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Preliminaries

1.1 Notation

Most problems in this book are solved in 1D along the vertical axis. It is natural to let the

surface be at z = 0 and to have the z-axis pointing downwards, with positive z-coordinates

for the subsurface. An advantage with this choice is that the acceleration of gravity is

positive. A potential problem with the z-axis pointing downwards is that Fourier’s law

gives negative heat flow – heat that flows in the opposite direction to the positive z-axis.

A simple solution to this problem is to drop the minus-sign in Fourier’s law when the heat

flow is computed in practical problems. There is a similar problem with Darcy’s law, with

the same simple solution. But Fourier’s law and Darcy’s law retain their minus signs when

equations are derived. The full xyz-axis system is right-handed as shown in Figure 1.1b.

Vectors are written with lower case bold letters, as for instance, v, n or as

nT = (n1, . . . n2), where T denotes the transpose. Matrices are written with upper case

bold letters, for instance like A and R. The matrix elements are Ai j or Ri j , where the

indices may be x , y and z for the respective spatial directions. Another example of a

matrix is

K =

⎛

⎝

kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

⎞

⎠. (1.1)

Scalar products can be written in several different ways depending on what is most

convenient. Here are some examples:

x · y = xT y = x1 y1 + x2 y2 + x3 y3 =

3
∑

i=1

xi yi . (1.2)

The second example shows the scalar product as a matrix product, where the vectors are

written as row and column matrices. It is often convenient to write summations using what

is called Einstein’s summation convention, which says that summation is understood for

every pair of equal indices. Here is an example: the scalar product

x · y =

3
∑

i=1

xi yi (1.3)

1

www.cambridge.org/9781108446969
www.cambridge.org


Cambridge University Press
978-1-108-44696-9 — Physical Principles of Sedimentary Basin Analysis
Magnus Wangen 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Preliminaries
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Figure 1.1. (a) A right-handed coordinate system with the z-axis pointing upwards. (b) A right-

handed coordinate system with the z-axis pointing downwards.

is simply written as

x · y = xi yi (1.4)

when using Einstein’s summation convention. Here is another example:

3
∑

j=1

σ i j n j = σ i j n j (1.5)

which shows the summation over a pair of equal indices. The summation convention is

often very useful, but it may lead to confusion. For instance, it implies that Ki i = K11 +

K22 + K33, which is the sum over the diagonal elements. If we want Ki i to denote one

(single) diagonal element we have to state that explicitly. One pair of equal indices may

be replaced by another pair of equal indices because there is a summation over them – for

example Ki i = K j j . There is never summation over x , y and z when they are used as

indices. It is always possible to use these indices as numbers, where x = 1, y = 2 and

z = 3. We therefore have that

n = (nx , ny, nz)
T is the same as n = (n1, n2, n3)

T . (1.6)

An important point is the notation for dimensionless quantities. When depth z is scaled with

a characteristic depth h it is written ẑ = z/h. A hat above a symbol denotes a dimensionless

quantity. For example, dimensionless spatial coordinates, time and temperature are x̂ , ŷ, ẑ,

t̂ and T̂ .

1.2 Further reading

Riley et al. (1998) and Kreyszig (2006) are two comprehensive guides to mathematical

methods for physics and engineering.
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Properties of porous media

2.1 Porosity

Sediments and sedimentary rocks are porous media, and a porous medium is a solid with

holes in it. The holes (pores) are normally connected and a fluid may flow through the pore

space. The passage from one pore to another is through a pore throat, although there is not

always a clear distinction between a pore and a pore throat. The way in which the pores

are connected and the size of the pore throats control how permeable a porous medium is

for fluid flow. The volume of the pore space controls its capacity to store fluid. Figure 2.1a

shows an illustration of a porous medium made of a regular arrangement of spherical grains

of equal size. It is a simple idealization of sediments and sedimentary rocks. A real rock

has a much more complex pore space than the regular packing of spheres, as seen from

the thin section in Figure 2.1b. It consists of grains of a variety of sizes, shapes and min-

erals. The pore space in rocks is also the result of a complex interplay of mechanical and

chemical processes. The porosity is the volume fraction of void space of a porous medium,

expressed as

φ =
Vp

Vt

(2.1)

where Vp is the volume of the void space and Vt is the total volume (of both solid and

void) of the sample. An alternative way to measure the void space is to relate it to the solid

volume of the rock rather than the total volume. This property, called the void ratio, is

e =
Vp

Vt − Vp

=
φ

1 − φ
. (2.2)

The solid volume of the rock is the difference between the total volume Vt and the void

volume Vp. Equation (2.2) can also be inverted to give an expression of the porosity as a

function of the void ratio,

φ =
e

e + 1
. (2.3)

As we will see later it is often more convenient to work with the void ratio than the

porosity.
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4 Properties of porous media
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Figure 2.1. (a) A regular porous medium made of grains of equal size. (b) A SEM image of a sandstone

where the pore space is black and the quartz grains are gray. (qz = quartz, mu = muscovite and

bi = biotite)
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Figure 2.2. Porosity of clays and silts as a function of depth. Data is from ODP site 1276,

leg 210, see Sawyer and Fackler (2007). The porosity–depth trend is fitted with the function

φ(z) = 0.79 exp(−z/1180), where z is the depth below seafloor in meters.

It is not possible to obtain a meaningful porosity unless the bulk volume Vt contains

a large number of grains. The porous medium is said to be homogeneous if the porosity

is (almost) constant regardless of where in the medium the volume Vt is taken, and Vt is

then called a representative elementary volume, REV. There are two types of porosity –

connected and unconnected. It is only the volume of the connected pores that is normally

included in the porosity. The term effective porosity is used to underline that only connected

pores are included.

Sediments and rocks rarely are homogeneous. A characteristic feature of sediments and

sedimentary rocks is their layered structure caused by deposition processes. Sedimentary

rocks are therefore often strongly heterogeneous in the direction normal to the bedding

plane. Figure 2.2 shows an example of clay and silt porosity in a 1000 m depth interval.

This is a typical example of the large scatter often seen in sediment porosity, where there
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2.1 Porosity 5

Table 2.1. Porosity–depth data

for lithologies in the North Sea

from Sclater and Christie (1980).

z0

Lithology φ0 [m]

Shale 0.63 1960

Sand 0.49 3703

Chalk 0.70 1408

Shaly sandstone 0.56 2464
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Figure 2.3. Porosity–depth trends from Sclater and Christie (1980) and Helland-Hansen et al. (1988)

(denoted HH).

are considerable jumps in the porosity over short depth intervals. The porosity–depth trend

in Figure 2.2 is fitted with the function

φ(z) = φ0 exp(−z/z0) (2.4)

where φ0 is the surface porosity and z0 is a depth that characterizes the compaction.

The depth z is measured from the sediment surface. This porosity function was first

applied by Athy (1930) to the porosity of sedimentary basins and has later been named

the Athy function. Figure 2.3 shows the Athy function fitted against data for the litholo-

gies shale, sandstone, chalk and shaly-sandstone from the North Sea. The parameters are

obtained by Sclater and Christie (1980) and are listed in Table 2.1. Remember that these

curves are smooth trends fitted against observations with a large scatter in the porosities.

Another point is that the porosity varies from basin to basin depending on the deposi-

tion history and the temperature history. Fortunately, we rarely need to know the detailed

porosity when dealing with compaction, subsidence or overpressure build-up on a basin
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6 Properties of porous media

(b)(a)

Figure 2.4. Regular porous media. (a) Two grain sizes. (b) Rhombohedral packing.

scale. We will meet the Athy porosity function later since it is a convenient function to

work with.

Exercise 2.1 What is the porosity and the void ratio of a medium with exactly the same

amount of void space as solid volume?

Exercise 2.2 Derive relationship (2.3).

Exercise 2.3 Calculate the porosity of the regular porous medium shown in Figure 2.1a,

where all grains have equal size. Is the porosity dependent on the grain size (the radius)?

Exercise 2.4 Calculate the porosity of the porous medium shown in Figure 2.4. Notice

that grains of different sizes allow for denser packing.

Exercise 2.5 The porosity of a dry rock sample can be measured from the increase in

weight by filling the pore space by a wetting fluid. What is the porosity of a sample if its

mass increases with �m, when it is filled with a fluid of density ̺, and it has the total

volume Vt ?

2.2 The correlation function and specific surface

A porous medium can specified by the characteristic function f defined as

f (x) =

{

0, when x is in a grain

1, when x is in the pore space
(2.5)

where the porosity of the volume V is seen to be

φ =
1

V

∫

V

f (x) dV . (2.6)

The characteristic function can be used to define the two-point correlation function

C(r1, r2) =
1

V

∫

V

f (x + r1) f (x + r2) dV (2.7)
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2.2 The correlation function and specific surface 7

which expresses how likely it is that the porous medium is void at position r2, when it is

void at position r1. The medium is statistically homogeneous when the correlation function

depends only on the distance r = |r2 − r1| as

C(r1, r2) = C(r2 − r1) = C(r). (2.8)

From the definition (2.7) it follows that the statistically homogeneous correlation function

has the following properties:

C(0) = φ and lim
r→∞

C(r) = φ2. (2.9)

The latter relation assumes that the pore space is uncorrelated between any two positions

separated by a “large” distance. An important reason for introducing the two-point correla-

tion function is that it gives the surface area of the pore space per unit volume – the specific

surface area. It is obtained from the two-point correlation function by the following simple

relation (Berryman, 1987):

S = −4
dC(r)

dr

∣

∣

∣

∣

r=0

. (2.10)

This relation also holds for anisotropic porous media as shown in Note 2.1. The correlation

function can be found experimentally for real porous media or exactly for simple models,

and once it is obtained we will have the porosity from relation (2.9) and the specific surface

area from relation (2.10).

Note 2.1 The derivation of the expression (2.10) follows Berryman (1987). We first

introduce the angular average of the correlation function

Ca(r) =
1

4π

∫

C
(

rnr (θ, ϕ)
)

sin θ dθ dϕ

=
1

4πV

∫ ∫

V

f (x) f (x + rnr ) dV sin θ dθ dϕ

=
1

4πV

∫ ∫

Vp

f (x + rnr ) dV sin θ dθ dϕ (2.11)

where nr (θ, ϕ) is the unit vector in the direction of r . The integration of ϕ is from 0 to

2π , and the integration of θ is from 0 to π , see Figure 2.5. The last equality holds because
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8 Properties of porous media
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Figure 2.5. A position in space is given by the spherical coordinates (r, θ, ϕ). The angles, ϕ from 0

to 2π and θ from 0 to π , parameterize the surface of sphere with radius r .

f (x) = 1 for x in the pore space Vp and otherwise 0. The derivative of the angular average

of the correlation function is

dCa(r)

dr
=

1

4πV

∫ ∫

Vp

∂ f (x + rnr )

∂r
dV sin θ dθ dϕ

=
1

4πV

∫ ∫

Vp

nr · ∇ f (x + rnr ) dV sin θ dθ dϕ

=
1

4πV

∫ ∫

Vp

∇ ·
(

nr f (x + rnr )
)

dV sin θ dθ dϕ

=
1

4πV

∫ ∫

Ap

n · nr f (x + rnr ) d A sin θ dθ dϕ. (2.12)

The volume integral is converted to a surface integral by means of the divergence theorem,

and n is the outward unit vector of the surface Ap of the pore space. The coordinate system

is now centered at x with n = nz , which gives that n · nr = cos θ . The outward normal

vector n of the surface of the pore space is pointing upwards, which means that the surface

is locally in the xy-plane around x. The solid is locally above the xy-plane and the pore

space is locally below the xy-plane. The integral

I =

∫ 2π

0

∫ π

0

sin θ n · nr f (x + rnr ) dθ dϕ

= 2π

∫ π

0

sin θ cos θ f (x + rnr ) dθ

= 2π

∫ π

π/2

sin θ cos θ dθ

= −π (2.13)

in the limit r → 0. The function f (x + rnr ) is then 0 for nr (θ, ϕ) pointing into the solid,

with angles θ from 0 to π/2. Inserting the integral I into expression (2.12) gives that

dC/dr = −Ap/4V , where Ap is the surface area of the pore space and the ratio Ap/V is

the specific surface.
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2.3 The penetrable grain model 9

2.3 The penetrable grain model

The porosity and the characteristic function are not exactly known for other than some

simple porous media. One example of such a porous medium is N randomly placed spher-

ical grains of equal radius in a volume V . This model is called the penetrable grain model

because the grains are allowed to overlap. A porous medium of penetrable spheres is shown

in Figure 2.6a. The inverse of the penetrable sphere model, where solid and void are inter-

changed, is shown to the right. The inverse model is sometimes called a “Swiss cheese”

model, because the pores are now overlapping spheres.

The porosity of the penetrable grain model is equal to the probability that a given point

inside V is not overlapped by any of the N grains of volume Vg ,

φ =

(

1 −
Vg

V

)N

. (2.14)

The probability that a point in V is overlapped by a single grain is Vg/V , when it is

assumed that the grains are uniformly distributed. We can replace the volume V by the

grain density ̺ = N/V , which is the number of grains per unit volume. The porosity

is then

φ =

(

1 −
̺Vg

N

)N

(2.15)

which becomes

φ = exp(−̺Vg) (2.16)

in the limit N → ∞. (We have that (1 + x/N )N → ex when N → ∞.) A porous medium

of penetrable spheres of radius a has

Vg = (4/3)πa3 (2.17)

(a) (b)

Figure 2.6. (a) Porous medium formed by overlapping spheres. (b) The inverse porous medium of the

overlapping sphere model where the solid and the void are interchanged.
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10 Properties of porous media

and the porosity is

φ = exp

(

−
4

3
̺πa3

)

. (2.18)

The pair correlation function C(r) can be obtained in a similar way as the porosity. It is

equal to the probability that two points separated by a distance r inside the volume V is

not occupied by a pair of spheres. Using the number density ̺ and going to the limit of a

large number of spheres gives

C(r) = exp

(

− ̺V2(r)

)

(2.19)

where V2 is the volume of two overlapping spheres separated by a distance r . The volume

V2 is

V2 =
4πa3

3

[

1 +
3

4

( r

a

)

−
1

16

( r

a

)3
]

, r < 2a (2.20)

where the sphere radius is a. When r ≥ 2a the spheres do not overlap and we have that V2

is the sum of the volumes of the two spheres,

V2 =
8πa3

3
, r ≥ 2a. (2.21)

Relation (2.10) for the specific surface of the porous medium gives

S = −4
dC(r)

dr

∣

∣

∣

∣

r=0

= 4πa2̺φ (2.22)

where φ is the porosity given by (2.18).

We will later need an expression for the specific surface as a function of the porosity.

This is for applications where the porosity is lost due to precipitation of minerals, and

where the precipitation process is controlled by the available specific surface. Before we

derive an expression for the specific surface as a function of the porosity, we will first

find an expression for the volume of a grain as a function of the porosity. We have from

(2.16) that

Vg(φ) = V0
lnφ

lnφ0
(2.23)

where the initial porosity φ0 and the initial grain volume V0 are used to eliminate the

number density. From the volume of a grain (2.17) we obtain the following expression for

the radius of a sphere as a function of the porosity:

a(φ) = a0

(

lnφ

lnφ0

)1/3

. (2.24)

Finally, the specific surface (2.22) as a function of the porosity becomes

S(φ) = −
3φlnφ0

a0

(

lnφ

lnφ0

)2/3

. (2.25)
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