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1 Introduction

This section provides a sketch of structuralism in the philosophy of mathe-

matics, focusing on features shared by all (or most) of the structuralist views in

a wide philosophical context. We then provide a list of questions and criteria on

which the various structuralist philosophies will be evaluated in subsequent

sections.

Overview

The theme of structuralism is that what matters to a mathematical theory is not

the internal nature of its objects – numbers, functions, functionals, points,

regions, sets, etc. – but how those objects relate to each other. The orientation

grew from relatively recent developments within mathematics, notably toward

the end of the nineteenth century and continuing through the present, particu-

larly (but not exclusively) in the program of categorical foundations. Some of

the relevant history is recounted in Section 3.

Mathematical structuralism is similar, in some ways, to functionalist views

in, for example, philosophy of mind. A functional definition of a mental

concept, such as belief or desire, is, in effect, a structural one, since it, too,

focuses almost exclusively on relations that certain items have to each other.

The difference is that mathematical structures are more abstract, and free-

standing, in the sense that there are no restrictions on the kind of things that

can exemplify them (see Shapiro 1997, Chapter 3, §6).

There are a number of mutually incompatible ways to articulate the struc-

turalist theme, invoking various ontological and epistemic theses. Some phi-

losophers postulate a robust ontology of structures, and their places, and then

claim that the subject matter of a given branch of mathematics is a particular

structure, or a class of structures. An advocate of a view like this would

articulate what a structure is, and then say something about the metaphysical

nature of structures, and how they and their properties can become known.

There are also versions of structuralism amenable to those who deny the

existence of distinctively mathematical objects altogether. And there are ver-

sions of structuralism in between, postulating an ontology for mathematics, but

not a specific realm of structures.

Define a system to be a collection of objects together with certain relations on

those objects. An extended family is a system of people under certain blood and

marital relations – father, aunt, great niece, son-in-law, etc. Awork of music is a

collection of notes under certain temporal and other musical relations. To get

closer to mathematics, define a natural number system to be a countably infinite

collection of objects with a designated initial object, and a one-to-one successor
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relation that satisfies the axioms of second-order arithmetic (including the

second-order induction axiom). Examples of natural number systems are the

Arabic numerals in their natural order; a countably infinite sequence of distinct

moments of time, say one second apart, in temporal order; the strings on a finite

(or countable) alphabet arranged in lexical order; and, perhaps, the natural

numbers themselves. Define a Euclidean system to be three collections of

objects, one to be called “points,” a second to be called “lines,” and a third to

be called “planes,” along with certain relations between them, such that the

Euclidean axioms are true of those objects and relations, so construed.

A structure is the abstract form of a system, which ignores or abstracts away

from any features of the objects that do not bear on the relations. So the natural

number structure is the form common to all of the natural number systems. The

Euclidean structure is the form common to all Euclidean systems, etc.

A structure is thus a “one over many,” a sort of universal. The main

difference between a structure and a more traditional universal, such as a

property, is that a given property applies to, or holds of, individual objects,

while a given structure applies to, or holds of, entire systems.

Any of the usual array of philosophical views on universals can be adapted to

structures, thus giving rise to some of the varieties of structuralism. One can be

a Platonic ante rem realist about structures, holding that each structure exists

and has its properties independent of any systems that have that structure – or at

least independent of those systems that are not themselves structures. We call

this view sui generis structuralism (SGS). On this view, structures exist

objectively, and are ontologically prior to any systems that have them (or at

least they are ontologically independent of such systems). Or one can be an

Aristotelian in re realist, holding that structures exist, but insisting that they are

ontologically posterior to the systems that instantiate them. One variety of this

in re view is what we call set-theoretic structuralism (STS). On that view,

structures are isomorphism types (or representatives thereof) within the set-

theoretic hierarchy. The distinction between these two kinds of realism raises

metaphysical issues of grounding and ontological priority.

Another option is to deny that structures exist at all. Talk of a given structure

is just convenient shorthand for talk of all systems that are isomorphic to each

other, in the relevant ways. Views like this are sometimes called eliminative

structuralism, since they eschew the existence of structures altogether.

Advocates of the different ontological positions concerning structures

take different approaches to other central philosophical concerns, such as

epistemology, semantics, and methodology. Each such view has it rela-

tively easy with some issues and finds deep, perhaps intractable problems

with others. The ante rem SGS view, for example, has a straightforward
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account of reference and of the semantics of the languages of mathematics:

the variables of a branch of mathematics, such as arithmetic, real analysis,

or complex analysis, range over the places in an ante rem structure.

Singular terms denote individual places, so the language is understood at

face value.

In other words, an advocate of SGS has it that the straightforward grammatical

structure of a mathematical language reflects the underlying logical form of the

propositions. For example, in the simple arithmetic equation, 3� 8 ¼ 24, the

numerals ‘3’, ‘8’, and ‘24’ at least seem to be singular terms – proper names. In

the SGS view, they are singular terms. The role of a singular term is to denote

an individual object and, in the SGS view, each of these numerals denotes a

place in the natural number structure. And, of course, the equation expresses a

truth about that structure. In this respect, then, SGS is a variation on traditional

Platonism. For this perspective to make sense, however, one has to think of a

place in a structure as a bona fide object, the sort of thing that can be denoted by

a singular term, and the sort of thing that can be in the range of first-order

variables.

An advocate of the SGS approach agrees with the eliminativist (and the in re

realist) that mathematical statements in, say, arithmetic, imply generalizations

concerning systems that exemplify the structure. We say, for example, that in

any natural number system, the object in the three-place multiplied (using the

relevant relation in the system) by the object in the eight-place is the object in

the twenty-four-place. Of course, the generalizations themselves do not entail

that there are any natural number systems – nor any ante rem structures for that

matter.

The eliminativist holds that mathematical statements just are (or are best

interpreted as) generalizations like these, and she accuses the SG structuralist

of making too much of their surface grammar, trying to draw deep metaphy-

sical conclusions from that. For example, the simple theorem of arithmetic, “for

every natural number n there is a prime p > n” is rendered:

In any natural number system S, for every object x in S, there is another object y

in S such that y comes after x in S and y has no divisors in S other than itself

and the unit object of S.

In general, any sentence Φ in the language of arithmetic gets regimented as

something like the following:

In any natural number system S; Φ½S�; ðΦ
0
Þ
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where Φ½S� is obtained from Φ by restricting the quantifiers to the objects in S,

and interpreting the non-logical terminology in terms of the relations of S.

In a similar manner, the eliminative structuralist paraphrases or regiments –

and deflates – what seem to be substantial metaphysical statements, the very

statements made by her SGS opponent. For example, “the number 2 exists”

becomes “in every natural number system S, there is an object in the 2-place of

S”; or “real numbers exist” becomes “every real number system has objects in

its places.” These statements are trivially true – analytic, if you will – not the

sort of statements that generate heated metaphysical arguments.

However, the sailing is not completely smooth for the eliminativist. Suppose,

for example, that the entire physical universe consists of no more than 10100,000

objects. Then there are no natural number systems (since each such system

must have infinitely many objects). So for any sentence Φ in the language of

arithmetic, the regimented sentence Φ′ is vacuously true. So the eliminativist

would be committed to the truth of (the regimented version of) 1þ 1 ¼ 0.

In other words, a straightforward, successful eliminative account of arith-

metic requires a countably infinite background ontology. And it gets worse for

other branches of mathematics. An eliminative account of real analysis

demands an ontology whose size is that of the continuum; for functional

analysis, we would need the power set of that many objects. And on it goes.

The sizes of some of the structures studied in mathematics are staggering.

Even if the physical universe does exceed 10100,000 objects, and, indeed,

even if it is infinite, there is surely some limit to how many physical objects

there are. So, for the eliminative structuralist, branches of mathematics that,

read at face value, require more objects than the number of physical objects end

up being vacuously trivial. This would be bad news for such theorists, as the

goal is to make sense of mathematics as practiced. In any case, no philosophy of

mathematics should be hostage to empirical and contingent facts, including the

number of objects in the physical universe.

There are two eliminativist reactions to this threat of vacuity. First, the

philosopher might argue, or assume, that there are enough abstract objects

for every mathematical structure to be exemplified. In other words, we postu-

late that, for each field of mathematics, there are enough abstract objects to

keep the regimented statements from becoming vacuous.

Some mathematicians, and some philosophers, think of the set-theoretic

hierarchy as the ontology for all of mathematics. Mathematical objects – all

mathematical objects – are sets in the iterative hierarchy. Less controversially,

it is often thought that the iterative hierarchy is rich enough to recapitulate

every mathematical theory.
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An eliminative structuralist might maintain that the theory of the background

ontology for mathematics – set theory or some other – is not, after all, the theory

of a particular structure. The foundation is a mathematical theory with an

intended ontology in the usual, non-structuralist sense. In the case of set theory,

the intended ontology is the sets. Set theory is not (merely) about all set-

theoretic systems – all systems that satisfy the axioms. So the foundational

theory is an exception to the theme of structuralism. But, the argument con-

tinues, every other branch of mathematics is to be understood in eliminative

structuralist terms. This is the route of what we call STS.

Of course, this ontological version of eliminative structuralism is anathema

to a nominalist, who rejects the existence of abstracta altogether. For the

nominalist, sets and ante rem structures are pretty much on a par – neither is

wanted. The other prominent eliminative reaction to the threat of vacuity is to

invoke modality. In effect, one avoids (or attempts to avoid) a commitment to a

vast ontology by inserting modal operators into the regimented generalizations.

To reiterate the above example, the modal eliminativist renders “for every

natural number n there is a prime p > n” as something like:

In any possible natural number system S, for every object x in S, there is

another object y in S such that y comes after x in S and y has no divisors in

S other than itself and the unit object of S.

In general, let Φ be any sentence in the language of arithmetic; Φ gets

regimented as:

In any possible natural number system S;Φ½S�;

or, perhaps,

Necessarily; in any natural number system S; Φ½S�;

where, again, Φ½S� is obtained from Φ by restricting the quantifiers to the

objects in S, and interpreting the non-logical terminology in terms of the

relations of S.

The modal structuralist also asserts that the various systems of mathematics

are possible. It is possible for there to be a natural number system, a real number

system, a Euclidean system, etc.

The difference with the ontological, eliminative program, of course, is that

here the variables ranging over systems are inside the scope of a modal

operator. So the modal eliminativist does not require an extensive, rich back-

ground ontology. Rather, she needs a large ontology to be possible.
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The central problem with this brand of eliminativist structuralism concerns

the nature of the invoked modality. Of course, it will not do much good to

render the modality in terms of possible worlds. If one does that and takes

possible worlds, and possibilia, to exist, then modal eliminative structuralism

would collapse into the above ontological version of eliminative structuralism.

Not much would be gained by adding the modal operators. The modalist

typically takes the modality to be primitive – not defined in terms of anything

more fundamental. But, of course, this move does not relieve the modalist of

having to say something about the nature of the indicated modality, and some-

thing about how we know propositions about what is possible. We develop two

versions of modal structuralism in subsequent sections, with references to the

literature.

To briefly sum up and conclude, the parties to the debate over how best to

articulate the structuralist insights agree that each of the major versions has its

strengths and its peculiar difficulties. Negotiating such trade-offs is a stock

feature of philosophy. The literature has produced an increased understanding

of mathematics, of the relevant philosophical issues, and how the issues bear on

each other.

The State of the Economy

We plan to evaluate each version of structuralism by considering how well it

fares on each of the following eight criteria.

(1) What primitives are assumed and what is the background logic? Is it just

first-order logic, or is second- or higher-order logic employed? If the latter,

what is the status of relations and functions? What advantages and limita-

tions are implied by these various choices?

(2) The term “axioms” is ambiguous, as between “defining conditions on a

type of structure of interest,” on the one hand, and “basic assumptions” or

“assertoric content,” bearing a truth-value, on the other. It is characteristic

of a structuralist view of mathematics to emphasize axioms in the former

sense, as defining conditions on structures of interest; and this was the

sense in which, for instance, Dedekind (1888) introduced the so-called

“Peano postulates” on the natural number system in his classic essay, and it

was axioms in this sense that Hilbert invoked in his well-known corre-

spondence with Frege, who emphasized axioms in the assertoric sense (see

the next section).

One should recognize that Frege had a point, viz. that a foundational

framework requires some assertory axioms, capable of being true or

false, governing especially the existence and nature of structures. When
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it comes to the different forms of structuralism, what are these “assertory”

axioms?

(3) As an especially important case of (2), what assumptions are asserted

as to the mathematical existence of structures? Is their indefinite

extendability recognized or is there commitment to an absolutely

maximal universe?

(4) Are structures recognized as a special type of object, or is there a

thoroughgoing elimination of structures as objects? If not, what sort of

objects are “structures,” and, in particular, what is a mathematical

structure?

(5) How is our epistemic access to structures understood, and what account of

reference to them can be given?

(6) As an extension of (5), does the view allow for a face-value interpretation

of mathematical statements? For example, do what appear to be singular

terms in the languages of mathematics get rendered as singular terms? Do

quantifiers get rendered as straightforward quantifiers? Or is there some

regimentation or paraphrase involved?

(7) How are the paradoxes associated with set-theory and other foundational

frameworks (such as category theory) to be resolved?

(8) Finally, how is Benacerraf‘s challenge based on competing identifications

of numbers, etc., to be met?

2 Historical Background

Howard Stein (1988, p. 238) claims that during the nineteenth century, mathe-

matics underwent “a transformation so profound that it is not too much to call it

a second birth of the subject” – the first birth being in ancient Greece. The same

period also saw important developments in philosophy, with mathematics as a

central case study.

According to Alberto Coffa (1991, p. 7), for “better or worse, almost every

philosophical development since 1800 has been a response to Kant.” A main

item on the agenda was to account for the prima facie necessity of mathema-

tical propositions, the a priori nature of mathematical knowledge, and the

applicability of mathematics to the physical world, all without invoking

Kantian intuition. Can we understand mathematics independent of the forms

of spatial and temporal intuition?

Coffa argues that the most successful approach to this problem was that of

what he calls the “ semantic tradition,” running through the work of Bernard

Bolzano, Gottlob Frege, the early Wittgenstein, and David Hilbert, culminating

with the Vienna Circle, notablyMoritz Schlick and Rudolf Carnap. The plan was
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to understand necessity and a priority in formal terms. In one way or another, this

philosophical tradition was linked to the developments in mathematics. One

legacy left by the developments in both mathematics and philosophy is mathe-

matical logic, and model-theoretic semantics in particular. The emergence of

model theory and the emergence of structuralism are, in a sense, the same.

In this section, we recount some themes in the development of Euclidean,

projective, and non-Euclidean geometry, as well as some themes in arithmetic.

Concerning geometry, there was a gradual transformation from the study of

absolute or perceived space –matter and extension – to the study of structures.

Our narrative includes sketches of early-twentieth-century theorists who either

developed structuralist insights, or opposed these moves, or both. The list

includes Dedekind, Frege, and Hilbert, among others.1

Geometry, Space, Structure

The historical transition away from geometry as the study of physical or

perceived space is complex. One early theme is the advent and success of

analytic geometry, with projective geometry as a response. Another is the

attempt to accommodate ideal and imaginary elements, such as points at

infinity. A third thread is the assimilation of non-Euclidean geometry into

mainstream mathematics (and into physics). These themes contributed to a

growing interest in rigor and the eventual detailed understanding of rigorous

deduction as independent of content – ultimately to a structuralist understand-

ing of mathematics. Here, we can provide no more than a mere sketch of a

scratch of this rich and wonderful history.

The traditional view of geometry is that its subject matter is matter and

extension. The truths of geometry seem to be necessary, and yet geometry has

something to do with the relations between physical bodies. Kant’s account of

geometry as synthetic a priori, relating to the forms of perceptual intuition, was

a heroic attempt to accommodate the necessity, the a priori nature, and the

empirical applicability of geometry.

The traditional view of arithmetic is that its subject matter is quantity.

Arithmetic was the study of the discrete, while geometry was the study of the

continuous. The fields were united under the rubric of mathematics, but one

might wonder what they have in common other than this undescribed genus.

The development of analytic geometry went some way toward loosening the

1 Much of this section draws from Shapiro 1997, Chapter 5), used with kind permission from

Oxford Universith Press, as well as Nagel (1939), Freudenthal (1962), Coffa (1986; 1991,

Chapters 3 and 7), and Wilson (1992). Readers interested in these episodes of mathematical

history are urged to consult those excellent works.
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distinction between them.Mathematicians discovered that the study of quantity

can shed light on matter and extension (and vice versa).

One result of the development of analytic geometry was that synthetic

geometry, with its reliance on diagrams, fell into neglect. Joseph-Louis

Lagrange even boasted that his celebrated treatise on mechanics did not contain

a single diagram (but one might wonder whether his readers appreciated this

feature). The dominance of analytic geometry left a void that affected impor-

tant engineering projects. For example, problems with plane representations of

three-dimensional figures were not tackled by mathematicians. The engineer-

ing gap was filled by the emergence of projective geometry (see Nagel 1939,

§§7–8). Roughly, projective geometry concerns spatial relations that do not

depend on fixed distances and magnitudes, nor on congruence. In particular,

projective geometry dispenses with quantitative elements, like a metric.

Although all geometers continued to identify their subject matter as

intuitable, visualizable figures in space, the introduction of so-called ideal

elements, such as imaginary points, into projective geometry constituted an

important move away from visualization. Parallel lines were thought to

intersect, at a “point at infinity,” although, of course, no one can visualize

that, in any literal sense. Girard Desargues proposed that the conic sections –

circle, ellipse, parabola, and hyperbola – form a single family of curves, since

they are all projections of a common figure from a single “improper point” –

located at infinity. Circles that do not intersect in the real plane were thought

to have a pair of imaginary points of intersection. As Ernest Nagel (1939) put

it, the “consequences for geometrical techniques were important, startling, and

to some geometers rather disquieting” (p. 150). Clearly, mathematicians could

not rely on the forms of perceptual intuition when dealing with the new

imaginary elements. The elements are not in perceivable space; we do not

see anything like them.

The introduction and use of imaginary elements in analytic and projective

geometry were an outgrowth of the development of negative, transcendental,

and imaginary numbers in arithmetic and analysis. With the clarity of hind-

sight, there are essentially three ways that “new” entities have been incorpo-

rated into mathematical theories (see Nagel 1979). One is to postulate the

existence of mathematical entities that obey certain laws, most of which are

valid for other, accepted entities. For example, one can think of complex

numbers as like real numbers but closed under the taking of roots, and one

can think of ideal points as like real points but not located in the same places. Of

course, postulation begs the question against anyone who has doubts about the

entities. Recall Bertrand Russell’s ([1919] 1993, p. 71) quip about how postu-

lation has the advantages of theft over honest toil.
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In reply, one might point to the usefulness of the new entities, especially for

obtaining results about established mathematical objects. But this benefit can

be obtained with any system that obeys the stipulated laws. Thus, the second

method is implicit definition. The mathematician gives a description of the

system of entities, usually by specifying its laws, and then asserts that the

description applies to any collection that obeys the stipulated laws. At this

point, the skeptic might wonder whether there are any systems of entities that

obey the stipulated laws.

The third method is construction, where the mathematician defines the new

entities as combinations of already established objects. Presumably, this is the

safest method since it settles the question of whether the entities exist (assum-

ing the already-established objects do). William Rowan Hamilton’s definition

of complex numbers as pairs of real numbers fits this mold as does the logicist

definition of natural numbers as collections of properties. A fruitful outlook

would be to take implicit definition and construction in tandem. A construction

of a system of objects establishes that there are systems of objects so defined,

and so the implicit definition is not empty. Moreover, the construction also

shows how the new entities can be related to the more established ones and may

suggest new directions for research.

Nagel (1979) notes that all three methods were employed in the development

of ideal points and points at infinity in geometry. Jean-Victor Poncelet came

close to the method of postulation. In trying to explain the usefulness of

complex numbers in obtaining results about the real numbers, he claimed that

mathematical reasoning can be thought of as a mechanical operation with

abstract signs. The results of such reasoning do not depend on any possible

referents of the signs, so long as the rules are followed. Having thus “ justified”

new sorts of numbers in analysis, Poncelet went on to argue that geometry is

equally entitled to employ abstract signs – with the same freedom from inter-

pretation. He held that traditional, synthetic geometry is crippled by the

insistence that everything be cast in terms of drawn or visualizable diagrams.

Poncelet’s contemporaries were aware of the shortcomings of such bare

postulation. Nagel cites authors like Joseph Diaz Gergonne and Hermann

Grassmann, who more or less prefigured the method of implicit definition.

Their work furthered the concern with rigor and the abandonment of the

traditional view of geometry as concerned with extension. We move closer

to a structuralist perspective on geometry. Grassmann’s Ausdehnungslehre

of 1844 developed geometry as “the general science of pure forms,”

considered in abstraction of any interpretation the language may have. He

characterized the terms of geometry only by stipulated relations they have

to each other:
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