

Physical Principles of Sedimentary Basin Analysis

Presenting a rigorous treatment of the physical and mechanical basis for the modeling of sedimentary basins, this book supplies geoscientists with practical tools for creating their own models. It begins with an introduction to the properties of porous media, linear elasticity, continuum mechanics and rock compressibility – providing a thorough grounding for their use later in the text. A chapter on the modeling of burial histories is then followed by a series of chapters on heat flow, subsidence, rheology, flexure and gravity, which consider sedimentary basins in the broader context of the Earth's lithosphere. Later chapters then cover the topics of pore space cementation, compaction and fluid flow.

This volume introduces basic, state-of-the-art models and demonstrates how results can be easily reproduced with simple tools such as MATLAB and Octave (codes are available online at www.cambridge.org/9780521761253). Throughout the book the main equations are derived from first principles, and their basic solutions are obtained and then applied. More technical details are supplied in notes, and the text is illustrated with real-world examples, applications and test exercises. This book is therefore a key resource for graduate students, academic researchers and oil industry professionals looking for an accessible introduction to quantitative modeling of sedimentary basins.

MAGNUS WANGEN has worked in the field of sedimentary basin-modeling since the late 1980s – conducting research on a wide range of topics. He obtained a Dr. Scient. degree in applied mathematics from the University of Oslo in 1993 with a thesis on the modeling of heat and fluid flow in sedimentary basins. Since the early 1990s he has developed two complementary basin simulators used by the oil industry. The first simulator deals with heat flow on a lithospheric scale, fluid flow, compaction and overpressure in sedimentary basins through the geohistory, while the second simulates hydrocarbon generation and migration. He is currently a research scientist at the Institute for Energy Technology in Norway. This book is based on a course in basin analysis that Dr. Wangen taught for a number of years while an assistant professor at UNIK (an affiliate of the University of Oslo at Kjeller).

PHYSICAL PRINCIPLES OF SEDIMENTARY BASIN ANALYSIS

Magnus Wangen
Institute for Energy Technology, Norway

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India
79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108446969

© Magnus Wangen 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010 First paperback edition 2017

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-76125-3 Hardback ISBN 978-1-108-44696-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Ingeborg and Reidar

We often fail to realize how little we know about a thing until we attempt to simulate it on a computer.

Donald Knuth, The Art of Computer Programming (vol. 1, 3rd edn., p. 298)

Contents

	Prefa	ce	page xiii
	Ackno	pwledgments	XV
1	Preliminaries		1
	1.1	Notation	1
	1.2	Further reading	2
2	Properties of porous media		3
	2.1	Porosity	3
	2.2	The correlation function and specific surface	6
	2.3	The penetrable grain model	9
	2.4	Darcy's law	12
	2.5	Potential flow and gravity	14
	2.6	Permeability as a function of porosity	15
	2.7	Empirical permeability relationships	18
	2.8	The rotation matrix	20
	2.9	Anisotropic permeability	23
	2.10	Directional permeability	25
	2.11	Average permeability	27
	2.12	Fourier's law and heat conductivity	31
	2.13	Further reading	37
3	Linear elasticity and continuum mechanics		38
	3.1	Hooke's law, Young's modulus and Poisson's ratio	38
	3.2	Bulk modulus	38
	3.3	Shear modulus	39
	3.4	Strain	40
	3.5	Stress	43
	3.6	Rotation of stress and strain	46
	3.7	Principal stress	47
	3.8	Mohr's circles	51
	3.9	Stress ellipsoid	53
	3.10	Deviatoric stress	55
	3.11	Linear stress–strain relations	56

vii

Viii		Contents	
	3.12	Thermal stress	60
	3.13	Thermal stress compared with lithostatic stress	60
	3.14	Buoyancy and effective stress	61
	3.15	Effective stress in 3D	63
	3.16	Euler and Lagrange coordinates	64
	3.17	An important Lagrange coordinate	67
	3.18	Conservation laws in 1D	68
	3.19	Mass conservation	69
	3.20	Momentum balance (Newton's second law)	70
	3.21	Particle paths and streamlines	74
	3.22	Streamlines in 2D	75
	3.23	Further reading	79
4	Comp	pressibility of rocks and sediments	80
	4.1	Rock compressibility	80
	4.2	More compressibilities	84
	4.3	Compressibility of porosity and the solid volume	86
	4.4	Effective pressure coefficients	88
	4.5	Compaction of sediments	88
	4.6	Gravitational compaction of a hydrostatic clay layer	90
	4.7	Further reading	93
5	Burial histories		94
	5.1	Porosity as a function of net sediment thickness	95
	5.2	Pre-calibration of burial history calculations	97
	5.3	Porosity as a function of z	99
	5.4	Erosion	100
	5.5	Numerical compaction computation	102
	5.6	Further reading	104
6	Heat flow		105
	6.1	The temperature equation	106
	6.2	Stationary 1D temperature solutions	109
	6.3	Heat generation	112
	6.4	Stationary 1D temperature solutions with heat generation	115
	6.5	Heat flow and geotherms in stable continental areas	122
	6.6	Stationary geotherms in the lithospheric mantle	124
	6.7	Sediment maturity and vitrinite reflectance	127
	6.8	Stationary heat flow in a sphere	132
	6.9	Transient cooling of a sphere	134
	6.10	Heat flow and salt domes	138
	6.11	Forced convective heat transfer	140
	6.12	Transient convective heat flow	147
	6.13	Heat flow in fractures	151
	6.14	Instantaneous heating or cooling of semi-infinite half-space	154

		Contents	1X
	6.15	Cooling sills and dikes	159
	6.16	Solidification and latent heat of fusion	167
	6.17	Solidification of sills and dikes	170
	6.18	Periodic heating of the surface	173
	6.19	Variable surface temperature	177
	6.20	Temperature transients from sediment deposition or	
		erosion	181
	6.21	Conservation of energy once more	186
	6.22	Mantle adiabat	191
	6.23	Further reading	193
7	Subsi	dence	194
	7.1	Isostatic subsidence	194
	7.2	Thickness of crustal roots	198
	7.3	Subsidence from eustatic sea level changes	200
	7.4	Basin subsidence by crustal thinning	200
	7.5	The McKenzie model of basin subsidence	202
	7.6	The thermal transient of the McKenzie model	207
	7.7	The surface heat flow of the McKenzie model	211
	7.8	The thermal subsidence of the McKenzie model	213
	7.9	Lithospheric stretching of finite duration	215
	7.10	Finite duration stretching and temperature	221
	7.11	Lithospheric extension, phase changes and subsidence/uplift	224
	7.12	Lithospheric extension and decompression melting	230
	7.13	Thermal subsidence of the oceanic lithosphere	238
	7.14	Backstripping and tectonic subsidence	242
	7.15	Subsidence of the Vøring margin, NE Atlantic	246
	7.16	Stretching and thinning of the sediments	252
	7.17	Further reading	259
8	Rheol	ogy: fracture and flow	260
	8.1	Faults	260
	8.2	Friction	260
	8.3	Stick-slip faulting	263
	8.4	The slider-block model of stick-slip motion	264
	8.5	Fracture	268
	8.6	Hydrofracturing	271
	8.7	Ductile flow and yield strength envelopes	273
	8.8	Further reading	281
9	Flexu	re of the lithosphere	282
	9.1	Equation for flexure of a plate	282
	9.2	Flexure from a point load	289
	9.3	Flexure from a point load on a broken plate	294
	9.4	Flexure and lateral variations of the load	295

x Contents

	9.5	The deflection of a plate under compression	298
	9.6	Damped flexure of a plate above a viscous mantle	301
	9.7	The equation for viscoelastic flexure of a plate	302
	9.8	Elastic and viscous deformations	304
	9.9	Flexure of a viscoelastic plate	307
	9.10	Buckling of a viscous plate	310
	9.11	Further reading	315
10	Gravity and gravity anomalies		316
	10.1	Newton's law of gravity	316
	10.2	Potential energy and the potential	321
	10.3	Conservative fields	323
	10.4	Gauss's law	323
	10.5	Bouguer's formula for gravity due to a horizontal	
		layer	325
	10.6	Laplace's and Poisson's equations for the potential	327
	10.7	Gravity from a buried sphere	329
	10.8	Gravity from a horizontal cylinder	330
	10.9	Gravity from a prism with rectangular cross-section	332
	10.10	Gravity from a 2D polygonal body	334
	10.11	Excess mass causing gravity anomalies	340
	10.12	Vertical continuation of gravity	341
	10.13	Reduction of gravity data	344
	10.14	Gravity and isostasy over continents	347
	10.15	Gravity and sea bed topography	356
	10.16	Further reading	360
11	Quartz cementation of sandstones		361
	11.1	Introduction	361
	11.2	Quartz kinetics and precipitation rates	362
	11.3	Surface area	364
	11.4	Isothermal quartz cementation	365
	11.5	Calibration of quartz kinetics	367
	11.6	Cementation during constant burial	369
	11.7	Cementation for general burial histories	374
	11.8	Strain rate	375
	11.9	A reaction–diffusion equation for silica	377
	11.10	The silica concentration between stylolites	379
	11.11	Further reading	384
12	Overpressure and compaction: exact solutions		385
	12.1	The pressure equation in 1D	386
	12.2	The Darcy flux caused by compaction	388
	12.3	Void ratio as a function of depth	389
	12.4	A simple model for overpressure build-up	392

		Contents	X1
	12.5	Hydrofracturing	397
	12.6	Gibson's solution for overpressure	401
	12.7	Gibson's solution for porosity reduction	405
	12.8	Overpressure and mechanical compaction	407
	12.9	The dimensionless Gibson solution	412
	12.10	Further reading	415
13	Fluid f	flow: basic equations	417
	13.1	Conservation of solid	417
	13.2	Conservation of fluid	420
	13.3	Poroelastic pressure equation	421
	13.4	Storage coefficients	422
	13.5	Stress, strain and poroelasticity	425
	13.6	Stress caused by overpressure	428
	13.7	The rate of change of porosity	431
	13.8	A general pressure equation	433
	13.9	Potential flow	434
	13.10	A general equation for the fluid flow potential	437
	13.11	Simple pressure equations	437
	13.12	Further reading	439
14	Fluid f	flow: basic equations	440
	14.1	Unconfined flow	440
	14.2	Meteoric fluid flow	442
	14.3	Decay of overpressure and pressure seals	446
	14.4	Overpressure decay in clay	452
	14.5	Overpressure build-up in clay	454
	14.6	The gravity number	457
	14.7	Overpressure from thermal expansion	459
	14.8	Special cases of fluid expulsion and mineral	
		reactions	463
	14.9	Overpressure from quartz cementation	465
	14.10	Overpressure from cementation of pore space	465
	14.11	Fluid expulsion and mineral reactions	472
	14.12	Overpressure from dehydration of clay	473
		Weak (non-Rayleigh) thermal convection	477
	14.14	Thermal convection	482
	14.15	Further reading	486
15	Wells		488
	15.1	Stationary pressure from a well	488
	15.2	Wells and streamlines	491
	15.3	The skin factor	493
	15.4	Transient pressure from a well	494
	15.5	Well testing	499

xii Contents

Appe	ndix: Fourier series, the discrete Fourier transform and the fast Fourier	
transform		502
A.1	Fourier series	502
A.2	Interpolation with Fourier series	503
A.3	The discrete Fourier transform	504
A.4	The fast Fourier transform	505
Refer	References	
Index	•	523

Preface

God is in the details.

The devil is in the details.

Ludwig Mies van der Rohe (among others)

This book is based on lecture notes about the physical processes that govern sedimentary basins. The notes were the basis for a one-semester seminar named "Heat and fluid flow in sedimentary basins" offered by UNIK, an affiliate of the University of Oslo at Kjeller. As the title suggests, this book is about the physical principles of processes in sedimentary basins, for instance, heat and fluid flow. The subject is approached by deriving the basic equations from fundamental principles such as mass and energy conservation. The equations are then solved for simple problems that give insight into the processes.

It should be possible to reproduce most of the solutions, calculations and plots presented in the book with a modest effort and basic computer facilities. Reproduction of the results is the only way to ensure that the results are correct.

The book is written primarily for students who want to study heat and fluid flow in sedimentary basins from a physical point of view, and need to do their own modeling. The book requires some background in mathematics, and knowledge of continuum mechanics is an advantage. The reader should be familiar with calculus and linear algebra. It would be advantageous to be familiar with partial differential equations like the heat equation, Fourier series and complex numbers. As long as the reader is familiar with differentiation and integration, and has a sufficient interest in mathematics, she or he should be able to follow the derivations. Several linear (partial) differential equations are solved, but all details are provided. The aim has been to make the book as self-contained as possible by deriving all results that are presented. Details are necessary in this respect, in order to make the text complete and self-contained.

The book is meant as an introduction to and a primer for modeling, and it therefore covers the basic (state-of-the-art) models. It is not meant to cover the latest developments in the various fields. It does not attempt to cover the historical development of the various subjects either. This is reflected by the reference list, which easily could have been expanded 10 or 100 times. Each chapter has a last section with a few references that may serve as a starting point for further reading. A problem with writing such a book is to decide what

xiii

xiv Preface

should be included and what should be left out. Important topics such as sedimentology, seismics, diagenesis and models for hydrocarbon generation and migration are left out.

Examples and applications of the models are shown. But geological processes are often very complex and specific examples often have several more aspects than those captured by the actual model. These other aspects are mentioned, but a discussion often leads far beyond this book and into special disciplines like for instance sedimentology, structural geology, geochemistry or petrology. The purpose of the examples is to show how the models work with real data, and the setting is therefore chosen to be as simple as possible.

This book can used in different ways depending on the goals, the students' background and the amount of lecturing per week. It is, for example, possible to take two main routes through the book, one with respect to subsidence, rheology, flexure and gravity (Chapters 7, 8, 9 and 10) and another with respect to fluid flow (Chapters 11, 12, 13, 14 and 15). Common for both routes are the following chapters: properties of porous media, continuum mechanics, burial histories and heat flow (Chapters 2, 3, 5 and 6 respectively). Details of derivations are provided in notes that follow the sections, which may be left to the students to go through.

Inevitably, some errors will remain in this book, and in order to correct them I ask that any that are noticed are reported. It would also be great to know if there are alternative and simpler derivations than the ones presented or if there are better examples. Any suggestions that could improve the book will be greatly appreciated.

It is my hope that this book will be useful for anyone interested in a quantitative modeling of processes related to sedimentary basins and Earth science.

Acknowledgments

This text is based on a seminar held at UNIK over six years, a seminar that benefited greatly from the support of Idar Åsen and Kristin Scheen from the staff.

Much of what I know about the modeling of sedimentary basins and of geo-processes in general has been learned through cooperation with others – especially the following friends and colleagues from IFE: Leif Kristian Alm, Bjørg Andresen, Børre Antonsen, Egil Brensdal, Bjørn Fossum, Jan Kihle, Erik Løw, Gotskalk Halvorsen, Olaf Huseby Kjersti Iden, Harald Johansen, Ingar Johansen, Thormod Johansen, Pål Tore Mørkved, Ingrid Anne Munz, Jiri Müller, Harald Hancke Olsen, Tom Pedersen, Jan Sagen, Antoine Saucier, Torfinn Skardhamar, Bent Barman Skaare, Kjell Solberg, Jan Søreng, Torbjørn Throndsen and Åse Unander.

Finally, this project would never have happened without the support and the love from my wife Mona and our children Mia-Sofie, Fredrik, Daniel, Anna-Lousie and Lars Olav.