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Chapter

1
Statistics Used to Assess Monitors
and Monitoring Applications
Lester A. H. Critchley

Introduction
An evidence-based approach now prevails when
recommending medical treatments. This applies as
much to the latest therapies as to appropriate methods
to monitor patients and their response to treatment.
For an evidence-based approach to be successful,
however, it must be based on good-quality clinical
data from well-conducted research. The quality of
clinical studies and their data is now graded according
to the level of evidence they provide,1 and guidelines
exist on how to properly conduct clinical research.
Cochrane reviews have set standards for best evi-
dence. Working groups such as the National
Institute for Clinical Excellence (NICE) and
Resuscitation Council (UK) demonstrate how such
an approach can be transformed into up-to-date
guidelines and courses. When assessing the value of
emerging clinical monitoring technologies for peri-
operative, emergency room, and critical care use,
researchers should be aware that clinical validation
studies must be of a sufficient standard to be of use in
evidence-based reviews. This perspective drives the
approach of this chapter, with a focus on cardiac out-
put (CO) monitoring, since most of the literature on
these statistical methods has arisen from analysis of
this variable.

Cardiac Output Measurement
Cardiac output is the sum of stroke volumes expelled
from the heart over one minute; it can be measured
from either the pulmonary or the systemic circula-
tions. As the arterial system leaving the heart
branches, it is not possible to measure total CO at a
distal point such as the arm or descending aorta, and
corrections are needed (e.g., arterial pulse contour
analysis and esophageal Doppler).2,3 Measurement
of CO at its source, the heart, is also difficult to achieve
in the clinical setting because of restricted access,
unless one is performing open-heart surgery.

Instead, at-a-distance (e.g., transthoracic Doppler)
or surrogate (e.g., bioimpedance) methods are uti-
lized, which result in lack of precision.4,5 Compared
to measuring other more accessible hemodynamic
variables such as blood pressure or heart rate, lack of
accuracy and precision has hampered the develop-
ment of routine CO monitoring in the clinical
setting.5

Cardiac output can be measured accurately using
techniques such as the Fick method and radionuclide
imaging studies. These methods, however, have sev-
eral limitations. They are only applicable in settings
such as the physiology laboratory or radiology depart-
ment; they are inapplicable at the point of care and
therefore cannot be used in operating room, emer-
gency medicine, or critical care settings. Furthermore,
Fick and radionuclide studies only provide single
readings, and there is need for technologies that mea-
sure CO on a frequent or continuous basis. The clin-
ical significance of being able to assess changes or
trends in CO is only now being recognized, and this
is highlighted by the designs of recently marketed CO
devices and the statistical approaches to their
validation.

All validation studies require a reliable reference
method against which comparisons are made. For CO
monitoring, the accepted reference method has been
and remains single bolus thermodilution using a pul-
monary artery Swan–Ganz catheter. The pulmonary
artery catheter, however, is now seldom used in clin-
ical practice, and its use is associated with significant
risk to patients.6,7 Clinical validation studies incor-
porating pulmonary artery catheter measurements
are mostly restricted to cardiac surgery and liver
transplant. Some recent research studies have used
the less invasive transpulmonary thermodilution
method, which is employed in the PiCCO (Pulsion,
Munich, Germany) and VolumeView (Edwards
Lifesciences, Irvine, CA, USA) systems. Errors arise
in thermodilution measurement because of injectate
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and dead space issues,8 and the degree of inaccuracy
varies between clinical settings and different manu-
factured devices.9The precision of the thermodilution
method is generally accepted to be ± 20%,10,11 and this
margin of error has played a significant role in the
ongoing development of validation statistics.

Cardiac output is not a static variable; its value
constantly changes. Achieving a steady state in which
simultaneous comparative readings can be taken
often proves difficult, and this hampers the collection
of good-quality validation data.

Protocol Design and Data Collection
The need for ethical approval and patient consent
is an obvious prerequisite for publication. Poorly
planned data collection and inadequate sample size
will limit the usefulness of collected data and thus
the ability to publish the study findings. Common
mistakes are (i) failure to blind investigators to
comparative readings, (ii) failure to achieve simul-
taneous readings during steady-state hemody-
namics, (iii) failure to have sufficient range of
readings, (iv) failure to collect sufficient data
resulting in inconclusive results, (v) inconsistent
number and timing of repeated measurements
from individuals (i.e., irregular data collection),
and (vi) failure to collect serial data pairs that
show adequate changes and hence fail to facilitate
trend analysis. A well-designed study has clearly
defined times of data collection, which are of suffi-
cient number to allow comprehensive analysis.12

Sample size is difficult to calculate in this type of
research, even if a pilot study is performed, because of
the range of different variables and outcomes
involved. A more pragmatic approach may be based
on reviewing the sample sizes used in previous studies
that were successful in detecting effects. Comparative
studies with cohorts of over 30 patients and 6 or more
serial data pairs are recommended.12

Background to Validation
Thirty years ago scatter plots and regression and cor-
relation analyses were the principal analytical meth-
ods used to show how reliably a new measurement
method compared to a reference standard.13

Regression and correlation, however, only evaluate
the degree of association between two measurement
methods; they do not quantify accuracy. Quoting
correlation coefficients and p values confirms little.

The whole approach to validation statistics chan-
ged in the 1980s when J. M. Bland and D. G. Altman
introduced a new method of comparing measure-
ments based on bias, the difference between pairs of
comparative readings.14 Bias was plotted against the
average of each pair, and the standard deviation of the
bias provided a statistic called limits of agreement (i.e.,
95% confidence intervals for the bias). Bland and
Altman, however, never provided guidance as to
how the limits of agreement should be used to confirm
clinical utility, leaving this to the discretion of the
user. This was particularly unsatisfactory when
Bland–Altman analysis was applied to CO studies
where the reference method, usually thermodilution,
was imprecise. Limits of agreement of less than
1 liter/min were considered to be acceptable,15,16 but
no provision for (i) variations in baseline CO or
(ii) imprecision of the reference method was made.

To enable outcomes from Bland–Altman style CO
studies to be compared in 1999, Critchley proposed
the use of percentage error (PE), a statistic calculated
from the limits of agreement (i.e., 95% confidence
interval of the bias) divided by the baseline CO for
the study.10 A benchmark for acceptance of a new
technique of less than 28.4% was set, which was
rounded up to less than 30%. This benchmark was
based on a reference method’s precision of 20% and
acceptance of the test method also being set at 20%.
Although PE has been criticized over the years for
being too strict,11,17,18 its simplicity and robustness
as an analytical tool have withstood the test of time.

In more recent decades, following advances in
clinical medicine and monitoring technology, it has
become increasingly important to have bedside moni-
tors that accurately follow the vital signs of hospita-
lized patients. Unfortunately, Bland–Altman analysis
does not assess the ability of devices to detect changes;
it is limited to assessing accuracy of readings and
agreement betweenmethods.19,20Thus, new statistical
approaches were developed, referred to as trend ana-
lysis.21 Many researchers new to clinical monitoring,
however, fail to recognize the need to show trending
and restrict data collection to that suitable for Bland–
Altman analysis.

How to effectively address the issue of trending
capability has not been fully resolved in the literature.
In a recent review of CO studies, Critchley and col-
leagues reported that only 20% of the studies per-
formed some form of trend analysis; the analytical
methods employed were (i) Bland–Altman analysis
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of tables and histograms, (ii) regression analysis of
scatter plots, and (iii) analysis of direction of
change.21

When analyzing CO data from hospital patients,
commonly used trend analysis methods are (i) con-
cordance on a four-quadrant plot and (ii) polar plot
analysis.22,23 Both these analyses rely on comparing
serial data from reference and test methods, calculat-
ing the serial change in consecutive readings (∆CO),
and excluding data where the change is small (i.e.,
< 10–15% change). The polar method involves trans-
forming the data from a simple (x, y) Cartesian format
to a radial format (radius, angle). Polar plots provide
greater information about the agreement between two
methods that is lost when just direction of change is
used. Criteria for acceptable trending have been pro-
posed for CO monitoring.21,23 A more detailed
description of these methods follows.

Bland–Altman Analysis
Practically all CO validation studies published today
use Bland–Altman analysis and provide a Bland–
Altman plot (Figure 1.1). The plot shows bias col-
lected from the whole or subgroups of the study.

Each plot should display horizontal lines indicating
mean bias and the 95% confidence intervals or limits
of agreement. Inspection of the plot allows one to
assess (i) the distribution or spread of data, (ii) the
degree of agreement between methods (i.e., size of the
limits of agreement), and (iii) any systematic changes
in bias as CO increases (i.e., offsets in calibration).
One common problem with presenting Bland–
Altman plots is using inappropriate scales, especially
when more than one plot is shown. Rather than
choosing scales that fill the page with data points,
the axis of each plot should have similar scales and
ranges. Otherwise visual comparisons between plots
are difficult to perform. Very often the Bland–Altman
plot is accompanied by an (x, y) scatter plot that shows
the raw data (Figure 1.1), but regression lines and
correlation coefficients are often omitted.

Bland–Altman analysis requires each data pair to
be independent of all other pairs and ideally from
separate subjects.14 If data pairs are related (i.e., they
come from the same subject), the size of 95% confi-
dence intervals and limits of agreement for the analy-
sis will be reduced. Use of repeatedmeasures (i.e., data
pairs from the same subject) is common in CO stu-
dies; thus, the data analysis should correct for
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Figure 1.1 Scatter plot with regression line and accompanying Bland–Altman plot. Statistical analysis data are added to each plot. The
Bland–Altman plot also displays the mean bias and limits of agreement of the analysis (dashed horizontal lines). Data are from a study that
compared two Doppler CO measurement methods, transthoracic (USCOM) and esophageal (CardioQ).

Source: Huang L, Critchley LA. An assessment of two Doppler-based monitors to track cardiac output changes in anaesthetized patients
undergoing major surgery. Anaesth Intens Care 2014;42:631–9. LOA: limits of agreement, PE: percentage error.
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repeated measures by either (i) Bland and Altman or
(ii) Myles and Cui methods, which differ slightly in
complexity.24,25 Statistical software programs that
perform Bland–Altman analysis should also adjust
for repeated measures; journal editors and reviewers
expect that authors will employ such corrections and
describe them in their manuscripts.

Percentage error is a key outcome statistic arising
from CO studies that perform a Bland–Altman analy-
sis.10 It is used to compare findings of CO studies with
findings of other published studies. It also allows criteria
to be set for acceptance of a new CO monitor prior to
starting a study. Most authors will use the less than 30%
benchmark, from Critchley’s 1999 paper that based the
criteria on a 20% precision for thermodilution
CO measurement and the need for less than 20%
measurement error (i.e., 95% confidence intervals or
precision).11 A 20% error represented up to a 1 liter/
min variation in CO if the mean CO was 5 liter/min.

Cecconi and colleagues have questioned the logic
of assuming a 20% error in the reference method.26

They recommended measuring its precision and
using the error to set new acceptance criteria a priori.
Their rational was that (i) the error in thermodilution
or other reference method is very variable and 20% is
just an approximation, and (ii) any significant varia-
tion from 20% would result in lesser or greater errors
in the test method to be accepted, if the acceptance
criteria are set at the standard 30%. Their approach to
measuring the reference method’s precision was to
perform serial steady-state measurements from
which the coefficient of variation was calculated and
precision derived.26

Trend Analysis
Trending capability, the ability to follow changes in
CO, can be assessed either by (i) multiple paired
comparisons in a small number of subjects (i.e.,
n = 6–10 laboratory animals) or (ii) as part of a larger
scale clinical trial with up to 8–10 comparative mea-
surements in 20 or more patients. Statistical
approaches are different for the two settings. Small
cohort studies are dealt with later in the section Time
Plots and Regression Analysis.

Concordance Analysis
For larger cohort clinical trials the current approach is
concordance analysis using direction of change.21,22

This analysis is based on serial data, and ∆CO is the
study variable calculated from the difference between

consecutive readings. Direction of change in CO can
either be increased (i.e., positive direction change) or
decreased (i.e., negative direction change); the magni-
tude of change is not included in the analysis. In the
trial a test method is compared to a reference method,
which provides pairs of directions of change of read-
ings that can either agree (i.e., concord) or disagree.
Concordance is measured as the proportion of read-
ings that agree.

To make concordance analysis easier to visualize,
a four-quadrant plot is drawn of ∆CO reference
against ∆CO test (Figure 1.2). Data where directions
of change agree fall into the right upper and left lower
quadrants. The ratio of the number of data pairs
where directions of change agree over the total num-
ber of data pairs for the study provides the concor-
dance presented as a percentage.

Data pairs where the serial change in CO is small,
however, can often have directions of change that
disagree due to random errors in measurement; this
is referred to as statistical noise. To eliminate statisti-
cal noise from the concordance analysis an exclusion
zone is used that removes data where the change in
CO is less than 10–15% of the mean CO for the study.
The setting of limits for the exclusion zones is based
on a receiver operator characteristic (ROC) curve
analysis.22

Current advice for acceptable trending ability in
CO studies is greater than 92%.21 Ideally, confidence
limits should be calculated for the concordance,
which is based on sample size. The ∆CO data is
treated as a binomial (i.e., direction of change either
agrees or disagrees), and the standard deviation of the
concordance ratio (p) is √[np(1−p)], where n is the
number of data points. A good example of how this
statistic is generated and used is found in Axiak-
Flammer and colleagues.27

Polar Plots
The introduction of polar plots (Figure 1.2) was to
address the problems that (i) the four-quadrant plot
method did not include magnitude of change and (ii)
all data pairs were treated equally despite size.14,21,23

By converting the data to (i) a radial distance that
represented the size of the combined changes in CO
from the two paired readings (i.e., average absolute
change in ∆CO) and (ii) an angle that represented the
degree of agreement (i.e., the greater the degree of
disagreement the larger the angle), more information
about the comparison between the two measurement
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methods was retained. The concept of excluding data
pairs where changes in CO were small and statistical
noise may corrupt the analysis was also applied.
However, the exclusion zone was reduced from 15%
to 10% of the mean CO for the study because the
combined change in ∆CO on the polar diagram (i.e.,
radial length) was derived from the average of the two
∆CO values, whereas in the four-quadrant plot the
combined change was derived from the hypotenuse of
a triangle produced by test and reference values and
was √2 (or 1.42) times larger in size. The mean angle
for all the data pairs provided a measure of misalign-
ment in calibration or offset between methods.
Empirically, a limit of ± 5% was set as the criterion
for an acceptable offset. The radial limits of agreement
were set at ± 30% and were based on a 2:1 ratio in size
between ∆CO readings. These limits, however, were
not based on sound statistical theory. To make the
polar plot more visually friendly, one can rotate

negative change data through 180 degrees to become
a positive change, thus producing a half-moon rather
than full-moon plot. Generating polar data from
Cartesian (x, y) ∆CO data and drawing polar plots
can be technically challenging. Some of the newer
statistical programs now provide polar plot drawing
and analysis software. Guidance can also be found in
the original paper describing polar plots.23 The polar
method is probably best reserved for research groups
performing high-quality validation studies. Mastering
the technique of polar plots provides a greater appre-
ciation of the data and trending ability.

Time Plots and Regression Analysis
Understanding the structure of one’s data is the key to
knowing which statistical methods are most appro-
priate. Data arising from validation studies can be
considered as a two-dimensional matrix of paired
readings representing subjects in one plane and serial
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Figure 1.2 Four-quadrant and polar plots showing changes (ΔCO). Four-quadrant plot has zero axes crossing at its center, creating four
zones. A central exclusion zone (square) is shown: Data lying within this zone are excluded because they contain a high level of random
variation compared to changes in CO (i.e., statistical noise). The line of identity y = x (dashed line) also is shown. Ideally, all data points should lie
along this line. Data that lie within the upper right and lower left quadrants agree (i.e., direction of change agrees). Results of concordance
analysis are printed in the plot. Polar plot is of a semicircle, or half-moon, design in which both positive and negative changes in CO are shown
together. A central exclusion zone also is shown (half circle). Zero- and 30-degree axes are highlighted (solid lines). Mean polar angle and 95%
radial limits of agreement for the polar analysis also are shown (dotted lines). Polar concordance rate is based on the proportion of data points
that lie within 30 degrees of the polar axis (zero degrees). Results of the polar analysis are shown.

Source: Huang L, Critchley LA. An assessment of two Doppler-based monitors to track cardiac output changes in anaesthetized patients
undergoing major surgery. Anaesth Intens Care 2014;42:631–9.
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measurements from individual subjects in the other
plane. Bland–Altman analysis is most appropriate
when there are many subjects and few, if any, serial
measurements, because the primary attribute being
tested is the accuracy of a measurement technique as
it is applied to a study sample. In studies where trend-
ing capability is being analyzed, multiple serial mea-
surement pairs (n = 10 or more) are needed. For this
type of study design, data can be analyzed on an
individual subject basis (i.e., within subject) using
regression analysis. Huang and colleagues performed
a number of clinical studies comparing Doppler CO
with bioimpedance COmethods during anesthesia for
major surgery.3,28 Their surgical model provided a
range of ever-changing CO values. They plotted
within subject serial changes in CO over time, for
each monitoring modality and for each patient
(n = 7 to 27 data points). They were able to visually
identify divergences in the trend lines for CO between
the different monitoringmodalities and relate them to
interventions during the surgery (Figure 1.3). They
also used regression analysis as a method of quantify-
ing the degree trending between the monitoring mod-
alities for each subject. For CO studies using Doppler
methods as the reference, they were able to set criteria

when trending capability of the test bioimpedance
method was considered acceptable. However, when
regression analysis was applied to group data, the
systematic differences in calibration between subjects
introduced a second source of variation, and trending
capability could no longer be easily evaluated using
the correlation coefficients.

Reporting Validation Study Data
Since 1999 there have been concerns in the literature
regarding how validation study data have been
reported, especially for studies using Bland–Altman
analysis.29–32 As recently as 2016, Abu-Arafeh and
colleagues published a review of 111 papers from a
two-year period, which concluded that Bland–Altman
study data were poorly reported and of limited useful-
ness to evidence-based reviews.33 Additionally, they
proposed a list of 13 key issues to be included in
reports and called for journals to provide more gui-
dance on how Bland–Altman studies should be con-
ducted and reported. In 2010, Critchley and
colleagues reported similar findings in relation to
reporting trend analysis data.21 Based on the present
author’s experience as a researcher and journal
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reviewer in the field of validation studies, the follow-
ing recommendations are provided:

1. Provide a clear and thorough description of the
study design, including (i) recruitment, (ii)
number of subjects, (iii) how readings were taken,
including blinding of investigators and steady-
state synchronous readings, and (iv) timing of data
collection points. Remember to mention ethical
approval and consent.

2. Provide a well-described plan for analyzing the
data in the methods section. Ideally, one should
measure the precision of the referencemethod and
use it when setting a priori criteria for acceptance
of the test method.26 A typical sequence for a
simple test versus reference comparison study
would be (i) results of any pilot studies such as
reference method precision and power calculation
(i.e., study size), (ii) inspection of study data using
scatter plots, (iii) Bland–Altman analysis with
details, and (iv) trend analysis using concordance
and possibly polar plots. Acceptance criteria with
references should be added to the relevant
subsections.

3. The results section should start with the general
demographics of the study population, including
number of subjects and how many subjects were
excluded and why. The power calculations
justifying the size of the study, if performed, could
be included at this point (see previous comments
on study size).

4. Draw a scatter plot (optional) that shows the
distribution of raw data (Figure 1.1). Multiple
plots may be needed if subgroups of subjects have
been included in the study design. Addition of a
regression line and correlation coefficients is
optional, as Bland–Altman recommended their
exclusion.14 Plots should contain, within the
diagram or legend, essential information such as
number of data points and relevant statistical
outcomes, for example regression line equation
and correlation coefficient (i.e., r or R2).

5. Draw the Bland–Altman plot(s) (Figure 1.1).
Make sure axes are appropriately scaled with
sensible data ranges. If more than one plot is
presented, the scales and ranges should be similar
to facilitate visual comparison. Add horizontal
lines for the mean bias and limits of agreement
(i.e., 95% confidence intervals of the bias). Make
sure the limits have been corrected for repeated
measures, citing which methodology was

used.24,25 Some authorities are now asking for
confidence intervals of the limits of agreement to
also be included.34 It is best to stick to simple
numerical measurement units (i.e., CO in liter/
min) rather than percentage changes; however,
indexing variables to body surface area (BSA) (i.e.,
cardiac index = CO/BSA) is acceptable. Diagrams
and legends should display essential numerical
information about the plot(s).

6. Sufficient data to calculate the PE should be
provided, including (i) the standard deviation of
the bias or 95% confidence interval and (ii) mean
CO for all the study data. Ideally, the PE should
also be presented. The PE facilitates comparison of
data with previous studies; one may wish to make
such comparisons in the discussion section. In the
methods section the criterion threshold should be
set a priori that defines a PE that supports
acceptance of the new technique. This requires
some consideration regarding the precision of the
reference method. Cecconi and colleagues
recommend estimating the precision from
coefficient of variation measurements for the
reference method.26 The current benchmark for
PE is less than 30%, but this criterion should be set
in the context of the precision of the reference
method as a 20% error is presumed (see Axiak-
Flammer et al. for guidance if an alternative
reference method has been used27).

7. Depending on the study design and data structure,
if a trend analysis is performed, then a four-
quadrant plot should be drawn (Figure 1.2).
Concordance analysis should be performed for
studies with grouped data of sufficient numbers
(e.g., n > 20 subjects) and serial data pairs (e.g.,
n > 3). An exclusion zone should be employed (i.e.,
15% of mean CO for the study) to remove data
where changes are small and data points lie close
to zero. For CO studies the zone is set at 15% of the
mean CO value. Remember that concordance is
based on the variable ∆CO, not CO. Criteria for
accepting a CO monitor as having good trending
ability have been set at greater than 92%, where the
reference method was single bolus
thermodilution.21 For studies with a small number
of data pairs, the confidence intervals for the
concordance also need to be calculated.27

8. A polar plot analysis may also be employed
(Figure 1.2), following advice on generating the
data from paired readings, creating the plots, and

Statistics to Assess Monitoring Applications

7

www.cambridge.org/9781108444910
www.cambridge.org


Cambridge University Press
978-1-108-44491-0 — Modern Monitoring in Anesthesiology and Perioperative Care
Edited by Andrew B. Leibowitz , Suzan Uysal 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

interpreting the results.11,21,23 Exclude central
zone data that are less than 10% of the mean CO
for the study. Key outcome data are the mean
angle and 95% radial limits of agreement. They
should be added to the polar plot as radial lines.
The 30-degree radial axes should also be
highlighted. Negative direction data points can be
rotated through half a turn (i.e., 180 degrees), but
not reflected, to provide a half-moon plot. Ideally,
the main data outcomes, including number of data
points, exclusion zone size, mean angle, and radial
limits of agreement, should be added to the
diagram or legend. Polar plots demonstrate (i)
offsets in calibration between methods (i.e., mean
angle of greater than 5 degrees) and (ii) the level of
agreement between the methods (i.e., tightness of
alignment of radial data points to the zero-degree
axis or mean angle line). The 30-degree lines act as
guides to good trending when 95% of data points
fall within their boundaries.

9. For less commonly used methods of assessing
trending, one should refer to the papers that
describe them.

Noncardiac Output Studies
The application of validation statistics is not limited
to just CO monitoring data. They can also be applied
to blood pressure, oxygen saturation, and hemoglobin
level monitoring. The main difference is the criteria
used to determine acceptance thresholds and exclu-
sion zones, because of their reliance on the precision
of the reference method.
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