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There are a number of intriguing connections between Painlevé equations and
orthogonal polynomials, and this book is one of the first to provide an introduc-
tion to these. Researchers in integrable systems and nonlinear equations will find
the many explicit examples where Painlevé equations appear in mathematical
analysis very useful. Those interested in the asymptotic behavior of orthogonal
polynomials will also find the description of Painlevé transcendents and their
use for local analysis near certain critical points helpful to their work. Rational
solutions and special function solutions of Painlevé equations are worked out in
detail, with a survey of recent results and an outline of their close relationship
with orthogonal polynomials. Exercises throughout the book help the reader to
get to grips with the material.

The author is a leading authority on orthogonal polynomials, giving this work
a unique perspective on Painlevé equations.
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1.2 Painlevé equations 8
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3.1 Orthogonal polynomials on the unit circle 27

3.1.1 The weight w(θ) = et cos θ 28

3.1.2 The Ablowitz–Ladik lattice 31

3.1.3 Painlevé V and III 32
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Preface

These notes are intended to explain the relationship between orthogonal poly-

nomials and Painlevé equations. They are not intended to give a systematic

theory of Painlevé equations, their transformations and classification. This can

be found elsewhere; we recommend in particular the classical book by Ince

[88, §14.4], the more recent books [46, 68, 82, 125] and the review papers

[80] and [96] on discrete and continuous Painlevé equations. Researchers in

orthogonal polynomials will find the notes useful to see how semi-classical or-

thogonal polynomials often lead to discrete and continuous Painlevé equations.

Usually only special solutions of these Painlevé equations in terms of classical

special functions will be relevant. Furthermore, some integrable systems, such

as the Toda lattice and related differential-difference systems, also appear in

a very natural way in the theory of orthogonal polynomials. Those interested

in the asymptotic behavior of orthogonal polynomials may appreciate seeing

that Painlevé transcendents are used for the local analysis near critical points.

Researchers in integrable systems, and in particular in Painlevé equations, may

find it useful to see that a lot of explicit systems of orthogonal polynomials are

described using discrete and continuous Painlevé equations. These applications

in orthogonal polynomial theory often give a new viewpoint of Painlevé equa-

tions, in particular on the behavior of the special solutions of these equations.
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