

Index

Locators in **bold** refer to tables; those in *italic* to figures

```
adjacency
   lists, 130, 130
                                                        databases, 166, 165-167, 170
   matrices, 129, 129-130, 291, 294, 295,
                                                        PPI networks, 171, 370, 371
         491-492, 499
                                                    apriori property, pattern mining, 331
   matrix visualizations, 541, 544
                                                    articulation points, 168, 177
Affymetrix SNP microarrays, 10, 12-14, 15
                                                    assortative networks, 135
aging, 220-223
                                                    asthma, 441, 445, 447, 474
   PPI network analysis, 194, 199, 212, 220,
                                                    asymmetric interactions, 113, 118
         221-223
                                                    automorphism orbits, 203, 384, 384, 385
algorithms; see also network alignment
                                                        edge, 204
                                                        node, 205
   alignment, 23, 24
   clustering, 242, 256-270, 549, 585
                                                    average closeness centrality, 511
   force-directed, 549-550, 574, 575
                                                    average clustering coefficient, 135, 511
   FUSE, 394-397, 395, 397
                                                    average edge betweenness centrality, 512
   gene prioritization, 437
                                                    average efficiency, 511
                                                    average node betweenness centrality, 511-512
   genotypes, 10, 16, 14-18, 21-27
   graph search, 130-131
                                                    average node degree, 510
   hierarchical clustering, 257, 264
                                                    average radiality, 512
   Hungarian, 128, 375
   Isorank, 200, 217, 382-384, 383
                                                    Bayesian networks, 39, 41-42, 292, 291-293
   layouts, 549
                                                    betweenness centrality, 136, 168, 178
   machine learning, 33-39, 601
                                                    biases
   mapping, 372
                                                        microarrays, 75, 97
   optimization, 374
                                                        PPI datasets, 158-159, 438
   orbit counting, 227, 228
                                                    BioFabric, 542, 545
   pattern mining, 329, 330, 340, 361
                                                    bioinformatics
   permutation testing, 347
                                                        Hi-C analysis, 82
AlignMCL, pairwise network alignment,
                                                        lncRNAs analysis, 88-89
      382
                                                        protein-DNA interactions, 600
alignment
                                                    biological heterogeneity, 159-160, 288-290
   algorithms, 23, 24
                                                    biological interpretation, disease modules,
   graphs, 374
                                                           445-448
   network see network alignment
                                                    biological networks (BN), 111, 167, 193-194, 256,
   strategy, 216-217
                                                           271-272; see also molecular networks;
alignment scoring schemes, 375
                                                           visualizing networks
   agreements and trade-offs, 378, 378-379
                                                        data integration, 229
                                                        metabolic networks, 113, 418
   F-score, 376
   global network alignments, 376-378
                                                    biomarkers
   local network alignments, 375-376
                                                        cancer precision medicine, 287
   multiple network alignments, 392
                                                        cancer stem cells, 605, 606, 603-612
   symmetric sub-structure score, 377
                                                        covariate factors, 349-359
AlignNemo, pairwise network alignment,
                                                        discovery, 313-314, 359-361
      381-382
                                                        exercises, 362-364
Alzheimer's disease, 517-518
                                                        ovarian cancer, 608, 609, 608-610
animations, node-link diagrams, 551
                                                        pattern mining, 315-328
```


biomarkers (cont.)	ChIA-PET technology, chromatin conformation,
prostate cancer, 606–608	81, 83
statistical redundancy, 341–349	ChIP see chromatin immunoprecipitation
Tarone's method for discovery, 329-341	chromatin, 77
bipartite graphs, 113, 123, 123, 375, 374–375	conformation, 67, 81–83
bisulfite based arrays, DNA methylation, 72-73	higher order organization, 80–87
bisulfite conversion, 72–73	modifications, 70, 315
BLUEPRINT epigenome, 79, 96	topological associated domains, 86, 86-87
Bonferroni correction, 326–327	chromatin immunoprecipitation (ChIP), 69,
Boolean variables, 254–255	77–78, 418–419
brain	data analysis, 79 , 78–79
anatomy, 515, 516	differential binding, 80
connectomes, 490-491, 499, 500, 514	chromosome territories, 70
geometry, 492	cis-acting, 67
MRI scanning, 492-493	classification and regression tree classifiers
topology, 492	(CARTs), 37
brain networks	cliques (complete subgraphs), 120, 170, 210, 265,
disorders, 517–519	269
functional, 499-503	clonal theory, 598
structural, 492–499	closeness centrality, 135, 136, 139
tools for analysis, 505-506	cluster analysis, 241–243, 277
BRCA1 gene, 476, 480	definitions, 243–245
breadth first search (BFS), 130, 131	exercises, 277–280
breast cancer, 79, 96, 473-474, 560, 572	preprocessing, 246–251
	proximity calculation, 252–256
cancer; see also tumors	workflow, 245, 245-246
BRCA1 gene, 476, 480	cluster evaluation
breast, 79, 96, 473–474, 560, 572	external, 271–272
gene mutations, 175–179, 177, 300, 462,	internal, 272–274
548–549	optimization strategies, 275-277
genome atlas, 22, 95, 462, 479–480, 577	validity indices, 270, 271
precision medicine, 287	clustering
prostate, 606–608	algorithms, 242, 256-270, 549, 585
proteins, 223–224	coefficients, 170
stem cells, 595–598, 603–612, 605, 606	data formats, 244–245
CART (classification and regression tree	networks, 209, 210, 209-210
classifiers), 37	partitional, 243
categorical values, proximity calculation, 256	types, 243
causal variants, 466-470, 473	clusters, number of, 275, 276
cell signaling networks, 112, 113	Cochran-Mantel-Haenszel (CMH) test, 351–354
centrality	minimum attainable P-value, 354–355, 356,
average closeness, 511	358
average edge betweenness, 512	pruning condition, 355–359
average node betweenness, 511-512	co-expression networks, 419-420
betweenness, 136, 168, 178	colored graphlets, 195, 200-202
closeness, 135, 136, 139	columns, cortex, 491
eccentricity, 135, 137	comparative genomics, 156
eigenvector, 135, 137	complex diseases, network approaches, 473-474
GDV, 207, 221, 225	computational biology workflows, 175–179
subgraphs, 137	computational complexity, 117–118, 128, 197,
characteristic path length, 511	200, 226, 297, 338
chemokines, 597, 609	computational methods, PPI, 222-223, 601

conditional probabilities, 41-42, 291-293, 320	precision medicine, 287-288, 290-294
confounding effect, pattern mining, 350, 351	protein-protein interactions, 159-160
connectedness	training methods, 290, 289–290
graph theory, 122, 122	databases
subgraphs, 119	annotation, 166, 165-167, 170
connectomes, brain, 490–491, 499, 500, 514	curated, 161, 162, 161-162, 179
contagious diseases spread, 423-424, 426	epigenetic, 75 , 93–96, 97
transportation networks, 424–425	integrated, 160, 164 , 165 , 163–179
context-sensitive interactomes, 479–480	interaction, 160–167, 372, 463 , 602
contingency table analysis, 31–32	interactome, 439
continues variables, proximity calculation,	lncRNA, 91
252–254	molecular interaction, 463
correlation networks, 539	prediction, 163, 164, 162-165, 179
correlation, continues variables, 253, 254	protein-protein interactions, 112 , 160–167,
covariate factors, pattern mining, 349–359	602, 603
CpG islands, 67, 70	public, 2, 22, 72, 74, 427, 559–562
curated databases, 161 , <i>162</i> , 161–162, 179	Davies-Bouldin index, 273
cystic fibrosis (CF), 473, 480	DBSCAN, 267, 266–268
Cytoscape, 177, 179, 533–536, 553	degree distribution, 133, 133, 178, 428
apps, 574–577	degree of vertices, 119, 119, 168
command language, 587, 586–589	de-noising networks, 212, 213
control panel, 555, 556	density, 133, 134
example workflow, 577–585	density based clustering algorithms, 257,
exercises, 589	266–268
hierarchical clustering, 541, 579, 580	depth first search (DFS), 130-131
importing data files, 561, 563	deterministic measures, network topology, 507,
importing from public databases, 560	510–513
importing networks, 560	differential binding, 79, 80
integration of data, 559–562	differential methylation CpGs (DMC), 76 , 76–77
<i>k</i> -means clustering, 580, 580	differential methylation regions (DMR), 76,
network analysis, 574	76–77
network panel, 557, 558	differential network analysis, 481
results panel, 557	diffusion tensor imaging (DTI), 495, 498, 500
scripting, 586	diffusion-based methods, disease identification,
STRING network, 540, 560, 572, 576, 579, 581	173
table panel, 557	diffusion-weighted MRI scanning, 495, 496
user interface, 554, 555–559	direct to consumer services, 3, 9, 13, 45
view menu, 559	predictive genetic risk models, 39–44
visualizing data, 565, 562–573, 574, 575, 586	directed acyclic graphs (DAG), 39
visualizing networks, 534, 540–552	directed graphlets, 197–198
violating networks, so 1, s 10 so 2	directed graphs, 113, 118, 118
DAG1 gene, 476	directed networks, 402, 402
data integration, 159–160, 288–290	disassortative networks, 135
Bayesian approaches, 292, 291–293	discriminative pattern mining see pattern mining
biological networks, 229	disease gene prioritization, 440, 442
early, 289	connectivity-based methods, 440–443
heterogeneous, 289, 300–306	diffusion-based methods, 443–444
homogeneous, 289, 294–300	path-based methods, 443
intermediate, 289	diseases, 437, 474
kernel-based methods, 293, 293–294	analysis, 438
late, 289	biological interpretation, 445–448
network-based, 291, 290–291	contagious diseases spread, 423–426
	U 1 '

624 INDEX

diseases (cont.) Roadmap Epigenomics Project, 95 enrichment, 445, 444-445 epigenetics, 65-66, 66, 98; see also DNA epigenetic mechanisms, 65-66 methylation changes in tumors, 595 gene prioritization, 440-444 identification, PPI, 152, 173-174 disease mechanisms, 65-66 interactome analysis, 430 exercises, 98-100 interactome construction, 427, 438 higher order chromatin organization, 80-87 molecular basis, 474, 470-475 histone modifications, 77-79 long non-coding RNAs, 87-93 network approaches, 422-423, 437, 438, 440, mapping mechanisms, 72, 74 442, 473-474 epigenomics, 67 resources, 439 Erdos-Renyi (ER) random graphs, 138-139 seed clusters, 438-440 treatment, PPI, 166 error rates, PPI datasets, 156-158 validation, 444 euchromatin, 67 Euclidean distances, 252 DNA methylation, 66-68, 479; see also epigenetics Eulerian circuits, 126-127 bisulfite based arrays, 72-73 events, dynamic networks, 198 experimental strategies, 69-71 exact cluster ratio, 392 microarrays, 73-77 expectation-maximization (EM) algorithm, 16 role in genomic profiles, 69 DNA modifications, 68, 70 false discovery rate (FDR) control, 361 DNA sequencing, next generation, 18-27 family-wise error rate (FWER), 326, 361 domains, proteins, 156 Bonferroni correction, 326-327 dominant models, 32 empirical approximations, 344-346 dominating set (DS), 211, 210-211 Tarone's improved Bonferroni correction, drug repurposing, 174, 290, 294, 423 327-328 precision medicine, 287 FANTOM (Functional Annotation of the drug targeting, 174 Mammalian Genome), 95, 477 DTC services see direct-to-consumer services feature selection, cluster analysis, 247-248 Dunn index, 273 Fischer's exact test, 323-325, 336, 337 dynamic graphlets, 199, 198-200 5C technology, chromatin conformation, 81, 83 dynamic networks, 199, 198-200, 221, 225 force-directed algorithms, 549-550, 574, 575 4C technology, chromatin conformation, 81, 83 eccentricity centrality, 135, 137 frequent pattern mining see apriori property, edge conservation, 217, 375 pattern mining edge correctness, alignment scoring, 377 Fruchterman-Reingold algorithm, 549 edge-colored graphlets, 200, 201 F-score, alignment scoring, 376 edges, 463, 464 Functional Annotation of the Mammalian edgetic perturbations, 466, 470 Genome (FANTOM), 95, 477 edgotype prediction tools, 468 functional annotations, PPI networks, 174-175 edgotype scenarios, 467, 467 functional brain networks, 499-503 effect sizes, SNPs, 5 functional consistency, alignment scoring, 376 eigenvector centrality, 135, 137 functional MRI (fMRI), 499, 502, 518 electroencephalography (EEG), 501-503, 504 FUSE, multiple network alignment method, 395, Encyclopedia of DNA elements (ENCODE), 93 394-397 enrichment, disease modules, 445, 444-445 fuzzy clustering, 243-244 epigenetic databases, 75, 93-96, 97 fuzzy C-means (FCM) clustering, 262 BLUEPRINT Epigenome, 79, 96 FWER see family-wise error rate Encyclopedia of DNA elements, 93 gain-of-interactions, 466 Functional Annotation of the Mammalian gap statistic, 276-277 Genome, 95 GATK (Genome Analysis Toolkit), 22, 27 International Human Epigenome GCD (graphlet correlation distance), 215 Consortium, 96

GCM (graphlet correlation matrix), 207, 208–209	tissue interactomes, 480-482
GDD (graphlet degree distributions), 207, 208	tissue-sensitive molecular interaction
GDDA (graphlet degree distribution agreement),	networks, 475–480
214	genotypes
GDV see graphlet degree vectors	algorithms, 14–18
GDV-centrality, 207, 221, 225	calling algorithms, 10, 16, 21-27
GDV-matrices, 207, 208–209	definition, 460, 461
GDV-similarity, 205–207, 210, 218, 219	geometric graph with gene duplications and
gene co-expression networks, 113	mutations (GEO-GD), 136, 139
gene duplication and divergence (SF-GD), 139	geometric networks, 139–140
gene expression analysis, 241	Gini importance, 40
gene mutations, 152, 459, 461	global pairwise network alignment methods
BRCA1 gene, 476, 480	GRAAL, 384–387
cancer, 177, 175-179, 300, 462, 548-549	IsoRank, 382–384
cystic fibrosis, 480	other, 387–390
DAG1 gene, 476	GRAAL, global network aligner, 384–387
edgetic perturbations, 466	GRAFENE, 215–216, 220
KRAS gene, 610	graph(s), 167
loss-of-function, 465, 466	alignment, 374
monogenic diseases, 470-473	bipartite, 113, 123, 375, 374-375
oncogenes, 595	density, 169 , 169
Parkinson's disease, 473, 480	kernels, 216
personalized genetic tests, 3, 7, 13, 45	regularization, 300, 299–300
RAS genes, 462	types, 122–126
sickle cell disease, 461–462, 479–480	weighted, 113, 123, 123
tumor suppressor genes, 595	graph based clustering algorithms, 257, 268-270
gene ontology (GO) annotation set, 370, 371	graph search algorithms, 130–131
gene prioritization	graph theory, 111–114, 140
algorithms, 437	classic problems, 126–128
disease analysis, 440–444	computational complexity, 117-118
gene regulatory networks, 418–419	data structures, 128–130
gene signature improvements, PPI networks, 174	definitions, 118–119
generalized random graph models (ER-DD), 138	degree and neighborhood, 119-120
genetic data, risk prediction, 1-6, 45-47	exercises, 140–142
exercises, 47–50	mathematical basis, 114–116
glossary, 4–6	network measures, 132–140
SNP-disease association, 31–44	search algorithms, 130–131
SNPs identification, 9, 30	spectral graph theory, 131-132
tests in healthcare, 6–9	subgraphs and connectedness, 120-122
genetic interactions, 113-114, 420-422, 463, 481,	trees, 124, 124
536	GraphCrunch, 226, 227, 227
genetic tests, healthcare, 6–9	graphlet correlation distance (GCD), 215
Genome Analysis Toolkit (GATK), 22, 27	graphlet correlation matrix (GCM), 207, 208-209
genome atlas, cancer, 22, 95, 462, 479–480, 577	graphlet counting, 196, 197, 227, 226–229
genome-wide association studies (GWAS), 2,	orbit-aware, 206, 226
473, 479	orbit-unaware, 199, 226
genotype-phenotype relationships, 460-461, 482	graphlet degree distribution agreement (GDDA)
definitions, 460–461	214
exercises, 482–483	graphlet degree distributions (GDD), 207, 208
molecular networks, 459, 461-464	graphlet degree vectors, 203–205, 384, 385,
network approaches, diseases, 464–475	384–387; see also GDV-centrality;
network-based tools, 471, 472	GDV-matrices; GDV-similarity

graphlet degree vectors (cont.)	algorithms, 257, 264
edge, 204	Cytoscape, 541, 579, 580
node-pair, 205	high angular resolution diffusion imaging
non-edge, 205	(HARDI), 497, 498
graphlet frequency vector (GFV), 208	high-throughput methods (HT), 154
graphlet kernel, 293	histone modifications, 77–79
graphlet-based alignment-free network	homogeneity
approach (GRAFENE), 215–216, 220	data integration, 289, 294–300
graphlets, 195, 193–196, 205	graphlets, 195, 196, 201–202
biological applications, 218–226	Hotelling's T2 statistic, 32–33
colored, 195, 200–202	human tissues, mapping, 463, 477
computational approaches, 209-218	Hungarian algorithm, 128, 375
directed, 197–198	Huntington's disease, 470–473
dynamic, 199, 198–200	hypergraphs, 125, 124–125, 543, 546
edge-colored, 200, 201	hyper-networks, 403, 403
exercises, 230–234	
heterogeneous, 195, 200-202	IHEC (International Human Epigenome
homogeneous, 195, 196, 201–202	Consortium), 96
network topology, 196–209	Illumina NGS Platform, 19–21
node-colored, 200–201	Illumina SNP BeadChips, 14, 72, 74
orbits, 203, 203, 204, 205	inborn error of metabolism (IEM), 465, 466
ordered, 202, 202	induced cancer stem cells, 596
software tools, 230 , 226–230	induced conserved sub-structure score (ICS),
static, 195, 196, 202	alignment scoring, 377
undirected, 196, 202	integrated databases, 160, 164 , 165 , 163–179
unordered, 196, 202	interaction databases, 160–167, 372, 463 , 602
graph-structured samples, 318	interaction networks, 536–537, 540
GWAS see genome-wide association studies	interactome analysis, 151, 163, 162–165, 427–437
II-11/- 11 120	464
Hall's theorem, 128	basic properties, 428, 427–429
Hamiltonian paths, 127–128	biological function, 429–430
hedgehog signaling pathway, 182, 597	construction, 427, 438
heterogeneity	context-sensitive, 479–480
biological, 288–290	databases, 439
cancers, 287	diseases, 430
condition specific, 160	network localization, 430–432 randomization, 431–437
data integration, 289, 300–306	
experimental, 159	interactomics, 601
graphlets, 195, 200–202	intermediate data integration, 289
molecular, 159	International Human Epigenome Consortium
nomenclature, 160	(IHEC), 96
Hi-C analysis, bioinformatics, 82	inter-organismal networks, 474–475
Hi-C technology, chromatin conformation, 67,	isomorphic graphs, 120, 121, 373
77, 82	isomorphism, 194, 199, 203, 212, 220
mapping and filtering, 82	IsoRank, global network aligner, 200, 217, 383,
normalization, 82, 84	382–384
statistical analysis, 84	Legard in day, 254, 271, 272
tools, 85	Jacard index, 256, 271–272
topological associated domains, 86 , 86–87	joint probabilities, 320
visualization, 84, 86	1
hierarchical clustering, 244, 262, 263, 265–266; see	k-correctness, alignment scoring, 375
also linkage functions	k-coverage, 392

k-means clustering, 258–262, 259, 260, 267, 580,	pattern mining, 313–314, 359–361
580	precision medicine, 287, 306
k-partite matching, 397	macroscale, neuronal connectivity, 491
Kamada-Kawai algorithm, 549	magnetic resonance imaging see MRI
kernel functions, 38	mapping algorithms, 372
kernel-based methods, data integration, 293,	mapping mechanisms, epigenetics, 72, 74
293–294	marginal probabilities, 320
KRAS gene, 606	matching
	bipartite, 375, 374–375
Lance-Williams recurrence formula, 265, 266	graph theory, 128
large scale clustering algorithms, 258	index, 137
largest connected component, alignment scoring,	k-partite, 397
378	matrices
late data integration, 289	adjacency, 129, 129–130, 291, 294, 295,
layouts, 550, 551, 570–573	491–492, 499
algorithms, 549	GDV, 207, 208–209
force directed, 549–550	operations, 115
node-link diagrams, 549, 550, 550–551	special, 115–116
leukemia, cancer stem cells, 598	spectral decomposition, 116
linear algebra, 114	MaWish, pairwise network alignment, 381
link prediction, 213, 212–213, 511–513	mean normalized entropy (MNE), 392
linkage disequilibrium, 5, 31, 34	medicine, 414, 448
linkage functions, 257, 263, 264–265, 267	disease module analysis, 437–448
average linkage, 265	disease networks, 422–423
complete linkage, 265	exercises, 449
Lance-Williams recurrence formula, 265, 266	interactome analysis, 427–437
single linkage, 265	molecular networks, 415–422
linkage methods, disease identification, 173	social networks, 423–426
lncRNA see long non-coding RNAs	types of network, 415
local community paradigm (LCP) theory,	mesoscale, neuronal connectivity, 491
512–513, 517	metabolic networks, 113, 418, 419
local network alignments, 375–376	metastases, 595–598
localization	microarrays, 1, 11, 9–18, 70
network, 430–432, 435, 440, 505	biases, 75, 97
subcellular, 154, 166, 600	DNA methylation, 73–77
logistic regression models, multi-SNP, 3, 34,	genotyping algorithms, 15 , 16
36–37	limitations, 71
long non-coding RNAs (lncRNA), 87–88	vs. next generation sequencing, 26–28
algorithms, 92, 94	normalization, 75–76
bioinformatic tools, 88–89	microscale, neuronal connectivity, 491
databases, 91	minicolumns, cortex, 491
epigenetics, 87–93	minimum attainable <i>P</i> -value, 328, 332–337, 336,
precision medicine, 88	337, 346, 354–355, 356, 358
previously annotated, 89–93	Minkowski distances, 252–253
unannotated, 93	mixed graphs, 122–123
long-read sequencing, 71	mixture models, 16
low-throughput methods (LT), 154	model based clustering algorithms, 257–258 modularity, 509
machine learning	module-based methods, disease identification,
algorithms, 33–39, 601	173
data integration, 290-294	molecular networks, 415, 464
non-negative matrix factorization, 294-295	causal variants, 466–470

molecular networks (cont.)	geometry, 492, 515, 516, 513-516
co-expression networks, 419-420	inter-organismal, 474–475
databases, 463	localization, 430-432, 435, 440, 505
diseases, 470–475	measures, 132–140
genetic interactions, 420–422	molecular see molecular networks
genotype-phenotype relationships, 459,	molecular basis of diseases, 474, 470-475
461–464	motifs, 138, 197
metabolic networks, 113, 418, 419	neuroscience, 491–492
protein-protein interactions, 415-417	nodes, 194, 199, 212, 220, 435-436, 463, 464
regulatory networks, 418-419	pathways, 537–538, 539, 541
tissue-sensitive, 475–480	properties, 135, 132-138
monogenic diseases, 470–473	protein-protein interactions, 111, 112, 153,
motifs, network, 138, 197	167–170
MRI (magnetic resonance imaging)	similarity, 538–539, 542, 543
brain structure, 492–493	taxonomy, 536–539
diffusion tensor imaging, 495, 498, 500	theory see graph theory
diffusion-weighted, 495, 496	topology, 196-209, 492, 506-508
high angular resolution diffusion imaging,	network alignment (NA), 223, 369-373, 374, 403
497, 498	alternative formalisms, 399
T1-weighted, 68, 494, 496	directed networks, 402
multi-graphs, 122, 123, 543, 546	exercises, 404–407
multilayer networks, 125, 125–126, 401, 402,	hyper-networks, 403, 403, 403
401–402	methods, 400
multiple network alignment, 391	multilayer networks, 125–126, 401, 402,
definitions, 390–391	401–402
FUSE example method, 394–397	multiple see multiple network alignment
other methods, 397–399	pairwise see pairwise network alignment
scoring alignments, 392	probabilistic networks, 400, 399–401
SMETANA example method, 392–394	protein-protein interactions, 372, 371–373
multiple testing correction, pattern mining,	search-based method, 217-218
325–326	two-stage method, 216–218
multi-SNP association studies, 35, 33–39	network analysis
multi-threshold permutation correction (MTPC),	Cytoscape, 574
506	differential, 481
mutations see gene mutations	protein-protein interactions, 173-175, 176,
myoglobin, 370	194, 199, 212, 220, 221–223
	network-based data integration, 291, 290-291
neighborhood of vertices, 119, 119	network-based disease modules, 437-438, 440,
NetAligner, pairwise network alignment, 381	442
netdis, 215	network-based statistics (NBS), 506
network(s)	network-based tools, 471, 472
alignment-based comparison, 216–218	network models, 138, 462 , 463
alignment-free comparison, 214–216	Erdos-Renyi Random Graphs, 138-139
brains see brain networks	geometric networks, 139
clustering, 209, 210, 209–210	scale-free networks, 139
comparison, 213–214	NetworkBLAST, pairwise network alignment,
construction, 167–168	381
definition, 167	neuroscience, 490–492
de-noising, 212, 213	brain network analysis tools, 505-506
edges, 463, 464	brain network disorders, 517–519
genetic interactions, 113–114, 463, 481, 536	exercises, 519–520
genotype-phenotype relationships, 464–475	functional brain networks, 499-503

INDEX 629

network geometry, 513-516 pairwise network alignment, 391 network topology, 506-513 definitions, 373-375 nodes, 503-505 example method, PathBlast, 379-381 structural brain networks, 492-499 global methods, 382-390 other methods, 381-382 next generation sequencing, 2, 18-27, 70, 477 vs. microarrays, 26-28 scoring alignments, 375-379 parallel parameterized graphlet decomposition brain networks, 503-505 (PGD) library, 227, 229 conservation, 216-217, 389 Parkinson's disease, 34, 473-475, 480, 518-519 correctness/coverage, alignment scoring, 377 partitional clustering, 243 network, 194, 199, 212, 220, 435-436, 463, 464 partitioning around medoids (PAM), 261–262 path lengths, 169-170 removals, 466 node-colored graphlets, 200-201 PathBlast, pairwise network alignment, 380, node-link diagrams, 542-547 379-381 animations, 551 pathogenicity, graphlet-based approach, 224 combining layouts, 550, 551 pathway enrichment analysis, 179, 180 pathways, networks, 537-538, 539, 541 force directed layouts, 549-550 layering visualizations, 552, 552 patient subtyping, cancer precision medicine, layouts, 549, 550, 550-551 network embedding, 550 pattern enumeration tree, 330, 331 pattern mining, 315-328 simple layout algorithms, 549 visual mappings, 548-549 algorithms, 329, 330, 340, 361 visualizing networks, 547, 547-548 confounding effect, 350, 351 non-negative matrix factorization (NMF), 295, covariate factors, 349-359 294-295 machine learning, 313-314, 359-361 homogeneous data integration, 298-300 permutation testing, 346-349 precision medicine, 294-300 software tools, 360 solutions, 295-298 statistical redundancy, 341-349 non-negative matrix tri-factorization (NMTF), Tarone's method, 329-341 301, 300-301 pattern occurrence indicator, 315 FUSE, 394-397 peak calling, 79, 79 heterogeneous data integration, 305 Pearson's chi-squared test, 323-325, 336 precision medicine, 300-306 permutation importance, 40 solutions, 301-305 permutation testing normalization, cluster analysis, 246-247 algorithms, 347 Notch signaling pathway, 597 pattern mining, 346-349 personalized genetic tests (PGT), 3, 7, 13, 45 odds ratio, 5, 43 personalized medicine see precision medicine oncogenes, 595 personalized oncology, 287-288, 594 one-mode data format, 244 phenotypes, definition, 460, 461; see also optimization algorithms, 374 genotype-phenotype relationships orbit aware graphlet counting, 206, 226 power-lawness, 509 orbit aware quad census (Oaqc), 227, 228 PPI see protein-protein interactions orbit counting algorithm (Orca), 227, 228 precision medicine, 286, 288, 306, 596 cancer, 287 orbit unaware graphlet counting, 199, 226 orbit weights, 386 data integration, 287-288 orbits, graphlets, 203, 203, 204, 205 data integration methods, 290-294 ordered graphlets, 202, 202 data integration types, 288-290 ovarian cancer, 305, 476 drug repurposing, 287 biomarkers, 608, 609, 608-610 exercises, 306-308 cancer stem cells, 598 long non-coding RNAs, 88 machine learning, 287, 306 overlapping clustering, 243

630 INDEX

precision medicine (cont.) qualitative annotations, 172 non-negative matrix factorization, 294-300 quantitative annotations, 172 non-negative matrix tri-factorization, 300-306 prediction databases, 163, 164, 162-165, 179 Rand index, 271 predictive genetic risk models, 39-44 random forest methods, 37-40 preferential attachment, 194, 199, 212, 213, 220 random walks, 132 preprocessing, cluster analysis, 242, 246-251 randomization, network properties, 431-433, principal component analysis (PCA), 206, 435, 436-437 215-216, 226, 251, 248-251 nodes, 435-436 probabilistic networks, 400, 399-401 topology, 433-435 prostate cancer, biomarkers, 606-608 rapid graphlet enumerator (RAGE), 227, 228 protein complex detection, 241 RAS genes, mutations, 462 protein function prediction, 218-220 recessive models, 32 protein homology detection, 241-242 redundancy, pattern mining, 342, 341-349 protein structure network (PSN), 193 regulatory networks, 418-419 protein-DNA interactions, 600 relative graphlet frequency distance (RGFD), 214 protein-protein interactions (PPI), 151-154, relative risk, 43 179-181, 193, 536, 537 repression, transcriptional, 491 annotations, 171, 370, 371 resting state networks (RSN), 499 biases, 158-159, 438 rich-clubness, 509-510, 517 computational biology workflows, 175-179 risk indicators, 43 computational method types, 156 Roadmap Epigenomics Project, 95 computational prediction, 156-159 data integration, 159-160 SAND/SAND-3D subgraph tools, 227, 229 databases, 112, 160-167, 602, 603 scale-free networks, 139 dominating set, 211 schema, 160 exercises, 181 scoring schemes see alignment scoring schemes experimental detection, 155, 154-156 search algorithms, graph theory, 130-131 high-throughput methods (HT), 154 Search Tool for the Retrieval of Interacting human aging, 220-223 Genes/Proteins (STRING), 606–608 interaction types, 155 search-based network alignment, 217-218 limitations, detection methods, 154, 155 seed clusters, disease module analysis, 438-440 low-throughput methods (LT), 154 semantic similarity, alignment scoring, 376 molecular networks, 415-417 sequencing network alignment, 372, 371-373 alignment, 369 network analysis, 173-175, 176, 194, 199, 212, by synthesis, 71 220, 221-223 proteins, 156 network visualizations, 170-172 SF-GD (scale-free gene duplication and networks, 111, 112, 153, 167-170 divergence), 139 stem cell therapy, 598-603, 603 short-read sequencing, 71 tissue interactomes, 479 sickle cell disease, 461-462, 479-480 proteins significant itemset mining, 317, 315-317 cancer, 223-224, 598-603 significant pattern mining see pattern mining domains, 156 significant subgraph mining, 317-318, 319 functions, 370, 369-371 silhouette values, 273, 274 sequencing, 156 similarity networks, 538-539, 542, 543 proteomics, 599-601 simultaneous decomposition, 298, 299 prototype based clustering algorithms, 257 single nucleotide polymorphisms (SNP), 1 proximity calculation, cluster analysis, 252-256 calling and genotyping, 21-27 pruning condition, 338, 339 definition, 6 Cochran-Mantel-Haenszel test, 355–359 disease association, 10, 41, 31-47 public databases, 2, 22, 72, 74, 427, 559-562 effect sizes, 5

INDEX 631

identification, 9, 30 tertiary structure, 156-158 significant itemset mining, 315 testability, pattern mining, 329, 337, 359 single-SNP association studies, 31-33 1000 genomes project, 1, 18, 28-29 small-worldness, 508 3C technology, chromatin conformation, SMETANA, multiple network alignment method, 392-394 time-respecting path, 199, 226 social networks, 225, 224-226, 423-426, 538 tissue annotation, 166 contagious diseases spread, 423-424 tissue interactomes, 478-482 social contagion, 425 differential network analysis, 481 transportation, 424-425 genome-wide association studies, 479 software tools, pattern mining, 360 meta-analysis, 481–482 spectral clustering, 132 PPI networks, 479 spectral graph theory, 131-132 tools, 478 spinocerebellar ataxia type 1 (SCA1), 473 tissue profiles, 477 spreadsheets, visualizing networks, 541, 544 tissue-sensitive molecular networks, 475-480 standardization, cluster analysis, 246-247 tissue-specific interactions, 476 static graphlets, 195, 196, 202 topological associated domains (TAD), statistical association testing, pattern mining, chromatin conformation, 86, 86-87 topology, networks, 196-209, 492, 506-508 statistical redundancy, pattern mining, training methods, data integration, 290, 341-349 289-290 stem cell therapy, 594-595 transcriptional regulation networks, 113 cancer stem cells, 595-598, 605, 606, transcriptional, repression, 491 603-612 transivity clustering, 268-270 exercises, 612 transportation networks, contagious diseases, protein interactions, 598-603 424-425 tumor stemness biomarkers, 596-597, 605, trees, graph theory, 124, 124 606, 610, 603-612 tumors; see also cancer stochastic measures, network topology, 507-510 metastases, 595-598 STRING (Search Tool for the Retrieval of stemness biomarkers, 596-597, 603-612, 605, Interacting Genes/Proteins), 606-608 **606**, 610 structural brain networks, 492-499 suppressor genes, 595 structural consistency, 509 Turing machines, 117 subcellular localization, 154, 166, 600 two-mode data format, 244 subgraphs, 120, 120 two-stage network alignment, 216-218 centrality, 137 connectedness, 119 undirected graphlets, 196, 202 isomorphism problem, 373 undirected graphs, 118 subset/superset relationships, pattern mining, unordered graphlets, 196, 202 341, 343 support vector machines, 34-38 validity indices, cluster evaluation, 270-271 suppressor genes, tumors, 595 variable importance measures (VIMs), 37 symmetric sub-structure scores, alignment variant calling algorithms, 25-26 scoring, 377 variety, databases, 161 variety/velocity/veracity, databases, 160 T1-weighted MRI scanning, 68, 494, 496 vector spaces, 116 targeted therapy, 594 velocity, databases, 161 targeting, drugs, 174 veracity, databases, 161 Tarone's improved Bonferroni correction, VIM (variable importance measures), 37 327-328 visual mappings Tarone's method, pattern mining, 329-341 continuous, 548 ten-eleven-translocation (TET) proteins, 69 discrete, 548

632 INDEX

visual mappings (cont.)
node-link diagrams, 548–549
passthrough, 548
visualizing networks, 170–172, 533, 534, 535,
540–552
adjacency matrices, 541, 544
BioFabric, 542, 545
Cytoscape, 534
node-link diagrams, 547, 542–548
spreadsheets, 541, 544

walks, graph theory, 121, 121
weighted graphs, 113, 123, 123
weighted transitive graph projection
problem (WTGPP), 269,
268–269
Wnt signaling pathway, 597
writer enzymes, 68