Cambridge University Press & Assessment 978-1-108-43610-6 — Understanding Environmental Pollution Marquita K. Hill Index

More Information

Index

accidents and major spills coal ash dam failure, TVA, 331 coal ash, TVA, 171 coal slurries, Kentucky, 170 cvanide and metals into Danube, 7 Deepwater Horizon blowout, 2010, 210 Exxon Valdez, 210 cleanup using microbes, 308 impacts on wildlife, 210 Minamata Bay tragedy, 341 pesticides into Rhine, 7 Texas fertilizer explosion, 33 Tianjin China, cyanide explosion, 32 acid deposition Acid Deposition Monitoring Network, 128 high emission stacks, 123 history, 128 introduction, 119 Hubbard Brook Experimental Forest, 121 wet and dry aerosols, 123 acid deposition, acid precursors and their sources ammonia, 125 carbon dioxide, 123 fertilizer and livestock, 125 fossil fuel power plants, 125 SO₂ and NO_x, 122, 125 acid deposition, ill effects acid surface water, 124 Al solubilized, 122 aluminum toxicity, 121 basic soil protects from, 122 dying aquatic life, 124 dying forests, 123 Europe, 105, 125 fewer impacts in Asia, 126-127 haze affects visibility and health, 124 lost Ca and Mg, 121 material damage, 125 soil metal loss, 121 acid deposition, recovery from, 126-127 slow, 126 using lime, 127 acid deposition, reducing precursors ammonia, 126 cap and trade, 125 NO., 125, 126 SO₂, 125 acid deposition, transboundary transport SO, and NO, 123 aerosol. See global warming: aerosol aerosols, 92 dust major component of, 109

sizes of, 92 aflatoxin carcinogen, natural, 55 agriculture adverse impacts, 268 air pollutants categories, 91 gas vs. particulates, 92 primary and secondary, 90 air pollutants, criteria black carbon, PM, 5, 92 carbon monoxide, 98-100 an introduction, 90, 98, 328 concerns, 99 reducing levels, 100 sources, 99 ground-level ozone, 96-98 precursors of, 96 health impacts, no safe dose, 96, 98 ongoing problems, 98 reducing levels, 97 sources, 97 toxicity compared to particulates, 96 introduction, 96 lead, 102 an introduction, 102 reducing, 102 sources, 102 nitrogen oxides, NOx, 101-102 impacts, 101 sources, 102 ozone an introduction, 91 damage to plants, 97 dangerous pollutant, 101 particulate an introduction, 113 atmospheric loading, 91 black carbon, 91 PM₂₅ poses special health issues, 92 haze, 94 haze, explained, 101 health impacts of particulates, 93 non-health damages, 93 PM and disease introduction, 100 PM and international efforts, 95 PM and workplaces, 93 reducing PM quantities, 90 sizes, coarse, fine, ultrafine, 92 sources 94 sulfur dioxide (SO₂), an introduction, 174 SO₂ and acid particulates, concerns, 100

SO₂ and its aerosols, 100 SO₂ sources, 101 SO₂, reducing emissions, 101 SO₂, why important, 90 air pollutants, criteria and others long range transboundary air pollution, 106 air pollutants, HAPs comparison to criteria pollutants, 104 examples, 103 exposure to, 104 introduction, 103 metal HAPs, why of concern, 104 no individual standards for HAPs, exception, 104 PAHs bioavailability, 105 in environment, 105 introduction, 105 sources, 104, 105 exposure to, 105 fate of, 105, 141 reducing emissions, 105 reducing mercury emissions, 104 some HAPs indoor air pollutants, 104 toxicity, 105 why of concern, 104 why so named, 103 air pollutants, VOCs, 103 introduction, 102 relationship to ozone, 103 sources, 103 why regulated, 103 air pollution, global atmospheric brown clouds (ABCs), 107 described, 108 reducing, 108 sources of, 108 China building many coal plants, 107 India vs. China, 106 millions of children badly impacted, 106 ozone deaths up sharply, 106 PM₂₅ and ozone, 106 sand and dust storms (SDSs), an introduction, 108-111 SDS, composition of, 109 SDS, how to reduce, 110 SDS, one benefit, 109 SDS, human caused, 109 pathogenic microbes, 110 transboundary, 108 UN Convention to Combat desertification, 110 State of Global Air, an introduction, 106

Cambridge University Press & Assessment 978-1-108-43610-6 — Understanding Environmental Pollution Marquita K. Hill Index

More Information

440	Index		
	air pollution, transboundary	anvironmental justice 70	configuration 420
	atmospheric brown clouds, 107–108	environmental justice, 79 chemical risk	configuration, 420 electrons, 420
	ammonia, 94	BPA, 53	electrostatic forces, 422
	Anthropocene, 2	hazard \times exposure, 68	elements, 418
	signal event, 20	high-risk chemicals, 27	deuterium, 420
	antidote, antagonistic action, 49	multiple chemicals, 27, 49	electronegative, 420
	Aral Sea, direly impacted, 110	possible impact, 49	electropositive, 420
	Arrhenius, Svante, 134	risk vs. hazard, 27	hydrogen, 421
	arsenic	tested one at a time, 49	lithium, 419
	poisoning, 5	tiny amounts, 4	noble, 420, 421
	asbestos	whole effluent toxicity, 49	tritium, 420
	carcinogen, natural, 55	chemical risk assessment	introduction
	exposure, 5	factors of 10, why, 74	ionic bonds, 422
	atmospheric deposition. See acid deposition	four-step process, 73	isotopes
	aerosol loading, 120	most highly exposed population, 75	definition, 420
	DDT and PCBs, 120	multiple chemicals, 75, 76	environmental chemistry, 420
	automobiles, design for disassembly, 277	risk characterization, 75	mercury, 340
		no observed adverse level, 81	oxygen, 420
	bauxite ore, aluminum, 275	risk characterization, BPA, 75	radioactive, 420
	bees	safety factor, 73	stable, 420
	impacts on population, 358	why do, 73	molecular mass, 422
	wild bee pollinators, 359	worst-case assumptions, 75	molecular mass, calculating, 422
	bioaccumulation, definition, 50	chemical risk reduction	neutralization, 427
	biomagnification, definition, 50	actions taken, 76	oxidation and reduction reactions, 426
	biodegradation, 339	EPA's IRIS system, 77	oxidation by losing electrons, 425
	when process overwhelmed, 9	EU's REACH program, 77	oxidation of hydrocarbons, 424
	biosolids. See wastewater	international efforts, 77	periodic table, 419
	treatment: sludge, how used	managers, who are they?, 76	pH definition, 427
	bisphenol A, hard plastic, 53	public pressure, 76	radical, free, 424
	blue baby syndrome, 246	using law, 77	radical, hydroxyl, 424
	BPTs and POPs	chemicals	redox reactions, 425
	PCBs cycling in environment, 321	acids, 427	stable octet, 420
	POPs and Stockholm Convention,	strong, 427	stoichiometry, 425
	319-320	weak, 427	subatomic particles, 418
		acids and bases, 427	valence electrons, 420
	calcium oxide (lime), 328	bases, 427	vanishing zero, 31
	cancer, 54–57	biochemicals, natural and synthetic, 423	chemistry, analytical
	cancer villages, 56	combustion, incomplete products,	sensitivity of, 10
	causes of, PM _{2.5} involved, 57	examples, 426	children and infants
	China, 55	formula as representations of, 418	avoiding home poisonings, 388
	complete carcinogen, 55	inorganic, definition, 423	exposure to
	DNA copying errors, 55	introduction	air pollutants, protective standards, 90
	genotoxic, mutate DNA, 55	organic, 423	aspirin, 44
	initiating and promoting, 55	organic, synthetic, 423	CDC study of exposure, 69
	introduction, 54	organometallic, 423	cigarette smoke, 380
	liver cancer, 57	radioactive, types of radiation, 420	contaminated fish, neglecting fish advi-
	risk of, increasing, 56	reactive	sories, 342
	carbon isotope, 138	example, fluorine atom, 421	contaminated soil, eating, 75
	carbon, black, 2	reactive, lithium, 420, 421	electronic waste (e-waste), 61
	Carson, Rachel	chemistry	excess vitamin A, 44
	Cilant Chains 250	atomic mass 418	fire retardants 322

atomic mass, 418

atomic number, 419

chemical bonds, 421

covalent bonds, 421

Avogadro's constant, 425

protons and neutrons, 418

balancing chemical reactions, 425

combustion, incomplete products, 426

atomic nucleus

atoms, 418

electron

Silent Spring, 356

chemical exposure, 27

CDC study, 68

and scrotal cancer, 70

chemical pollution

Percival Pott

safety, 68

body burden of xenobiotics, 69

epidemiologic studies, 70

meaning of results, 70

chemical paradoxes, 43–44

fire retardants, 322

methylmercury, 50

364

phthalates, 53

neurotoxins, prenatal, 58

ozone, susceptibility, 96

nitrate in drinking water, 227

PCBs in contaminated fish, 322

pesticides, less-developed countries,

fluoride in drinking water, 252

indoor carpets with contaminants, 390

More Information

polluted air, reduced lung capacity, 7 toxicant, children's greater exposure, 48 toxicants, sensitivity may be greater, 48 UV-B radiation, 199 water-borne disease, 246 indoor air pollutants, 377 smoke in poorer countries, 386 food wastage, meanwhile malnutrition, 268 handling household hazardous waste, 267, 389 hazardous product alternatives, 389 hazardous products, protection from, 387 keep out of children's reach, 388 immune system less developed, 47 lead blood lead levels, 69, 336 blood levels needing intervention, 250 childhood exposure, 335 eating leaded paint, 62 exposure, no safe level, 69 legacy lead in homes, 389 living near lead smelter, 303 water pipes, 102 less-developed countries greater risk, 48 greater smoke exposure, 386 pesticide exposure train parents in IPM, 365 unsafe drinking water, 255 legacy mercury, 345 living near hazardous waste sites, 304 pesticide exposure, migrant workers, 54 exposure, Yaqui children, 54 exposure, safety factors, 78, 361 heavy exposure to spraying, 53 lawns treated with, 359 reducing pesticide risk, 78 protecting from, 390 Poison Prevention Act, 388 polluted air and reduced lung capacity, 106 sulfonamide poisonings, 74 toxicants, safety factors, 74 chloracne, 47 China and a circular economy China and industrial ecology, 398 China looking at tools for circular economy, 398 China's High-Tech Zone, 400 leads in mitigating SDSs, 110 circular economy (CE) Advanced Life Support System, 400 Amazon and the Closed-Loop Fund, 399 biodegradable materials, 400 closed -loop system, 397 cradle to cradle, 400 efficient recycling necessary, 273 EU action for a CE, 278 factor-10 efficiency in resource use, 278, 401

factor-10, computers fulfill criterion, 401 factor-10, dematerialization, 398 how EU works toward, 398 how Renault works toward, 399 industrial ecology, 397, 400 Japan tracks material flows, 398 more value, less waste, 397 needs highly recycled materials, steel, 399 other terms that describe, 397 personal actions, 401 recovering waste raw materials, 311 reject linear economy, 396 remanufacturing, 399 renewable energy, 412 similar terms, 38 steel recycling important to, 399-400 sustainable food production, 412 take back, 269 tools needed to reach CE, 396 umbrella term, 400 wastes and by-products as nutrients, 397 wastes to resources, 37 wastewater, value in, 220 Wastewater, the Untapped Resource, 259 zero waste city efforts, 403 corporate efforts, 402-403 countries working toward, 404 introduction, 401 personal actions, 401 zero waste movement, 401 zero waste network, e.g., Zero Waste Europe, 401 circular economy, Earth's boundaries operating within, 411-412 circular economy, tools used design for the environment (DfE), 270, 277, 406 DfE examples, 270 DfE to develop recyclables, 278 EPR, extended producer responsibility, 269. See also product stewardship making it work, 269 popular in Japan, 270 should recover product components, 270 used worldwide, 270 green chemistry 12 principles, 409 designing chemical products, 409 doing it nature's way, 409 examples, 409-410 make recycling simpler, 410 natural systems, work to use, 411 recycling rare earths, 410 LCA how it's done and information provided, 405 lifecycle assessment (LCA), 277, 405 product stewardship. See EPR and take-back laws

product stewardship and extended producer responsibility, 407 remanufacturing convertibility, 407 remanufacturing metal products, 271 remanufacturing. See also circular economy, tools used: design for disassembly: DfD examples servicizing, 408 chemical products, 408 Consumer Product Safety Commission (CPSC), 379 corporate use of, 408 dead zone Gulf of Mexico, 228 Delhi, most polluted capitol, 106 dental caries why fluoride added to water, 252 design for the environment, DfE. See also WMH: pollution prevention development leads to greater nonpoint source runoff, 212 drinking water bottled, 254 drinking water disinfection alternative disinfectants, 247 chlorine chemicals, 247 disinfection by products (DBPs), 247 how reduce need for, 247 reducing DBPs, 247 trihalomethane byproducts (THMs), 247 drinking water, municipal contaminant examples, 245 introduction, 243 maximum contaminant level (MCL), 245 nitrate, reactive nitrogen, 245 potential chronic effects, 243 Safe Drinking Water Act (SDWA), 243 treatment, 245 drinking water safety alternative toilets, 256 arsenic developed countries, 78 health impacts, 249 many natural sources, 249 mass poisoning, 247 clean water, a medical milestone, 254 emerging contaminants, 253 removing, 253 triclosan, 253 fluoridated water, contaminant or safe?, 252 fluoride at high levels, 252 future, revolutionize wastewater management, 259 important problems in drinking water safety, 252 lead corroding pipes, 251 description of Flint crisis, 250-251 Flint and environmental justice, 249

441

Cambridge University Press & Assessment 978-1-108-43610-6 — Understanding Environmental Pollution Marquita K. Hill Index

More Information

٦

drinking water safety (cont.)	coal wastes, 170	pesticide standards, special for child
Flint correcting problem, 251	is clean coal possible?, 169–171	78
Flint crisis develops, 249	lifecycle of coal, 169	epidemiology, meaning and use, 70–72
introduction to, 249	mining and health, 170	cluster, meaning of, 71
Legionnaire's disease in Flint, 251	geothermal	community studies, 71
poisoning by lead defined, 250	renewable, 182	confounding factors, 71
nitrate and methemoglobin, 246	what is it, 181	and EMF exposure, 72
pathogens, 246	hydroelectric is sometimes renewable, 183	folic acid study, 72
Legionella, 246	hydrogen fuel-cell	judging studies, 72
sources, 246	nuclear power	limits of, 72
well and irrigation water, 246	greatly lowers carbon pollution, 185	meta-analysis, 71
private wells, 247	pro and con, 184–185	vitamin A study, 72
problems with drinking water, 252–253	introduction, 184	epigenetic factors
tainted with many contaminants, 253	safety, 185	changes in DNA, 57
toilets, 256–257	introduction	epoch, 2
Wastewater, the Untapped Resource, 259	renewables	extinction
drinking water safety, less-developed coun-	end-of-life waste, 180	sixth event, 2
tries, 255	international use of, 179	
an improved source, 257	solar	fishable and swimmable, 30
arsenic, ongoing poisoning, 248	concentrated solar, 175	Flint, Michigan
billions lack clean water, 254	introduction, 174	lead drinking-water crisis, 249
chlorination, 258	life cycle of photovoltaics, 176–177	fluoride
exposure to pathogens, 255	passive, 175	in drinking water, 252
fecal pathogens, 258	recycling panels, 181	fluorosis, 252
home water treatment, 257	Solar Scorecard, 176	
household water treatment and safe	ultrapure polysilicon, 177	gasoline
storage, 257	tidal, 177	hydrocarbons and composition, 5
pathogens, 254–255	waste biomass, 169, 180-181, 182, 184	global warming issues and terminology
point of use (POU), 257–258	wind	adaptation in the Netherlands, 152, 1
purification, 257	introduction, 177	adaptation to warming and its impac
safely recycling feces, 258	life cycle of wind, 178	342
sanitation and pathogens, 254	offshore, 177	adapting to rising sea, 152
toilets and water, 258	onshore, 177	Emissions Gap, 155
use of EcoSan, 258	wood183	greenhouse warming potential, 135
water scarcity, 255	can grow wood sustainably, 182	helping emerging nations to adapt, 1
world's dearth of, 242	Europe uses a loophole, 183	ice core studies of past conditions,
drinking water standards	when is wood a renewable fuel?	137–138
lead standard, 250	energy use	impact of population growth, 148
pathogen standard, 245	efficiency at home, 172	major solutions being proposed, 1
primary standard, 243	efficient use in industry, 172–173	National Climate Assessment, 145
secondary, 251	using motor vehicles	oceans
secondary, purpose of, 251	adverse impacts, 168	carbon dioxide sink, 139
drinking water, bottled	green score card, 169	Paris Agreement, 155
why people drink, 254	lifecycle of, 168	storing warmth, 139
	lowering impact, 168	reversing warming, 157
endocrine disruptors, 51–53	very low emission, 169	terminology used, 156
energy, sources of, 179	using waste energy, 173	global warming and aerosols
electric grid	environmental catastrophe	aerosol, 143
introduction, 178	dust bowl, 11	aerosol, compare to a gas, 143
batteries	environmentally preferable products,	albedo of, 142
handled five sources of energy, 179	purchasing, 271	black carbon, 136, 144
lifecycle of batteries, 178	EPA standards, air pollutants	Arctic warming, 144
major grid rule, 178	criteria, each has standard, 90	reducing black carbon, 145
recycling batteries, 181	HAPs, most lack individual standards, 90	warming aerosol, 143
storing energy, 178	HAPs exception, Mercury and Air Toxics	cooling aerosol, sulfate, 143, 144
storing energy, controversy, 178	Standards, 90	global warming and solar engineerin
fossil fuel	health-based standards, 90	with aerosols
acid gas emissions, 154–155, 156, 170	EPA standards for other pollutants	global warming and greenhouse gase
ash recycling, 171	drinking water, primary and secondary	(GHGs)
building new plants, 171	standards, 243	carbon dioxide (CO ₂), 136
carbon capture and storage, 171	hazardous waste standards, 304	current aronnae (00 ₂), 150

Cambridge University Press & Assessment 978-1-108-43610-6 — Understanding Environmental Pollution Marquita K. Hill Index

More Information

carbon dioxide sources, 137-138 carbon dioxide, reducing, 139 halogens, 142 methane, 140 nitrous oxide, 142 ozone, 141 water vapor, 142 global warming impacts changing the seasons, 147-148 coastal flooding, 147 melting ice and glaciers, 145 ocean temperature rising, 146 permafrost thawing, 146 sea-level rising, 146 storm intensity increasing, 147 worse-case possibilities, 148 grasshopper, global distillation, 8 green chemistry basics of green chemistry, 409 green dot trademark, 275 green roof, 223 greenfield undeveloped land, 306 Gulf of Mexico dead zone, 228 Haber-Bosch process produces reactive nitrogen (fixed nitrogen), 224 synthetic fertilizer, 225 hazardous products, home alternatives to, 389 asbestos, legacy hazard, 389 concerns relating to, 387 combustible, 387 corrosive, 387 emergency room visits, 387 flammable, examples, 387 gasoline, multiple hazards, 387 hazardous characteristics, 387-388 Hazardous Substances Act, 388 reactive, examples, 387 toxic, examples, 387 labeling of products, 388 lead paint, legacy hazard, 389 legacy hazards, 389 more than one hazard, 387 Read The Label First campaign, 388 recommendations to follow when using, 388 reducing exposure to, 388-389 signal words that indicate, 387 Toxics Use Reduction (TUR), 388 hazardous products, household hazardous waste (HHW), 389-390 community collection program, 390 how handle specific hazardous wastes, 390 how to reduce HHW, 389 introduction, 389 pesticides, how reduce use, 390 hazardous products, principal hazard

introduction, 388 word definitions, 388 hazardous waste, business and industrial introduction, 298 Basel Convention objectives, 308 characteristics, 298 cradle to grave, tracking, 300 EPA exposure standards, 304 green chemistry reducing generation, 309 international transport. See Basel Convention managing HW using WMH's four steps, 298 recycling methods, 299 stabilize before disposal, 300 treatments for, 300 who generates hazardous waste?, 298 hazardous waste sites, 299 definition, 301 describing brownfield, 306 funding cleanup, 306 health risk, 304-305 if imminent hazards, 306 lead and cadmium are common, 332 living close to HW site, 305 many thousands of abandoned mining sites, 303, 329 mining sites, abandoned, but "forever" cleanup, 330 underground storage tanks, 301 hazardous waste treatment bioremediation, 307 metal cleanup, 307 methods, 300 haze PM2.5, 94, 101 heat islands, 157 Holocene, 134 hormones estrogens, androgens, others, 53 hydroxyl radical, 9, 94 atmospheric cleanser, 141 destroy VOCs, 103

indoor air pollutants attached garages as sources, 380 biological contaminants biological contaminants, examples and sources, 381 biological contaminants, reducing, 379, 381 combustion pollutants, examples, 377 carbon monoxide and CO detectors, 379 difficult to avoid pollutants and possible impacts, 381-383 dust and dirt carpets, 381 reducing, 381 particulates, 379 health effects, potential acute, 377 chronic, 378

introduction, 376, 381 less-developed countries, particulates and smoke, 379 multiple chemical sensitivity, 377 nitrogen oxides, 379 particulates, 380, 381 possible reactions, 379 moisture, mold, and bacteria, 380 mold growth, 379 reducing indoor pollutants, a how-to summary, 379 reducing moisture levels of, 381 smoking and it impacts, 379 sources of moisture, 380 VOCs, health concerns, 380 reducing exposure, 380 VOC sources almost ubiquitous, 380 indoor air pollutants, ones difficult to avoid benzene, properties and toxicity, 382 benzopyrene, properties and toxicity, 382 formaldehyde, properties and toxicity, 382 how to minimize exposure, 383 introduction, 381 PAHs, properties and toxicity, 382 paradichlorobenzene, properties and toxicity, 383 PERC, properties and toxicity, 382 radon detecting and reducing, 385 how exposure occurs, 383 properties and toxicity, 385 scientific uncertainty, 385 solid radioactive daughters, 384 toxicity and action level, 383 indoor air pollutants, poorer countries introduction, 386 reducing smoke, clean cookstoves, 387 reducing smoke, examples, 386 industrial ecology: moving toward closed loop, 399 industrial symbiosis, 37-38 See inorganic chemicals fate, 9 International Agency for Research on Cancer (IARC) WHO cancer research, 360 ionizing radiation damage to DNA, 384 introduction, 384 sources, anthropogenic, 385 sources, natural, 384 iron oxide, 328 Kalundborg

eco-industrial park, 37 Keeling, David, 136

Lake Chad: pumps out dust, 110 law, EC Waste Electrical and Electronic Equipment Directive, 311 443

Cambridge University Press & Assessment 978-1-108-43610-6 — Understanding Environmental Pollution Marquita K. Hill Index

More Information

44	Index		
444			
	law, US	introduction, 344	mercury emissions in Arctic high, 34
	CERCLA or Superfund, 303	natural and human sources, 345	Mad Hatter, 337
	Clean Air Act. See NAAQS, 90	poisoning with, 345	Minamata, 342
	Clean Water Act (CWA), 206, 221	power plant emissions, particulates, 345	Minamata and international action, 3
	Federal Insecticide, Fungicide and Roden-	toxicity of inorganic arsenic, 345	Minamata Convention, 338, 341
	ticide Act (FIFRA), 365	uses of arsenic, 344	Minamata Convention, how it works
	Food Quality Protection Act (FQPA), 78,	metals, cadmium	342
	361	by-product, zinc mining, 327	Minamata emissions by Chisso Corp
	Hazardous Substances Act, 388	excreted very slowly, 343	341, 342
	Hazardous Substances Labeling Act, 388	exposure to, cereal crops and smoking, 343	Minamata, poisoning disaster, 47
	Mercury and Air Toxics Standards, 333	exposure to, reducing, 344	toxicity
	Poison Prevention Act, 388	exposure to, shellfish and smoking, 332	conversion to methylmercury, toxici
	Resource Conservation and Recovery Act	hyperaccumulators and cadmium, 308	high, 339
	(RCRA), 268, 298	introduction, 343	methylmercury biomagnifies in food
	right-to-know law, 31	itai itai disease, 343	chain, 338, 339
	right-to-know: toxic release inventory	phosphate rock, 259	metals, metalloid. <i>See</i> metals, arsenic
	(TRI), 31–33 Sefe Drinking Water Act (SDWA), 20(sources, uses, transport, 343	methane (swamp gas), 9
	Safe Drinking Water Act (SDWA), 206,	toxicity, kidney, 343	methanotrophs, 140
	243 Toxic Substances Control Act (TSCA), 77	metals, lead	microplastics
	laws,natural, 4	common at Superfund sites, 335 exposure, work and beyond, 334	physical degradation, 9 plastics, broken down, 2
	leachate, 280	lead exposure	Minamata Convention
	lead pollution	banning lead from gasoline, 336	purpose of, 342
	many sources, 249	banning products with lead, 336	mineralize, definition, 9
	lethal dose LD ₅₀ , 45	introduction, 334	mining overburden and tailings, 266
	lifecycle assessment, automobiles, 277	legacy lead, 335, 336	movement
	incevere assessment, automobiles, 277	reducing exposure, 91–95	transboundary, 126
	Mauna Loa Observatory, 136	reducing leaded gasoline, Mexico City, 336	MSW
	maximum available control technology	reducing legacy sources, 337	recycling
	MACT, 104	sources, 334	terminology, 273
	mega-cities, 15	toxicity, 335	MSW and gross pollution
	examples of, 90	babies and children, 335, 336	start trash pickup, 288
	dramatic mobilization, 328	eagles, 337	I III
	emissions to atmosphere, 328	mother's early exposure, 336	nature's services
	human exposure to, 332	no safe blood level, 336	algae, 226
	particulates, 328	reference level, CDC, 336	algae and oxygen production, 226
	reducing risk, 333, 365–366	small children absorb more, 336	categories of services, 13
	mining, 329	transport in environment, 334	defining services, 10
	lifecycle assessment of mining, 329	in winter haze, 334	desertification prevention, 13
	mining operations, 329	metals, mercury	filtering water, 11
	mining wastes produced, 329	atmospheric concentrations, 338	glaciers, 12
	metals and metal pollutants	complex cycling in environment, 340	microbes, 12
	abandoned mines and "relentless	isotopes help trace travels, 340	Ogallala aquifer, 12
	pollution", 329, 330	elemental, inorganic, and methylmercury,	soil, 11, 13
	acid mine drainage, 329	337	trees, 12
	ancient mining, 332	elemental mercury	NIMBY, not in my backyard, 281
	folk remedies, lead, mercury, cadmium,	emitted by incinerators, 340	nutrients
	arsenic, 334	long atmospheric life, 340	toxicity, 45
	heavy metals, 328	introduction, 337	
	introduction, 327	sources, 338	ocean acidification, 149–152
	soils, maximum-loading rate, 332	artisanal mining largest worldwide	calcium carbonate shells, 150
	sources of metal pollutants, 329-332	source, 338	CO ₂ leads to acid, 149
	coal-burning power plants, 330	fossil fuel burning largest US source,	on coral reefs, 151
	metal mining and processing, 329	338	decreased seawater pH, 149
	toxicity of, 333	sources of possible exposure	definition, 149
	treating disease with, 334	consumer products, now mostly	example, 151
	tributyltin, 333	banned, 338	in future, 152
	water, soil, agricultural soil, 332	dental amalgams, 342	impacts of acidification
	metals, arsenic	exposure of humans and wildlife, 342	less shell-friendly water, 150
	all crop plants, 344	exposure of loons, eagles to fish, 342	on marine life, 151
	drinking water, 344	fish, are many fish advisories, 342	organic chemicals

More Information

can biodegrade, 9 degradation, factors impacting, 9 orthophosphate reacts with lead, 251 Owens Lake dried up, 110 ozone ground level compared to stratospheric, 96 ozone, ground level transport, 7 Paracelsus, 43 particles inorganic and nitrogen, 2 PBTs and POPs, 316 bioaccumulation vs. biomagnification, 316, 317 chemical description, 318 definitions. See also POPs long-range transport, 318 many are pesticides, 319 many emitted dispersively, 318 many volatilize, 318 PBDEs, a brominated chemical family, 322 **PCBs** biomagnify in food chain, 321 bioaccumulated high level in whales, 321 polychlorinated chemical family, 321 toxicity and exposure, 322 PFAS chemicals in drinking water, 323 in human blood, 323 polyfluorinated chemical family, 323 PFOA and PFOS, no natural sources, 323 POPs all POPs are organic, no metals, 316 all POPs are PBTs, 316 found in fatty food and breast milk, 319 POPs and most BPTs bioaccumulate in fat, 317 POPs EPA has identified to date, 316 POPs are PBTs, but not all PBTs are POPs, 316 why a concern, 317 why persistence a concern, 317 widespread contamination, 319 pesticides almost everyone uses them, 355 broad and narrow spectrum, 356 examples, e.g., chlorine chemicals, 356 heat, ionizing radiation, 356 disinfectants, 356 example, fumigants, 356 phenol since 1867, 356 categories of, 355 exposure, air, water, food, 361 historical early hazardous waste pickups, 355 what was used, 355 impacts on honey and bumble bees, 359

less-developed countries, 364 200,000 killed /year, 364 FAO statistics, 364 FAO teaching organic and IPM, 365 indigenous knowledge "old customs, examples", 365 lack of safe management, 365 National Pesticide Information Center, 355 obsolete, what happens to them, 364 pest resurgence, 362 philosophies regarding pesticide use, 366 reducing risk, integrated pest management (IPM), 212 Rotterdam Convention controls, 364-365 metals, pesticides containing them, 355 transport in air, water, 340 what biopesticides are, 363 what characteristics are desirable in pesticides, 366 why used, many reasons, 354-355 pesticides, beyond just pesticides biodiversity loss, 362 major habitat loss, 363 sixth extinction event, 363 pesticides, combinatorial how impact bees, 359 pesticides, herbicides broad spectrum, 360 glyphosate overview, 359-361 impacts bee immune system, 360 introduction, 359 Roundup-ready controversies, 360 USA and EU disagree on use, 360 used worldwide, 360 pesticides, insecticides, 357 3 families of insecticides, 357 carbamate family, 357 neonicotinoid family (neonics), 358 exposure,75% from food, 358 EU severely restricts use, 359 found in 75% of honey samples, 358 still used in USA, 359 systemic action, 358 worldwide use, 358-359 organophosphate family, 357 polychlorinated, DDT history, 357 DDT, how used when new, 356 polychlorinated, POPs, 357 rotenone, 356 pesticides, monitoring FDA aided by safety factors, 362 foreign produce seldom checked, 362 pesticides plus other human actions damaging biodiversity, 363 pesticides, pollinators bees, what impacts them, 358 colony collapse disorder, 358

inert ingredients, 366

introduction, 353

administered, 364

International Code of Conduct, FAO

Index

445

hive dwellers, 358 impacts, pesticides plus other human actions, 358 importance, 358 pesticides, public involvement. See REACH EU's socioeconomic analysis, 360 growing demand for organic produce, 362 what is needed in registration process, 360 pesticides, reducing their risk alternative pesticides, 371 Amsterdam increases bee diversity, 368 Amsterdam, urban agriculture, 368 biocontrol agent examples, 371-372 biopesticides, characteristics of, 371 biopesticides, may expedite registration, 366 can agriculture be sustainable?, 367 crop protectant, 366 desirable characteristics in pesticides, 366 France's major efforts, 368-369 GEOs, legitimate to use?, 371 green chemistry examples, 366 integrated pest management (IPM), 366 characteristics, 366 common features, 367 organic farming, 367 characteristics, 367 Rachel Carson's advice, 366 urban agriculture, 368 using law, FIFRA, 365 pesticides, registration setting tolerance, 78 tolerance and no-harm, 361 pesticides, resistance to continues to grow, 362 how resistance develops, 362 pH impacts on water life, 121 pH, defined, 120 phosphorus nutrient, sewage as a source, 231 sources of this nutrient, 231 phosphorus pollution its impacts, 232 introduction, 231 reducing its pollution, 232 sources, 231 phytoestrogens plant estrogens, 53 pig-pen, 381 planet's boundaries living within, 17 nine risks, 18 what they are, 17 plastic lumber, 284 plastic pollution, reducing ban single-use plastic, 289 Basel Convention, 290 beat plastic pollution, 289 cutting use with pollution prevention, 289 EU action, 289

Cambridge University Press & Assessment 978-1-108-43610-6 — Understanding Environmental Pollution Marquita K. Hill Index

More Information

46 Index			
		<u>()</u>	C
plastic pollution, reducing National Geographic's a		fate of, 9 gases becoming particulates, 7	cancer. See cancer risk assessment Tox21
use, 289	ctions to reduce	lead at Superfund site, 62	example, BPA, 80
Ocean Conservancy, 28	8	natural chemicals, 4	high throughput, 79
recycling plastic packag		POP hotspots in Arctic, 8	less animal testing, 80
recycling, needs to be in		synthetic and industrial pollutants, 4	more predictive, 79
UN Clean Seas campaig		pollution	robotics and technology, 79
plastic pollution, in ocean		blatant, 3	risk assessment, chemical, alternatives to
absorbs chemicals, 286		deaths attributed to pollution, 60	chemical risk assessment, alterna
becoming microplastics	, 286	is a design failure, 3	risk reduction
can it be removed?, 286		devastating amounts of pollution, 10	educating public, 78
colossal amounts, 285		lead in old houses, 62	for children, pesticide standards, 78
entering food chain, 28	5	poverty and pollution, 78	public pressure, 77
how plastic kills wildlif	e, small and large,	tiny amounts, 10	using law, 29–30
286		waste electronics, 61	risk reduction, chemical. See chemical ris
low percentage ocean p	ollution from USA,	where pollution occurs, 5	reduction, See chemical risk redu
285		why pollution happens, 3	for children in poor countries, 78
low percentage in gyres	, 285	is zero pollution possible?, 31	international efforts, 77
high percentage from c	oastal countries,	pollution prevention or source reduction, 35	using non-regulatory programs, 77
285		pollution, severe and cancer, 60	using precautionary principle, 78
mammoth problem, 28	5	POPs	for wildlife and natural resources, 79
microplastics		in soil, water, food, 24, 238, 325, 326	road building
defining microplastic	s, 286	reducing by P ² , 319	pollution and other damage from, 6
in food chain, 286		population, human, 15	Rockström, Johan, 411
in human bodies, 28	5	population momentum, 15	root causes
now ubiquitous, 286			environmental problems, 14
most found in open s	ea, 285	radical, nitric oxide	consumption, 15
plastic, solid waste		stratospheric ozone, 142	PAT, 14
a huge problem, 283	201	radionuclides, 2	population, 14
developing better plasti	cs, 284	plutonium 239, 2	uncontrolled technology, 16
landfilling plastic, 284		radon	1
plastic uses, 283 pyrolysis as option to d		carcinogen, natural, 55	salinization
recycling difficulties, 28	•	outdoor air, 4	how it happens, 14
		reactive nitrogen	sanitary landfill, 280
recycling PET and HDI searching for plastic rep		crossed planetary boundary, 228	sensitive populations, response to, 253
thermoplastic recyclabl		dead zone	Shanghai, 3
using waste-to-energy t		Gulf of Mexico, 228	signal event, 2
using waste-to-energy using incineration, 284	0 Duill, 279, 204	Haber–Bosch process, 228 human sources, 228	silicosis, 47 sink, 123
worldwide production,	283	reducing agricultural runoff, 207	algae as carbon sink, 226
plutonium 239, 2	200	some natural sources, 228	sequestering carbon dioxide, 139
$PM_{2.5}$ composition, 92		Reilly, William, 16	sinks for POPs, 190, 223
pollinators		risk	smog, 95
honey bees and others,	358	definition, 72	air you can see, 95
pollutant transport, 6–8		zero to one, 72	Delhi, India, 106
of acid particulates, 7		risk assessment	photochemical, 95
in air, 7, 96–98		comparative, 27	pollutants, 95
in air, dioxin, 6		comparative, how to do, 29	soil
in air, transboundary, 7		planetary, 29	sends environmental messages, 14
of DDT, grasshopper ef	fect, 8	risk assessment, cancer. See also cancer risk	solid waste, municipal
in sediment, 7		assessment	beaches in less-developed countries, 2
in soil, 8		cancer potency, 81	Chinese ban, 274
in water, transboundar	, 6, 7	dioxin most potent carcinogen, 81	food waste, 267-268
transport, biotransport	8	hazard identification, its importance, 80	challenges, 268
transport, POPs in Arc	ic, 8	identifying carcinogens, 80	worldwide, 268
pollutants		lifetime studies, 80	great quantities of many wastes, 266
Arctic, land-based bioa	ccumulation, 8	maximum tolerated dose (MTD), 81	how food becomes waste, 267
categories of, 6		risk assessment, chemical. See also chemical	introduction, 265
concentrations of, 4		risk assessment	landfill monitoring, 280
definition, 2		alternative new methods rapidly	less-developed countries, 266
degradation, hydroxyl 1	1. 1.0	developed, 79	food waste, 268

More Information

Index

447

product's history of waste, 266 promoting recycling to lessen quantity, 278 what is in MSW, 266 why is MSW a concern, 267 source reduction. See WMH: pollution prevention Stockholm Convention. See also persistent organic pollutants dirty dozen, 319 effectiveness of Convention, how seen, 320 exceptions to banning a chemical, 320 PBTs and POPs, eliminating, 342 safer alternatives, 320 stratosphere atmospheric layer contains most ozone, 193 normal chemical reactions, 195 ozone screens out UV radiation, 193 reactions with and without chlorine, 195 stratospheric ozone-depleting chemical reactions Antarctic, shows most ozone depletion, 96 how ozone destroyed, 195-196 ice clouds, role of, 196-197 ozone "hole" formation, 197 polar vortex, role of, 142-144, 197 volcanic eruptions, 198 stratospheric ozone-depleting chemicals CFCs and halons, 194 chemicals causing, 194–195 had been useful chemicals, 194 meaning of ozone-depleting potential (ODP), 195 Montreal Protocol, 194 natural halocarbons, 195 stratospheric ozone depletion assist less-developed countries, 201 eliminating depleting substances global warming and ozone depletion, 201 HCFCs, substitutes for CFCs, 200 HFC substitutes, potent greenhouse gases, 200 Montreal Protocol, 200-201 compliance with, 202 remaining problems, 201-202 substances that deplete the ozone layer, 200-201 UV exposure, its impacts on Earth, 199-200 stratospheric ozone layer absorbs UV-B radiation introduction, 198 history, 193-194 measuring UV-B, 198 Montreal Protocol accomplishments, 194 more UV reaches earth when ozone depleted, 198 protects earth from UV-B radiation, 198 seasonal ozone depletion, 194 UV exposure impacts on health, 199 impacts on sea organisms, 200

UV radiation monitored planetwide, 199 Superfund purpose of, 303 Superfund sites cleaned up energy generation use, 306 site-specific-standards, 306 Coeur-d'Alene, very large mining site, 302 Love Canal, a history, 302 National Priority List, 303, 304 sustainable agriculture, 368, 369 cities, 283 clean water and sanitation, 255 forestry, 138, 185 land management, 110, 111 materials use, 299 phosphorus source, 231 societies, 38 future, 14 UN Sustainable Development Goals, 220 sustainable chemistry. See green chemistry sustainable development agriculture, 353 excess garbage, barrier to development, 282 maintaining nature's services, 395 population growth hinders, 15 UN Clean Seas campaign, 290 take-back law. See EPR and product stewardship Tox21. See chemical risk assessment toxic, definitions, 43 toxicant, 31 acetylcholine, 357 arsenic, 247 asbestos, 80, 389 aspirin, 44 atrazine, an herbicide, 359 benzene, 80, 104, 382 benzopyrene, 48, 105, 382 biotransformation, 47 botulinum toxin, 45 cadmium, 104 caffeine, 45 carbon monoxide, 44 children's greater exposures, 48 chloroform, 104 DDT, 317, 355 as environmental estrogens, 52 definition. See xenobiotic diethylstilbestrol, 52 dimethyl sulfoxide, 46 dioxins, 47, 68, 317 bonding to soil and sediment, 49 exposure, 68 in fat, 6 poisoning, 47 sources, 319

transport. See pollutant transport, fallout toxicity among species, 47 why cannot eliminate dioxins, 320 endocrine disruptor. See environmental hormones environmental estrogen, an endocrine disruptor, 51 formaldehyde, 104, 382 glyphosate, 359 hydrogen cyanide (fumigant), 355, 356 iron, can kill children, 328 lead, 335 lead arsenate, 355 lead shot, 337 mercury, 104, 342 methyl bromide (fumigant), 356 methyl isocyanate (MIC), 31 methylene chloride, 377 methylmercury, 104, 342 neonicotinoid (neonic), 358 nicotine sulfate, 355 nitrate, 245 organophosphate, 45, 357 oxalic acid, 45 PAHs. 382 sources, 319 paradichlorobenzene, 383 paraquat, still manufactured, 364 parathion, skin absorption, 357 PCBs, 321 chloracne, 322 human exposure, 322 remediating Hudson River, 322 PERC, 382 pesticides, 319 PFAS chemicals, 323 phthalates, leaching from plastic, 52 polysilicon and polysilicon tetrachloride, 176 radon, 383 rotenone and borax, 356 Roundup, 360 secondary poisoning, 363 smog, 95 solanine, 45 tetraethyl lead, 328 thalidomide, 48 tributyltin, 333 trichloroethylene, 214 triclosan, 253 vinyl chloride, 80 vitamin A, 43, 44 toxicants and system impacting immune system, 58 kidneys, 58 liver, 57 lungs, 59 nervous system, 58 pesticides action on children, 53 reactive gases, 59 skin, local and systemic, 58

Cambridge University Press & Assessment 978-1-108-43610-6 — Understanding Environmental Pollution Marquita K. Hill Index

More Information

448	Index				
	toxicity	uses of, 216–217	examples, 212, 366		
	absorption, how occurs, 46	small or private treatment systems, 218	freshwater-salinization syndrome, 212		
	acute and chronic effects, 44	steps in treatment, 216	salinizing North American waterways, 212		
	arsenic symptoms of poisoning, 248, 249	treatment plants and combined sewer	salt and alkali, 43, 212		
	children's sensitivity, 47	overflow, 218	water pollutants, priority, 208–212		
	comparing chemical toxicities, 45	wastewater, untreated, 220, 331	introduction, 211		
	direct entry into body, 46	cities, 220	pesticides, 211		
	dose and response, 44	commonly used on crops, 255	water pollutants, toxic. See water pollution:-		
	dose per time, 45	contaminates Indian food chain, 256	pollutants, priority		
	excretion, 47	great quantities, 220	water pollution		
	factors affecting toxicity, 47–49–51	killing a river, 220	Chesapeake Bay, 232–234		
	lethal dose (LD ₅₀), 45 movement of toxicant within body, 49	reducing amounts, 221 some Indian rivers, 255	closed shellfish beds, 215 coastal beaches, 216		
	nutrients, dose per time, 45	UN goal, cut in half, 220	eutrophication		
	protection, most sensitive populations, 47	water body	red tide, an HAB, 227		
	systemic and local effects, 46	coastal, 214	red tide, Florida, 226–227		
	toxicity, lead shot not banned, 337	estuary, 214	red tide, wildlife massacre, 227		
	toxics use reduction (TUR). See pollution	groundwater	red tide with powerful toxins, 227		
	prevention	cleanup, 213	fishable and swimmable, 206		
	transport	introduction, 212	hypoxia and dead zone, 226, 228		
	transboundary, definition, 7	reducing pollution, 213	introduction to reactive nitrogen, 209,		
		sources, 213	224, 226		
	UN Convention on Long-Range	VOCs, 213–214	nonpoint source pollution		
	Transboundary Air Pollution, 126	river	atmospheric deposition, 222		
	US Geological Survey (USGS), 214	compare to other water bodies, 214 wetlands	best management practices to reduce, 221		
	waste management hierarchy (WMH), 268	sequester pollutants, 214	difficult to identify source, 207		
	introduction, 268	water pollutants	how point source differs, 207		
	waste to product ratio, 266	reactive nitrogen, 224–226. See also fixed	NPS runoff, 207		
	waste electronics, 309–311	nitrogen	overuse of water, 224		
	Basel Action Network, 309	beyond planetary boundaries, 225 bioavailable to plants, 224	preventing NPS runoff, 222 reducing NPS runoff, 222		
	China banned e-waste imports, 310	China project to reduce, 229	reducing storm runoff, 222		
	EPA's actions and proposals, 311 Europe's program, 311	confronting reactive nitrogen, 225	stormwater runoff, 224		
	four steps in recycling, 309, 310	dead zones and legacy nitrate, 228	point source and how identified, 207, 221		
	introduction. See waste, electronics	defining fertilizer overuse, 227	water pollution, falling ocean oxygen, 228		
	life cycle of electronics, 311	eutrophication, an introduction to, 226	climate change and more, 228		
	poor recycling, 309	eutrophication also occurs naturally,	reasons for fall, 228		
	proper recycling, 310	226	watershed		
	quantity of electronics up, quality down,	eutrophication, harmful algae blooms	definition, 207		
	311	(HABs), 226	wellhead, 213		
	raw materials overused, 311	increasing number of dead zones, 226	WMH or waste management hierarchy		
	shorter life spans, 309	International Nitrogen Management	incineration, 280		
	"smash and bash recycling", 309	System, 225	can be misused, 280		
	wastewater	introduction, 224	how differs from waste-to-energy, 279, 284		
	less-developed countries, 255–256	reducing agricultural runoff, 228 reducing livestock runoff, 229	incineration or combustion, 279 mass burn, 282		
	recovering needed phosphorus, 259	why use has soared, 226	preferred by China, 282		
	reusing gray water, 219	water pollutants, banned discharges, 212	products banned from incinerator, 279		
	reusing wastewater, 219 uses of wastewater, 411	water pollutants, conventional	what it is, 279		
	wastewater treatment, 411	BOD, 209	why used, 279		
	introduction, 216	BOD and hypoxic water, 209	landfilling, an introduction, 280		
	primary treatment, 216	introduction, 208, 211	bioreactor landfill, 281		
	reduces pollution on beaches, 218	nutrients, 209	landfill ecosystem, 283		
	reducing point pollution, 218	nutrients, reactive nitrogen and eutrophi-	landfilling and methane production, 280		
	secondary treatment, 216	cation, 209	landfilling, disposal (lowest step on		
	septic systems and septage, 218, 219	oil and grease, 210–211	hierarchy), 37		
	sewer terminology, 215	pathogens, 209	much used in China, 282		
	sludge	pH beyond normal range, 209	sometimes a first option, 282		
	industrial, 217	suspended solids (SS), 209	stabilization of landfill, 281		
	metals contaminants, 217	water pollutants, nonconventional	P ² , design for the environment, 35		

More Information

- P², environmentally preferable products, 271 P², source reduction, 34 P², purpose of, 34 P², use in industry, 34 P², when not enough, pollution prevention (P²), 34–35, 37 apex of hierarchy, 34, 268 environmentally preferable purchasing. See also Green procurement French law reduces food waste, 268 green procurement program, 273 personal actions to practice P², 273 Pollution Prevention Act, 35, 409 source reduction equates to pollution prevention, 268, 270
- toxics use reduction (TUR), 35 recycling advantages (second step in hierarchy), 36 China's role, 274 composting considered recycling, 274, 276 contaminants in recyclables, 274 common products recycled, 274, 276 construction and demolition debris, 276 end-of-life cars, 277 fills vital need, 273 packaging presents problems, 36, 275 problems that recycling presents, 36 promoting its use, 278–279 products from landfills, recycling, 276

projects in Curitiba, 283 saves energy and material, 275 uncommon examples, 276 reuse reuse examples, 36 reuse of industrial, 271 reuse similar to pollution prevention, 35 treatment (third step in hierarchy), 36 energy recovery, 36 purposes of, 268

treatment, reasons for, 36

xenobiotic and natural chemicals, 46

zero waste, zero emissions an introduction, 395

Index

449

© in this web service Cambridge University Press & Assessment