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Left Relatively Convex Subgroups

Yago Antoĺın, Warren Dicks, and Zoran Šunić

Abstract

Let G be a group and H be a subgroup of G. We say that H is left

relatively convex in G if the left G-set G/H has at least one G-invariant

order; when G is left orderable, this holds if and only if H is convex in

G under some left ordering of G.

We give a criterion for H to be left relatively convex in G that gener-

alizes a famous theorem of Burns and Hale and has essentially the same

proof. We show that all maximal cyclic subgroups are left relatively con-

vex in free groups, in right-angled Artin groups, and in surface groups

that are not the Klein-bottle group. The free-group case extends a result

of Duncan and Howie.

More generally, every maximal m-generated subgroup in a free group

is left relatively convex. The same result is valid, with some exceptions,

for compact surface groups. Maximal m-generated abelian subgroups in

right-angled Artin groups are left relatively convex.

If G is left orderable, then each free factor of G is left relatively convex

in G. More generally, for any graph of groups, if each edge group is left

relatively convex in each of its vertex groups, then each vertex group is

left relatively convex in the fundamental group; this generalizes a result

of Chiswell.

All maximal cyclic subgroups in locally residually torsion-free nilpo-

tent groups are left relatively convex.
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1.1 Outline

Notation 1.1 Throughout this chapter, let G be a multiplicative

group, and G0 be a subgroup of G. For x, y ∈ G, [x, y] := x−1y−1xy,

xy := y−1xy, and yx := yxy−1. For any subset X of G, we denote by

X±1 := X ∪X−1, by 〈X〉 the subgroup of G generated by X, by 〈XG〉

the normal subgroup of G generated by X, and let G/✁X✄ := G/〈XG〉.

When we write A ⊆ B we mean that A is a subset of B, and when we

write A ⊂ B we mean that A is a proper subset of B.

In Section 1.2, we collect together some facts, several of which first

arose in the proof of Theorem 28 of [5]. If G is left orderable, Bergman

calls G0 ‘left relatively convex in G’ if G0 is convex in G under some left

ordering of G, or, equivalently, the left G-set G/G0 has some G-invariant

order. Broadening the scope of his terminology, we shall say that G0 is

left relatively convex in G if the left G-set G/G0 has some G-invariant

order, even if G is not left orderable.

We give a criterion forG0 to be left relatively convex inG that general-

izes a famous theorem of Burns and Hale [7] and has essentially the same

proof. We deduce that if each noncyclic, finitely generated subgroup of G

maps onto Z2, then each maximal cyclic subgroup of G is left relatively

convex in G. Thus, if F is a free group and C is a maximal cyclic sub-

group of F , then F/C has an F -invariant order; this extends the result of

Duncan and Howie [15] that a certain finite subset of F/C has an order

that is respected by the partial F -action. Louder and Wilton [21] used

the Duncan–Howie order to prove Wise’s conjecture that, for subgroups

H and K of a free group F , if H or K is a maximal cyclic subgroup

of F , then
∑

HxK∈H\F/K rank(Hx ∩K) ≤ rank(H) rank(K). They also

gave a simple proof of the existence of a Duncan–Howie order; translat-

ing their argument from topological to algebraic language led us to the

order on F/C. More generally, we introduce the concept of n-indicability

and use it to show that each maximal m-generated subgroup of a free

group is left relatively convex.

In Section 1.3, we find that the main result of [13] implies that, for

any graph of groups, if each edge group is left relatively convex in each

of its vertex groups, then each vertex group is left relatively convex

in the fundamental group. This generalizes a result of Chiswell [8]. In

particular, in a left-orderable group, each free factor is left relatively

convex.

One says that G is discretely left orderable if some infinite (maximal)
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Left Relatively Convex Subgroups 3

cyclic subgroup of G is left relatively convex in G. Many examples of

such groups are given in [20]; for instance, it is seen that among free

groups, braid groups, surface groups, and right-angled Artin groups, all

the infinite ones are discretely left orderable. In Section 1.4, we show

that all maximal cyclic subgroups are left relatively convex in right-

angled Artin groups and in compact surface groups that are not the

Klein-bottle group. More generally, we show that, with some exceptions,

each maximal m-generated subgroup of a compact surface group is left

relatively convex, and each maximal m-generated abelian subgroup of a

right-angled Artin group is left relatively convex.

At the end, in Section 1.5, we show that all maximal cyclic subgroups

in locally residually torsion-free nilpotent groups are left relatively con-

vex.

1.2 Left Relatively Convex Subgroups

Definition 1.2 Let X be a set and R be a binary relation on X; thus,

R is a subset of X ×X, and ‘xRy’ means ‘(x, y) ∈ R’. We say that R

is transitive when, for all x, y, z ∈ X, if xRy and yRz, then xRz, and

here we write xRyRz and say that y fits between x and z with respect

to R. We say that R is trichotomous when, for all x, y ∈ X, exactly

one of xRy, x = y, and yRx holds, and here we say that the sign of

the triple (x,R, y), denoted sign(x,R, y), is 1, 0, or −1, respectively. A

transitive, trichotomous binary relation is called an order. For any order

< on X, a subset Y of X is said to be convex in X with respect to < if

no element of X−Y fits between two elements of Y with respect to <.

Now suppose that X is a left G-set. The diagonal left G-action on

X ×X gives a left G-action on the set of binary relations on X. By a

binary G-relation on X we mean a G-invariant binary relation on X,

and by a G-order on X we mean a G-invariant order on X. If there

exists at least one G-order on X, we say that X is G-orderable. If X

is endowed with a G-order, we say that X is G-ordered. When X is G

with the left multiplication action, we replace ‘G-’ with ‘left’, and write

left order, left orderable, or left ordered, the latter two being hyphenated

when they premodify a noun.

Analogous terminology applies for right G-sets.

Definition 1.3 For K ≤ H ≤ G, we recall two mutually inverse

operations. Let x, y ∈ G.
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If < is a G-order on G/K with respect to which H/K is convex

in G/K, then we define an H-order <bottom on H/K and a G-order <top

on G/H as follows. We take <bottom to be the restriction of < to H/K.

We define xH <top yH to mean (∀h1, h2 ∈ H)(xh1K < yh2K). This re-

lation is trichotomous since xH <top yH holds if and only if we have

(xH �= yH) ∧ (xK < yK); the former clearly implies the latter, and,

when the latter holds, K < x−1yK, and then, by the convexity of H/K

in G/K, h1K < x−1yK, and then y−1xh1K < K, y−1xh1K < h2K,

and xh1K < yh2K. Thus, <top is a G-order on G/H.

Conversely, if <bottom is an H-order on H/K and <top is a G-order on

G/H, we now define a G-order < on G/K with respect to which H/K

is convex in G/K. We define xK < yK to mean

(xH <top yH) ∨
(

(xH = yH) ∧ (K <bottom x−1yK)
)

.

It is clear that < is a well-defined G-order on G/K. Now suppose that

xK ∈ (G/K)− (H/K). Then xH �= H. If xH <top H, then xK < hK,

for all h ∈ H, and similarly if H <top xH. Thus, H/K is convex in G/K

with respect to <.

In particular, G/K has some G-order with respect to which H/K

is convex in G/K if and only if H/K is H-orderable and G/H is G-

orderable. Taking K = {1} and H = G0, we find that the following are

equivalent, as seen in the proof of Theorem 28 (vii)⇔(viii) of [5]:

(1.3.1) G has some left order with respect to which G0 is convex in G,

(1.3.2) G0 is left orderable, and G/G0 is G-orderable,

(1.3.3) G is left orderable, and G/G0 is G-orderable.

This motivates the terminology introduced in the following definition,

which presents an analysis similar to one given by Bergman in the proof

of Theorem 28 in [5]. Unlike Bergman, we do not require that the group

G is left-ordered.

Definition 1.4 Let Ssg(G) denote the set of all the subsemigroups of

G, that is, subsets of G closed under the multiplication. We say that the

subgroup G0 of G is left relatively convex in G when any of the following

equivalent conditions hold:

(1.4.1) the left G-set G/G0 is G-orderable,

(1.4.2) the right G-set G0\G is G-orderable,

(1.4.3) there exists some G+ ∈ Ssg(G) such that G±1
+ = G−G0; in this

event, G+ ∩G−1
+ = ∅ and G0G+ = G+G0 = G0G+G0 = G+,
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(1.4.4) for each finite subset X of G−G0, there exists S∈Ssg(G) such

that X⊆S±1⊆G−G0.

We then say also that G0 is a left relatively convex subgroup of G. One

may also use ‘right’ in place of ‘left’.

Proof of equivalence (1.4.1)⇒(1.4.3). Let < be a G-order on G/G0, and

set

G+ := {x ∈ G | G0 < xG0};

then G−1
+ = {x ∈ G | G0 < x−1G0} = {x ∈ G | xG0 < G0} and

G0 = {x ∈ G | G0 = xG0}. Hence, G±1
+ = G−G0. If x, y ∈ G+, then

G0 < xG0, G0 < yG0 and G0 < xG0 < xyG0; thus xy ∈ G+. Hence,

G+ ∈ Ssg(G).

Now consider any G+ ∈ Ssg(G) such that G±1
+ = G−G0. Then G+ ∩

G−1
+ = ∅, since G+ is a subsemigroup which does not contain 1. Also,

G0G+ ∩ G0 = ∅, since G+ ∩ G−1
0 G0 = ∅, while G0G+ ∩G−1

+ = ∅, since

G0∩G
−1
+ G−1

+ = ∅. Thus G0G+ ⊆ G+, and equality must hold. Similarly,

G+G0 = G+.

(1.4.3)⇒(1.4.1). Let x, y, z ∈ G. We define xG0 < yG0 to mean that

(xG0)
−1(yG0) ⊆ G+, or, equivalently, that x−1y ∈ G+. Then < is a

well-defined binary G-relation on G/G0. Since x−1y belongs to exactly

one of G+, G0, and G−1
+ , we see that < is trichotomous. If xG0 < yG0

and yG0 < zG0, then G+ contains x−1y, y−1z, and their product, which

shows that xG0 < zG0. Thus < is a G-order on G/G0.

(1.4.2)⇔(1.4.3) is the left-right dual of (1.4.1)⇔(1.4.3).

(1.4.3)⇒(1.4.4) with S = G+.

(1.4.4)⇒(1.4.3). Bergman [5] observes that an implication of this type

follows easily from the Compactness Theorem of Model Theory; here,

one could equally well use the quasi-compactness of {−1, 1}G−G0 , which

holds by a famous theorem of Tychonoff [27]. The case of this implica-

tion where G0 = {1} was first stated by Conrad [9], who gave a short

argument designed to be read in conjunction with a short argument of

Ohnishi [25]. Let us show that a streamlined form of the Conrad–Ohnishi

proof gives the general case comparatively easily.

Let 2G−G0 denote the set of all subsets ofG−G0. For eachW ∈ 2G−G0 ,

let Fin(W ) denote the set of finite subsets of W , and 〈〈W 〉〉 denote

the subsemigroup of G generated by W . For each ϕ ∈ {−1, 1}G−G0 and

x ∈ G−G0, set ϕ̃(x) := xϕ(x) ∈ {x, x−1}. Set

W :=

{

W ∈ 2G−G0 |
(

∀W ′∈ Fin(W )
) (

∀X∈ Fin(G−G0)
)

(

∃ϕ ∈ {−1, 1}G−G0

)

(

G0 ∩
〈〈

W ′ ∪ ϕ̃(X)
〉〉

= ∅
)

}

.
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It is not difficult to see that (1.4.4) says precisely that ∅ ∈ W. Also, it

is clear that

(∀W ∈ 2G−G0)
(

(

W ∈ W
)

⇔
(

Fin(W ) ⊆ W
)

)

.

It follows thatW is closed in 2G−G0 under the operation of taking unions

of chains. By Zorn’s Lemma, there exists some maximal elementW ofW.

We shall prove that 〈〈W 〉〉±1 = G−G0, and thus (1.4.3) holds. By tak-

ing X = ∅ in the definition of ‘W ∈ W’, we see that 〈〈W 〉〉 ⊆ G−G0, and

thus W±1 ⊆ 〈〈W 〉〉±1 ⊆ G−G0. It remains to show that G−G0 ⊆ W±1.

Since W is maximal in W, it suffices to show that

(∀x ∈ G−G0)
(

(W ∪ {x} ∈ W) ∨ (W ∪ {x−1} ∈ W)
)

.

Suppose then W ∪ {x} �∈ W. Thus, we may fix a Wx∈ Fin(W ) and an

Xx∈ Fin(G−G0) such that
(

∀ϕ ∈ {−1, 1}G−G0

)

(

G0 ∩
〈〈

Wx ∪ {x} ∪ ϕ̃(Xx)
〉〉

�= ∅
)

.

Let W ′∈ Fin(W ) and X∈ Fin(G−G0). As W ∈ W, there exists a func-

tion ϕ ∈ {−1, 1}G−G0 such that

G0 ∩
〈〈

Wx ∪W ′ ∪ ϕ̃({x} ∪Xx ∪X)
〉〉

= ∅.

Clearly, ϕ̃(x) �= x. Thus, ϕ̃(x) = x−1 and

G0 ∩
〈〈

W ′ ∪ {x−1} ∪ ϕ̃(X)
〉〉

= ∅.

This shows that W ∪ {x−1}∈ W, as desired.

The Burns–Hale theorem [7, Theorem 2] says that if each nontriv-

ial, finitely generated subgroup of G maps onto some nontrivial, left-

orderable group, then G is left orderable. The following result, using

a streamlined version of their proof, generalizes the Burns–Hale theo-

rem in two ways. Namely, the scope is increased by stating the result

for an arbitrary subgroup G0 (in their case G0 is trivial) and by im-

posing a weaker condition (in their case 〈X〉 is required to map onto a

left-orderable group).

Theorem 1.5 If, for each nonempty, finite subset X of G−G0, there

exists a proper, left relatively convex subgroup of 〈X〉 that includes 〈X〉∩

G0, then G0 is left relatively convex in G.

Proof For each finite subset X of G−G0, we shall construct an element

SX ∈ Ssg(〈X〉) such that X ⊆ S±1
X ⊆ G−G0, and then (1.4.4) will hold.

We set S∅ := ∅. We now assume that X �= ∅. Let us write H := 〈X〉.

By hypothesis, we have an H0 such that H ∩G0 ≤ H0 < H and H0 is

left relatively convex in H. Notice that H−H0 ⊆ H−(H ∩G0) ⊆ G−G0

and X ∩H0 ⊂ X, since X � H0. By induction on |X|, we can find an

SX∩H0
∈ Ssg(〈X ∩H0〉) such thatX ∩H0 ⊆ S±1

X∩H0
⊆ G−G0. By (1.4.3),

since H0 is left relatively convex in H, we have an H+ ∈ Ssg(H) such
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Left Relatively Convex Subgroups 7

that H0H+H0 = H+ and H±1
+ = H−H0. We set SX := SX∩H0

∪H+.

Then SX ∈ Ssg(H), since SX∩H0
⊆ H0 and H0H+H0 = H+. Also,

X = (X ∩H0) ∪ (X−H0) ⊆ S±1
X∩H0

∪ (H−H0) = S±1
X ⊆ G−G0.

Remark Theorem 1.5 has a variety of corollaries. For example, for any

subset X of G, we have a sequence of successively weaker conditions:

〈X ∪G0〉/✁G0✄ maps onto Z; 〈X ∪G0〉/✁G0✄ maps onto a nontriv-

ial, left-orderable group; there exists a proper, left relatively convex sub-

group of 〈X ∪G0〉 that includes G0; and, there exists a proper, left

relatively convex subgroup of 〈X〉 that includes 〈X〉 ∩ G0. The last im-

plication follows from the following fact. If A and B are subgroups of G

and A is left relatively convex in G, then A ∩B is left relatively convex

in B.

Definition 1.6 A group G is said to be n-indicable, where n is a

positive integer, if it can be generated by fewer than n elements or it

admits a surjective homomorphism onto Zn.

A group G is locally n-indicable if every finitely generated subgroup

of G is n-indicable.

Note that some authors require in the definition of indicability that G

admits a surjective homomorphism onto Z, while here 1-indicable means

that G is trivial or maps onto Z, 2-indicable means that G is cyclic or

maps onto Z2, and so on.

Example 1.7 Free abelian groups of any rank and free groups of any

rank are locally n-indicable for every n.

The notion of n-indicability is related to left relative convexity through

the following corollary of Theorem 1.5.

Corollary 1.8 Let n ≥ 2. If G is a locally n-indicable group then each

maximal (n−1)-generated subgroup of G is left relatively convex in G. In

particular, in a free group, each maximal cyclic subgroup is left relatively

convex.

Proof If the subgroup G0 is a maximal (n − 1)-generated subgroup of

G, then, for any nonempty, finite subset X of G−G0, 〈X ∪G0〉 maps

onto Zn, and 〈X ∪G0〉/✁G0✄ maps onto Z.

The idea of Corollary 1.8 can be used to show that certain maximal

κ-generated abelian subgroups are left relatively convex, where κ is some

cardinal.
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Definition 1.9 A group G is nasmof if it is torsion-free and every

nonabelian subgroup of G admits a surjective homomorphism onto Z∗Z.

Example 1.10 The class of nasmof groups contains free and free

abelian groups and it is closed under taking subgroups and direct prod-

ucts. Residually nasmof groups are nasmof, and in particular residually

free groups are nasmof. Every nasmof group G is 2-locally indicable, and

by Corollary 1.8, maximal cyclic subgroups are left relatively convex.

Corollary 1.11 Let κ be a cardinal. If G is a nasmof group then each

maximal κ-generated abelian subgroup of G is left relatively convex in G.

In particular, in a residually free group, each maximal κ-generated

abelian subgroup is left relatively convex.

Proof Let G0 be a maximal κ-generated abelian subgroup of G and

X a nonempty finite subset of G−G0. By maximality, if 〈X ∪G0〉 is

abelian, then it is not κ-generated and κ must be a finite cardinal. In

this case, 〈X ∪G0〉 is a finitely generated, torsion-free abelian group of

rank greater than κ. If 〈X ∪G0〉 is nonabelian, then it maps onto Z ∗ Z.
In both cases, 〈X ∪G0〉/✁G0✄ maps onto Z.

1.3 Graphs of Groups

Definition 1.12 By a graph, we mean a quadruple (Γ , V, ι, τ) such that

Γ is a set, V is a subset of Γ , and ι and τ are maps from Γ−V to V . Here,

we let Γ denote the graph as well as the set, and we write VΓ := V and

EΓ := Γ−V , called the vertex-set and edge-set, respectively. We then

define vertex, edge ιe
e
−→−τe, inverse edge τe

e−1

−−→−ιe, path

(1.12.1) v0
e
ǫ1

1−−→− v1
e
ǫ2

2−−→− v2
e
ǫ3

3−−→− · · ·
e
ǫn−2

n−2

−−−−→− vn−2

e
ǫn−1

n−1

−−−−→− vn−1
eǫn
n−−→− vn, n ≥ 0,

reduced path, and connected graph in the usual way. We say that Γ is

a tree if V �= ∅ and, for each (v, w) ∈ V × V , there exists a unique

reduced path from v to w. The barycentric subdivision of Γ is the graph

Γ (′) such that VΓ (′) = Γ and EΓ (′) = EΓ × {ι, τ}, with e
(e,ι)
−−−→− ιe and

e
(e,τ)
−−−→− τe.

We say that Γ is a left G-graph if Γ is a left G-set, V is a G-subset of

Γ , and ι and τ are G-maps. For γ ∈ Γ , we let Gγ denote the G-stabilizer

of γ.

Let T be a tree. A local order on T is a family (<v | v ∈ VT ) such that,
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for each v ∈ VT , <v is an order on linkT (v) := {e ∈ ET | v ∈ {ιe, τe}}.

By Theorem 3 of [13], for each local order (<v | v ∈ VT ) on T , there

exists a unique order <
T

on VT such that, for each reduced T -path

expressed as in (1.12.1),

sign(v0, <T
, vn) = sign

(

0, <
Z
,

n
∑

i=1

ǫi +
n−1
∑

i=1

sign(ei, <vi , ei+1)
)

,

where the sign notation is as in Definition 1.2. We then call <
T
the asso-

ciated order,
∑n

i=1 ǫi the orientation-sum, and
∑n−1

i=1 sign(ei, <vi
, ei+1)

the turn-sum. If T is a left G-tree, then, for any G-invariant local order

on T , the associated order on VT is easily seen to be a G-order.

Theorem 1.13 Suppose that T is a left G-tree such that, for each

T-edge e, Ge is left relatively convex in Gιe and in Gτe. Then, for each

t ∈ T , Gt is left relatively convex in G. If there exists some t ∈ T such

that Gt is left orderable, then G is left orderable. Moreover, if the input

orders are given effectively, then the output orders are given effectively,

Proof We choose one representative from each G-orbit in VT . For each

representative v0, we choose an arbitrary order on the set of Gv0
-orbits

Gv0
\ linkT (v0), and, within each Gv0

-orbit, we choose one representative

e0 and a Gv0
-order on Gv0

/Ge0 , which exists by (1.4.1); since our Gv0 -

orbit Gv0e0 may be identified with Gv0
/Ge0 , we then have a Gv0

-order

on Gv0
e0, and then on all of linkT (v0) by our order on Gv0

\ linkT (v0).

We then use G-translates to obtain a G-invariant local order on T . This

in turn gives the associated G-order on VT as in Definition 1.12. In

particular, for each T-vertex v, we have G-orders on Gv and G/Gv.

By (1.4.1), Gv is then left relatively convex in G. For each T-edge e,

Ge is left relatively convex in Gιe by hypothesis, and then Ge is left

relatively convex in G by Definition 1.3. Thus, for each t ∈ T , Gt is left

relatively convex in G.

By (1.3.2)⇒(1.3.3), if there exists some t ∈ T such that Gt is left

orderable, then G is left orderable.

Example 1.14 Let F be a free group and X be a free-generating set

of F . The left Cayley graph of F with respect to X is a left F -tree on

which F acts freely. Thus, the fact that free groups are left orderable

can be deduced from Theorem 1.13; see [13].

Bearing in mind that intersections of left relatively convex subgroups

are left relatively convex, we can generalize the previous example to the

case that a group acts freely on some orbit of n-tuples of elements of T .
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Corollary 1.15 Suppose that T is a left G-tree such that, for each

T-edge e, Ge is left relatively convex in Gιe and in Gτe. Suppose that

there exists a finite subset S of T with ∩s∈SGs = {1}, then G is left

orderable.

Definition 1.16 By a graph of groups (G,Γ ), we mean a graph with

vertex-set a family of groups (G(v′) | v′ ∈ VΓ (′)) and edge-set a family

of injective group homomorphisms (G(e)
G(e′)
−−−→ G(v) | e

e′
−→−v ∈ EΓ (′)),

where Γ is a nonempty, connected graph and Γ (′) is its barycentric

subdivision. For γ ∈ Γ (′), we call G(γ) a vertex group, edge group, or

edge map if γ belongs to VΓ , EΓ , or EΓ (′), respectively. One may think

of (G,Γ ) as a nonempty, connected graph, of groups and injective group

homomorphisms, in which every vertex is either a sink, called a vertex

group, or a source of valence two, called an edge group. We shall use the

fundamental group and the Bass–Serre tree of (G,Γ ) as defined in [26]

and [11].

Bass–Serre theory translates Theorem 1.13 into the following form.

Theorem 1.17 Suppose that G is the fundamental group of a graph of

groups (G,Γ ) such that the image of each edge map G(e)
G(e′)
−−−→ G(v) is

left relatively convex in its vertex group, G(v). Then each vertex group

is left relatively convex in G. If some vertex group is left orderable, then

G is left orderable. Moreover, if the input orders are given effectively,

then the output orders are given effectively.

Remark Theorem 1.17 generalizes the result of Chiswell that a group

is left orderable if it is the fundamental group of a graph of groups such

that each vertex group is left ordered and each edge group is convex in

each of its vertex groups; see Corollary 3.5 of [8].

The result of Chiswell is a consequence of Corollary 3.4 of [8], which

shows that a group is left orderable if it is the fundamental group of

a graph of groups such that each edge group is left orderable and each

of its left orders extends to a left order on each of its vertex groups.

(If, moreover, each edge group and vertex group is left ordered, and the

maps from edge groups to vertex groups respect the orders, then the

fundamental group has a left order such that the maps from the vertex

groups to the fundamental group respect the orders.) This applies to the

case of cyclic edge groups and left-orderable vertex groups.

Corollary 3.4 of [8] is, in turn, a consequence of Chiswell’s necessary

and sufficient conditions for the fundamental group of a graph of groups
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