Developmental Dyslexia across Languages and Writing Systems

This volume presents the first truly systematic, multidisciplinary, and cross-linguistic study of the language and writing system factors affecting the emergence of dyslexia. Bringing together a team of scholars from a wide variety of disciplines, it places a dual focus on the language-specific properties of dyslexia and on its core components across languages and orthographies, in order to challenge theories on the nature, identification, and prevalence of dyslexia, and to reveal new insights. Part I highlights the nature, identification, and prevalence of dyslexia across multiple languages including English, French, Dutch, Czech and Slovakian, Finnish, Arabic, Hebrew, Japanese, and Chinese, while Part II takes a cross-linguistic stance on topics such as the nature of dyslexia, the universals that determine relevant precursor measures, competing hypotheses of brain-based deficits, modeling outcomes, etiologies, and intergenerational gene–environment interactions.

Ludo Verhoeven is Professor of Communication, Language, and Literacy in the Behaviour Science Institute at Radboud University Nijmegen and at the University of Curacao.

Charles Perfetti is Distinguished University Professor of Psychology and Director of the Learning Research and Development Center at the University of Pittsburgh.

Kenneth Pugh is Professor of Psychology at the University of Connecticut and Associate Professor of Linguistics and Medicine at Yale University, and he is President and Director of Research, and Senior Scientist at Haskins Laboratories.
Contents

List of Figures
List of Tables
List of Contributors

Introduction
1 Introduction: Developmental Dyslexia – A Cross-Linguistic Perspective
 LUDO VERHOEVEN, CHARLES PERFETTI, AND KENNETH PUGH

Part I Developmental Dyslexia across Languages and Writing Systems
2 Developmental Dyslexia in English
 CHARLES PERFETTI AND LINDSAY HARRIS
3 Developmental Dyslexia in French
 LILIANE SPRENGER-CHAROLLES
4 Developmental Dyslexia in Dutch
 LUDO VERHOEVEN
5 Developmental Dyslexia in Czech and Slovak
 MARKÉTA CARAVOLAS, MARÍNA MIKULAJOVÁ, AND ANNA KUCHASKÁ
6 Developmental Dyslexia in Finnish
 HEIKKI LYYTINE, ULLA RICHARDSON, AND MIKKO ARO
7 Developmental Dyslexia in Russian
 MARINA ZHUKOVA AND ELENA GRIGORENKO
8 Developmental Dyslexia in Hebrew
 DAVID L. SHARE, MICHAL SHANY, AND ORLY LIPKA
vi Contents

9 Developmental Dyslexia in Japanese 176
 TAEKO N. WYDELL

10 Developmental Dyslexia in Chinese 200
 MIN XU, LI HAI TAN, AND CHARLES PERFETTI

Part II Cross-Linguistic Perspectives on Developmental Dyslexia 227

11 Behavioral Precursors of Developmental Dyslexia 229
 KARIN LANDERL

12 Neural Predictors of Developmental Dyslexia 253
 ELIZABETH S. NORTON, JOHN D. E. GABRIELI,
 AND NADINE GAAB

13 Neurocognitive Markers of Developmental Dyslexia 277
 LAN SHUAI, STEPHEN J. FROST, NICOLE LANDI,
 W. EINAR MENCL, AND KENNETH PUGH

14 Role of Visual Attention in Developmental Dyslexia 307
 ANDREA FACOETTI, SANDRO FRANCESCHINI,
 AND SIMONE GORI

15 Morphological and Semantic Processing in Developmental Dyslexia 327
 S. HÉLÈNE DEACON, XIULI TONG, AND
 CATHERINE MIMEAU

16 Modeling the Variability of Developmental Dyslexia 350
 JOHANNES C. ZIEGLER, CONRAD PERRY,
 AND MARCO ZORZI

17 Modeling Developmental Dyslexia across Languages and Writing Systems 372
 JASON D. ZEVIN

18 Etiology of Developmental Dyslexia 391
 RICHARD K. OLSON, JANICE M. KEENAN, BRIAN BYRNE,
 AND STEFAN SAMUELSSON

19 Intergenerational Transmission in Developmental Dyslexia 413
 FUMIKO HOEFT AND CHENG WANG
Epilogue

20 Developmental Dyslexia across Languages and Writing Systems: The Big Picture
CHARLES PERFETTI, KENNETH PUGH, AND LUDO VERHOEVEN

Index
Figures

1.1 How graphic units mediate the relationship between writing systems and orthographies, on the one hand, and linguistic units, on the other hand
page 3

1.2 How the linguistic system and writing system impact the development of linguistic awareness, word identification, and reading comprehension
5

4.1 Performances on word decoding (WD) and pseudoword decoding (PD) accuracy and efficiency; serial rapid naming (RAN); phonological awareness; and phonological working memory (bottom), for children without dyslexia (gray) versus children with dyslexia (black) according to elementary grade
80

6.1 The JLD follow-up from birth to school age of reading-related development: Individual profiles of the prediction measures of the children whose reading acquisition was most severely compromised (modified from Lyytinen et al., 2009, p. 670)
125

8.1 Number of real words correctly read in 45 secs pre-intervention (beginning of Grade 1) and post-intervention (at the end of Grade 1) at two schools (the OR intervention program compared to a higher-SES control school)
168

9.1 Comparing the performances of AS and his English and Japanese controls over rhyme judgments (rhyme), phonological lexical decisions (PLDT, respond yes to ‘brane’), orthographic lexical decision (OLDT), and reading in English. Note: * = p<.05; ** = P<.01 (This figure was recreated based on data from Wydell and Kondo, 2003.)
188

9.2 Hypothesis of granularity and transparency. (This figure was recreated based on data from Wydell and Butterworth, 1999.)
189

10.1 A line of an old Chinese poem with Pinyin (above) and Zhu-Yin-Fu-Hao (below) representing the pronunciations of each character. The Pinyin appears immediately above the character and Zhu-Yin-Fu-Hao symbols appear to the right of the characters
203
List of Figures

10.2 (A) Peak activation for the contrast of controls>dyslexics reported in previous studies. Each red circle represents a coordinate of the peak activation. (B) ALE map generated to assess the convergent patterns of brain activity associated with Chinese dyslexia (threshold at p<0.001 uncorrected, a minimum cluster size of 200 mm³)

11.1 Estimates (in OR) and their 95 percent confidence limits per orthographic complexity group for phoneme deletion, RAN, and digit span respectively (data from Landerl et al., 2013)

11.2 ROC-curves (high complexity: dashed, medium complexity: dotted, low complexity: full) (from Landerl et al., 2013)

16.1 Individual patterns of performance of dyslexics (black) and controls (gray) in the five component tasks of reading: sustained attention, letter-in-string perception, word superiority effect, rapid object naming, and phoneme matching

16.2 Simulations of normal and impaired reading accuracy and reading speed with the DRC model. Impaired reading was simulated by using the individual deficits to determine the noise levels of each of the DRC model’s component processes

16.3 Simulations of individuals with surface and phonological dyslexia (left panel) and underlying deficits associated with the dissociated profiles (right panel)

16.4 Illustration of the phonological decoding and self-teaching mechanisms in the context of the connectionist dual-process model

16.5 Learning to read with phoneme or visual deficits. A: Phoneme deficits were simulated by changing a correctly assembled phoneme with a phonetically similar but incorrect phoneme with a certain probability (0.05, 0.15, 0.25, 0.35, 0.45). B: Visual deficits were simulated by switching a letter with the letter next to it with a certain probability (0.02, 0.04, 0.06, 0.06, 0.10). The dotted line represents the unimpaired network

19.1 The intergenerational multiple-deficit model
Tables

3.1 French GPC and PGC consistencies computed by token (textual frequency) based on Peereman et al. (2013)
3.2 Differences (Cohen’s d) in processing speed (fluency or naming time, NT) between dyslexic readers and CA controls for pseudowords vs. irregular words
3.3 Differences (Cohen’s d) between dyslexic readers (DR) and RL controls for pseudowords vs. irregular words
9.1 Results of multiple regression analyses for normal readers: Younger versus older children – Reading Kanji words as a dependent variable
9.2 Mean cycle (naming latencies) and correct rate of normal and dyslexia networks in pronouncing Hiragana, Katakana, and Kanji characters at 40,000 epochs
10.1 Examples of the traditional script and simplified script
10.2 Neuroimaging studies of Chinese dyslexia included in the meta-analysis
20.1 Cross-language generalizations about learning to read and their relation to dyslexia
Contributors

MIKKO ARO University of Yyväskylä
BRIAN BYRNE University of New England
MARKETA CARAVOLAS Bangor University
S. HÉLÈNE DEACON Dalhousie University
ANDREA FACOETTI University of Padua
SANDRO FRANCESCHINI University of Padua
STEPHEN J. FROST Haskins Laboratories
NADINE GAAB Harvard University
JOHN D. E. GABRIELI Massachusetts Institute of Technology
SIMONE GORI University of Bergamo
ELENA GRIGORENKO University of Connecticut
LINDSAY HARRIS Northern Illinois University
FUMIKO HOEFT Haskins Laboratories
JANICE M. KEENAN University of Denver
ANNA KUCHASKÁ Charles University, Prague
KARIN LANDERL University of Tübingen
NICOLE LANDI Haskins Laboratories
ORLY LIPKA University of Haifa
HEIKKI LYYTINEN University of Yyväskylä
W. EINAR MENCL Haskins Laboratories
MARÍNA MIKULAJOVÁ Pan-European University, Bratislava
xii List of Contributors

CATHERINE MIMEAU Laval University
ELIZABETH S. NORTON Northwestern School of Communication
RICHARD K. OLSON University of Denver
CHARLES PERFETTI Pittsburgh University
CONRAD PERRY Swinburne University of Technology
KENNETH PUGH Haskins Laboratories
ULLA RICHARDSON University of Yyväskylä
STEFAN SAMUELSSON Linköping University
MICHAL SHANY University of Haifa
DAVID L. SHARE University of Haifa
LAN SHUAI Haskins Laboratories
LILIANE SPRENGER-CHAROLLES CNRS Paris
LI HAI TAN Shenzhen University
XIULI TONG University of Hong Kong
LUDO VERHOEVEN Radboud University Nijmegen
CHENG WANG University of California, San Francisco
TAEKO N. WYDELL Brunel University
MIN XU Shenzhen University
JASON D. ZEVIN University of Southern California
MARINA ZHUKOVA Saint Petersburg State University
JOHANNES C. ZIEGLER Aix-Marseille University
MARCO ZORZI University of Padua