattern and structure 143
Developing an understanding of relationships 150
Equals and equivalence 151
Generalisation in upper primary 157
Conclusion 164
Guided student tasks 164
Further reading 165

CHAPTER 8 Exploring data and statistics 166
Introduction 166
Development of statistical understanding 168
Asking questions (problems) 169
Collecting and recording data (plan, data) 170
Analysing and representing data (analyse) 175
Telling a story from the data (conclusions) 183
Conclusion 187
Guided student tasks 187
Further reading 188
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Exploring chance and probability</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Why is probability important?</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Understanding probability</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>Developing understanding of uncertainty</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>Guided student tasks</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>Further reading</td>
<td>210</td>
</tr>
<tr>
<td>10</td>
<td>Capitalising on assessment for, of and as learning</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Assessment</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Quality of student responses</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Construction of assessment tasks</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>National testing</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Designing assessment items for different levels of complexity</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Guided student tasks</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Further reading</td>
<td>232</td>
</tr>
<tr>
<td>11</td>
<td>Planning for mathematics teaching in the 21st century classroom</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>Planning considerations</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>Considering digital technologies when planning for mathematics lessons</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>Suggestions for capitalising on ICT in the classroom</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Developing an understanding of place value</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>Planning for an integrated unit</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Guided student tasks</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Further reading</td>
<td>253</td>
</tr>
<tr>
<td>12</td>
<td>Diversity in the primary mathematics classroom</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Why is it important to recognise diversity?</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>The impact of teachers’ understanding and beliefs</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Practical aspects of addressing diversity in the mathematics classroom</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>Guided student tasks</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>Further reading</td>
<td>275</td>
</tr>
</tbody>
</table>
CHAPTER 18 Becoming a teacher of mathematics

Introduction 356
Mathematics anxiety and the challenge of tests 357
Evidence-based teaching 362
Professional learning and communities 367
Conclusion 370
Guided student tasks 370
Further reading 371

REFERENCES 372
INDEX 384
About the authors

PENELOPE SEROW is Associate Professor of Mathematics Education at the University of New England. She has worked on various development projects in Pacific Island contexts and is actively involved in research in the areas of primary, secondary and pre-service mathematics education. Penelope’s research interests include assessment for learning practices, making the most of available tools in the mathematics classroom to actively engage students, and providing community-focused opportunities for teacher education in remote locations.

ROSEMARY CALLINGHAM is an Adjunct Associate Professor at the University of Tasmania. She has an extensive background in mathematics education in Australia, at school, system and tertiary levels, including mathematics curriculum development and implementation, large-scale testing and pre-service teacher education. Rosemary’s research interests include teachers’ pedagogical content knowledge, statistical literacy, mental computation and assessment of mathematics and numeracy.

TRACEY MUIR is an Associate Professor in Mathematics Education at the University of Tasmania. Her teaching expertise has been recognised through a number of Teaching Merit Certificate awards, a VC Team Award for Teaching Excellence, an Office for Learning and Teaching Team Award for Teaching Excellence and a VC Citation for Outstanding Contribution to Student Learning. Tracey is an Executive Member of the Mathematics Association of Tasmania, a previous editor of APMC, and a past VP (Development) of the Mathematics Education Research Group of Australasia. Her research interests include effective teaching of numeracy, student engagement, flipped learning and teacher knowledge. Tracey regularly conducts professional learning for teachers and has delivered workshops, presentations and keynote addresses at national and international conferences.
How to use HOTmaths with this book

Once you have registered your HOTmaths access code, found on the inside front cover of this book, for subsequent visits the below navigation instructions provide a general overview of the main HOTmaths features used within this textbook.

Log in to your account via www.hotmaths.com.au.

Upon logging in you will automatically arrive at your Dashboard. This screen offers you access to **FUNdamentals** (colourful maths games and activities for Foundation to Year 2 students), **Games** and the HOTmaths **Dictionary**. The Dashboard can also be accessed via the icon on the right-hand side of the toolbar at the top of any HOTmaths lesson page.
Different HOTmaths streams can be accessed via the Course list dropdown. You can change the Course list and Course (year level) using the dropdown on the left-hand side of the toolbar.

You can then select a Topic, and finally a Lesson.

Most lessons contain a number of interactive and printable activities, which can be accessed via the links on the right-hand side of the orange toolbar. These include: Resources, Walkthroughs, Scorcher and Questions.
The Resources tab within lessons contain **widgets** (animations) and **HOTsheets** (activities). By clicking on the ‘Number bars’ link, you will access the widget below. Clicking the ‘Addition bingo’ link will give you access to the HOTsheet below.

Number bars

HOTsheet

ADDITION BINGO

Aim

Get 3 counters in a row—across, down or diagonally on the bingo board.

Things you will need

Each TEAM will need **two** packs of cards numbered **1 to 9**.

Each PLAYER will need:
- a bingo board
- some counters

Rules

- Play in teams of 4 or 5. One person is the **Caller**.
- The **Caller** has the two packs of number cards but does not need a bingo board.
- The others are the players. Each player has a bingo board and some counters.
The toolbar at the top of each lesson page is also the location for the search function, where you can enter the name of any widget or HOTsheet for quick access. The results page will automatically display videos based on the keywords searched, indicated by the videos tab being highlighted in blue. If you are looking for a widget or a HOTsheet, simply click onto the required tab and the results will appear. Using the above widget as an example, searching ‘Number bars’ and clicking on the widget tab will provide you a link to the Number Bars widget. By clicking locations next to the widget name you can see what HOTmaths lessons use the resource. You can also narrow your search results to a specific course, topic or lesson using the dropdown menus.

Throughout this textbook you will find numerous references to resources from HOTmaths. Please note that given its nature HOTmaths is constantly being updated. All pathways and references are correct as of May 2019 and every effort has been made to provide you with an accurate picture of the functions within HOTmaths.
Acknowledgements

The authors and Cambridge University Press would like to thank the following for permission to reproduce material in this book.

ACARA material: © Australian Curriculum, Assessment and Reporting Authority (ACARA) 2014 to present, unless otherwise indicated. This material was downloaded from the ACARA website (www.acara.edu.au) and was not modified. The material is licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). ACARA does not endorse any product that uses ACARA material or make any representations as to the quality of such products. Any product that uses material published on this website should not be taken to be affiliated with ACARA or have the sponsorship or approval of ACARA. It is up to each person to make their own assessment of the product.

Figure 2.1: © Getty Images/Amy Bader; 2.9, 2.13, 7.2, 7.3, 13.3 and 13.4: Scootle images licensed under CC BY-SA 3.0 AU, https://creativecommons.org/licenses/by-sa/3.0/au/; 3.1 and 13.1: © Getty Images/JohnnyGrieg; 3.2 (top left): © Getty Images/Tim Grist Photography; 3.2 (top right): © Getty Images/Fernando Trabanco Fotografia; 3.2 (bottom left): © Getty Images/Carolyn Hebbard; 3.2 (bottom right): © Getty Images/Lacy Washburn; 3.15: © Getty Images/Annabelle Breakey; 9.2: © Getty Images/ozlemonal; 9.10: © Getty Images/Simon McGill; 10.5, 10.6, 10.7, 10.8, 10.9 and 10.10: © Australian, Curriculum, Assessment and Reporting Authority (ACARA). Permission to reproduce obtained. ACARA does not endorse this publication or make any representations as to its quality. This publication should not be taken to be affiliated with ACARA or have the sponsorship or approval of ACARA; 11.8: © Concord Consortium, 2018. The software is provided “as is”, without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the software or the use or other dealings in the software; 14.2 and 14.3: Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See http://scratch.mit.edu. Images licensed under CC BY-SA 2.0, https://creativecommons.org/licenses/by-sa/2.0/.

Every effort has been made to trace and acknowledge copyright. The publisher apologises for any accidental infringement and welcomes information that would redress this situation.