

#### **Electrical Machines**

Electrical machines convert energy existing in one form to another, usable, form. These machines can broadly be divided into three categories: generators, motors and transformers. Generators convert mechanical energy into electrical energy, motors convert electrical energy to mechanical energy, and transformers change the voltage level in ac system and are considered to be the backbone of a power system.

Electrical machines play an important role in domestic appliances, commercial devices and industrial applications. It is important for students of electrical and electronics engineering to learn the basic concepts of transformers, motors, generators and magnetic circuits. This book explains the design of transformers, decoding of generators and performance of electrical motors through descriptive illustrations, solved examples and mathematical derivations. Construction, working principles and applications of various electrical machines are discussed in detail. In addition, it offers an engrossing discussion on special purpose machines, which is useful from an industrial prospective in building customised machines. The text contains hundreds of worked examples and illustrations and more than a thousand self-assessment exercises. It is an ideal textbook for undergraduate students of electrical and electronics engineering.

**S. K. Sahdev** is Associate Dean at the Faculty of Technology and Science at Lovely Professional University, Jalandhar. He has more than thirty-five years of teaching experience. In addition, he has helped industrial units to set-up electrical laboratories for testing and developing their products. He has authored six books. His areas of interest include electrical machines, electric drives, power electronics and power systems.



### **Electrical Machines**

S. K. Sahdev







Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108431064

© Cambridge University Press & Assessment 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2018

A catalogue record for this publication is available from the British Library

ISBN 978-1-108-43106-4 Paperback

Additional resources for this publication at www.cambridge.org/9781108431064

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.



This book is dedicated to

my Parents,

wife – Ritu Sahdev,

son – Rohit Sahdev,

daughter-in-law – Robina Sahdev

and

grandsons – Arnav and Adhiraj



| Pref | ace                       |                                                   | xxi   |
|------|---------------------------|---------------------------------------------------|-------|
| Acki | nowled                    | lgements                                          | xxiii |
| 1.   | Electro Magnetic Circuits |                                                   | 1     |
|      | Intro                     | duction                                           | 1     |
|      | 1.1                       | Magnetic Field and its Significance               | 2     |
|      | 1.2                       | Magnetic Circuit and its Analysis                 | 3     |
|      | 1.3                       | Important Terms                                   | 3     |
|      | 1.4                       | Comparison between Magnetic and Electric Circuits | 5     |
|      | 1.5                       | Ampere-turns Calculations                         | 6     |
|      | 1.6                       | Series Magnetic Circuits                          | 6     |
|      | 1.7                       | Parallel Magnetic Circuits                        | 7     |
|      | 1.8                       | Leakage Flux                                      | 8     |
|      | 1.9                       | Magnetisation or B-H Curve                        | 21    |
|      | 1.10                      | Magnetic Hysteresis                               | 22    |
|      | 1.11                      | Hysteresis Loss                                   | 23    |
|      | 1.12                      | Importance of Hysteresis Loop                     | 24    |
|      | Section                   | on Practice Problems                              | 24    |
|      | 1.13                      | Electro Magnetic Induction                        | 28    |
|      | 1.14                      | Faraday's Laws of Electromagnetic Induction       | 29    |
|      | 1.15                      | Direction of Induced emf                          | 30    |
|      | 1.16                      | Induced emf                                       | 31    |
|      | 1.17                      | Dynamically Induced emf                           | 31    |
|      | 1.18                      | Statically Induced emf                            | 33    |
|      | 1.19                      | Self Inductance                                   | 34    |
|      | 1.20                      | Mutual Inductance                                 | 34    |
|      | 1.21                      | Co-efficient of Coupling                          | 35    |
|      | 1.22                      | Inductances in Series and Parallel                | 36    |
|      | 1.23                      | Energy Stored in a Magnetic Field                 | 41    |
|      | 1.24                      | AC Excitation in Magnetic Circuits                | 42    |
|      | 1.25                      | Eddy Current Loss                                 | 44    |
|      | Section                   | on Practice Problems                              | 46    |



viii

|    | 1.26    | Electro-mechanical Energy Conversion Devices                              | 48  |
|----|---------|---------------------------------------------------------------------------|-----|
|    | 1.27    |                                                                           | 49  |
|    |         | 1.27.1 Soft Iron Piece Placed in the Magnetic Field                       | 49  |
|    |         | 1.27.2 Permanent Magnet Placed in the Magnetic Field                      | 51  |
|    |         | 1.27.3 Electromagnet Placed in the Magnetic Field                         | 53  |
|    | 1.28    | Production of Torque                                                      | 54  |
|    |         | 1.28.1 In Case of Permanent Magnet                                        | 55  |
|    |         | 1.28.2 In Case of Electromagnet                                           | 55  |
|    | 1.29    | Production of Unidirectional Torque                                       | 57  |
|    |         | 1.29.1 By Rotating the Main Magnets                                       | 58  |
|    |         | 1.29.2 By Changing the Direction of Flow of Current in the Conductors of  |     |
|    |         | Electromagnet                                                             | 58  |
|    | 1.30    | emf Induced in a Rotating Coil Placed in a Magnetic Field                 | 63  |
|    | 1.31    | Elementary Concept of Electrical Machines                                 | 68  |
|    |         | 1.31.1 Operation of Machine as a Generator (Conversion of Mechanical      |     |
|    |         | Energy into Electric Energy)                                              | 68  |
|    |         | 1.31.2 Operation of Machine as a Motor                                    | 70  |
|    | Section | on Practice Problems                                                      | 74  |
|    | Revie   | w Questions                                                               | 74  |
|    | Multi   | ple Choice Questions                                                      | 76  |
| 2. | Singl   | e-Phase Transformers                                                      | 79  |
|    | _       | luction                                                                   | 80  |
|    | 2.1     | Transformer                                                               | 80  |
|    | 2.2     | Working Principle of a Transformer                                        | 82  |
|    | 2.3     | Construction of Transformer                                               | 82  |
|    |         | 2.3.1 Core Material                                                       | 83  |
|    |         | 2.3.2 Core Construction                                                   | 83  |
|    |         | 2.3.3 Transformer Winding                                                 | 85  |
|    |         | 2.3.4 Insulation                                                          | 88  |
|    |         | 2.3.5 Bushings                                                            | 89  |
|    |         | 2.3.6 Transformer Tank                                                    | 90  |
|    | 2.4     | Simple Construction of Single-phase Small Rating (SAY 2 kVA) Transformers | 91  |
|    | 2.5     | An Ideal Transformer                                                      | 94  |
|    | 2.6     | Transformer on DC                                                         | 95  |
|    | 2.7     | emf Equation                                                              | 96  |
|    | Section | on Practice Problems                                                      | 100 |
|    | 2.8     | Transformer on No-load                                                    | 103 |
|    | 2.9     | Effect of Magnetisation on No-load (Exciting) Current                     | 104 |
|    | 2.10    | Inrush of Magnetising Current                                             | 106 |
|    | Sectio  | on Practice Problems                                                      | 113 |
|    | 2.11    | Transformer on Load                                                       | 114 |
|    | 2.12    | Phasor Diagram of a Loaded Transformer                                    | 115 |
|    | 2.13    | Transformer with Winding Resistance                                       | 118 |



|         |                                                                   | Contents | ix  |
|---------|-------------------------------------------------------------------|----------|-----|
| 2.14    | Mutual and Leakage Fluxes                                         |          | 119 |
| 2.15    | Equivalent Reactance                                              |          | 119 |
|         | on Practice Problems                                              |          | 122 |
|         | Actual Transformer                                                |          | 123 |
| 2.17    | Simplified Equivalent Circuit                                     |          | 125 |
| 2.18    | Short Circuited Secondary of Transformer                          |          | 127 |
| 2.19    | Expression for No-load Secondary Voltage                          |          | 128 |
|         | Voltage Regulation                                                |          | 129 |
| 2.21    | Approximate Expression for Voltage Regulation                     |          | 130 |
| 2.22    | Kapp Regulation Diagram                                           |          | 131 |
|         | on Practice Problems                                              |          | 140 |
|         | Losses in a Transformer                                           |          | 142 |
|         | Effects of Voltage and Frequency Variations on Iron Losses        |          | 143 |
|         | Efficiency of a Transformer                                       |          | 145 |
|         | Condition for Maximum Efficiency                                  |          | 146 |
|         | Efficiency vs Load                                                |          | 152 |
|         | Efficiency vs Power Factor                                        |          | 152 |
|         | All-day Efficiency                                                |          | 154 |
|         | on Practice Problems                                              |          | 156 |
| 2.30    | Transformer Tests                                                 |          | 158 |
|         | Polarity Test                                                     |          | 158 |
|         | Voltage Ratio Test                                                |          | 159 |
| 2.33    | Open-circuit or No-load Test                                      |          | 159 |
| 2.34    | Separation of Hysteresis and Eddy Current Losses                  |          | 161 |
| 2.35    | Short Circuit Test                                                |          | 165 |
| 2.36    | Back-to-back Test                                                 |          | 167 |
| Section | on Practice Problems                                              |          | 179 |
| 2.37    | Classification of Transformers                                    |          | 181 |
| 2.38    | Parallel Operation of Transformers                                |          | 181 |
|         | Necessity of Parallel Operation                                   |          | 182 |
| 2.40    | Conditions for Parallel Operation of One-phase Transformers       |          | 182 |
| 2.41    | Load Sharing between Two Transformers Connected in Parallel       |          | 184 |
| Section | on Practice Problems                                              |          | 194 |
| 2.42    | Auto-transformer                                                  |          | 195 |
| 2.43    | Auto-transformer vs Potential Divider                             |          | 199 |
| 2.44    | Saving of Copper in an Auto-transformer                           |          | 199 |
| 2.45    | Advantages of Auto-transformer over Two-winding Transformer       |          | 200 |
| 2.46    | Disadvantages of Auto-transformers                                |          | 200 |
| 2.47    | Phasor Diagram of an Auto-transformer                             |          | 201 |
| 2.48    | Equivalent Circuit of an Auto-transformer                         |          | 203 |
| 2.49    | Simplified Equivalent Circuit of an Auto-transformer              |          | 203 |
| 2.50    | Conversion of a Two-winding Transformer to an Auto-transformer    |          | 205 |
| 2.51    | Comparison of Characteristics of Auto-transformers and Two-windin | ıg       |     |
|         | Transformers                                                      |          | 207 |



x Contents

| 71 |         | ments                                                                      |     |
|----|---------|----------------------------------------------------------------------------|-----|
|    | 2.52    | Applications of Auto-transformers                                          | 208 |
|    |         | on Practice Problems                                                       | 218 |
|    |         | w Questions                                                                | 220 |
|    |         | ple Choice Questions                                                       | 221 |
| 3. | Thre    | e-Phase Transformers                                                       | 224 |
|    | Intro   | duction                                                                    | 224 |
|    | 3.1     | Merits of Three-phase Transformer over Bank of Three Single-phase          |     |
|    |         | Transformers                                                               | 225 |
|    | 3.2     | Construction of Three-phase Transformers                                   | 225 |
|    | 3.3     | Determination of Relative Primary and Secondary Windings in Case of        |     |
|    |         | Three-phase Transformer                                                    | 227 |
|    | 3.4     | Polarity of Transformer Windings                                           | 227 |
|    | 3.5     | Phasor Representation of Alternating Quantities in Three-phase Transformer |     |
|    |         | Connections                                                                | 228 |
|    | 3.6     | Three-phase Transformer Connections                                        | 229 |
|    | 3.7     | Selection of Transformer Connections                                       | 233 |
|    |         | 3.7.1 Star-Star (Yy0 or Yy6) Connections                                   | 233 |
|    |         | 3.7.2 Delta-Delta (Dd0 or Dd6) Connections                                 | 236 |
|    |         | 3.7.3 Star-Delta (Yd1 or Yd11) Connections                                 | 238 |
|    |         | 3.7.4 Delta-Star (Dy1 or Dy11) Connections                                 | 239 |
|    |         | 3.7.5 Delta-Zigzag Connections                                             | 241 |
|    | Section | on Practice Problems                                                       | 251 |
|    | 3.8     | Parallel Operation of Three-phase Transformers                             | 252 |
|    | 3.9     | Necessity of Parallel Operation of Three-phase Transformers                | 253 |
|    | 3.10    | Conditions for Parallel Operation of Three-phase Transformers              | 254 |
|    | 3.11    | Load Sharing between Three-phase Transformers Connected in Parallel        | 255 |
|    | 3.12    | Three Winding Transformers (Tertiary Winding)                              | 257 |
|    |         | 3.12.1 Stabilisation Provided by Tertiary Winding in Star-Star Transformer | 260 |
|    | 3.13    | Tap-changers on Transformers                                               | 265 |
|    | 3.14    | Types of Tap-changers                                                      | 266 |
|    |         | 3.14.1 No-load (or Off-load) Tap-changer                                   | 266 |
|    |         | 3.14.2 On-load Tap-changer                                                 | 267 |
|    | Section | on Practice Problems                                                       | 268 |
|    | 3.15    | Transformation of Three-phase Power with Two Single-phase Transformers     | 270 |
|    | 3.16    | Open-Delta or V-V Connections                                              | 270 |
|    | 3.17    | Comparison of Delta and Open Delta Connections                             | 274 |
|    | 3.18    | T-T Connections or Scott Connections                                       | 275 |
|    | 3.19    | Conversion of Three-phase to Two-phase and vice-versa                      | 277 |
|    | 3.20    | Difference between Power and Distribution Transformers                     | 291 |
|    | 3.21    | Cooling of Transformers                                                    | 291 |
|    | 3.22    | Methods of Transformer Cooling                                             | 292 |
|    | 3.23    | Power Transformer and its Auxiliaries                                      | 294 |



|    |         | Contents                                                                | xi  |
|----|---------|-------------------------------------------------------------------------|-----|
|    | 3.24    | Maintenance Schedule of a Transformer                                   | 296 |
|    | 3.25    | Trouble Shooting of a Transformer                                       | 297 |
|    | Section | on Practice Problems                                                    | 297 |
|    | Revie   | w Questions                                                             | 299 |
|    | Multi   | ple Choice Questions                                                    | 300 |
| 4. | DC G    | Generator                                                               | 301 |
|    | Introd  | luction                                                                 | 301 |
|    | 4.1     | DC Generator                                                            | 302 |
|    | 4.2     | Main Constructional Features                                            | 303 |
|    | 4.3     | Simple Loop Generator and Function of Commutator                        | 307 |
|    | 4.4     | Connections of Armature Coils with Commutator Segments and Location     |     |
|    |         | of Brushes                                                              | 309 |
|    | 4.5     | Armature Winding                                                        | 311 |
|    | 4.6     | Types of Armature Winding                                               | 314 |
|    | 4.7     | Drum Winding                                                            | 315 |
|    | 4.8     | Lap Winding                                                             | 316 |
|    | 4.9     | Numbering of Coils and Commutator Segments in Developed Winding Diagram | 318 |
|    | 4.10    | Characteristics of a Simplex Lap Winding                                | 323 |
|    | 4.11    | Characteristics of a Multiplex Lap Winding                              | 327 |
|    | 4.12    | Equalising Connections and their Necessity                              | 327 |
|    | 4.13    | Simplex Wave Winding                                                    | 330 |
|    | 4.14    | Dummy Coils                                                             | 332 |
|    | 4.15    | Applications of Lap and Wave Windings                                   | 338 |
|    | Section | on Practice Problems                                                    | 338 |
|    | 4.16    | emf Equation                                                            | 340 |
|    | 4.17    | Torque Equation                                                         | 341 |
|    | 4.18    | Armature Reaction                                                       | 349 |
|    | 4.19    | Calculations for Armature Ampere-turns                                  | 351 |
|    | 4.20    | Commutation                                                             | 355 |
|    | 4.21    | Cause of Delay in the Reversal of Current in the Coil going through     |     |
|    |         | Commutation and its Effect                                              | 357 |
|    | 4.22    | Magnitude of Reactance Voltage                                          | 358 |
|    | 4.23    | Good Commutation and Poor Commutation                                   | 360 |
|    | 4.24    | Interpoles and their Necessity                                          | 361 |
|    | 4.25    | Compensating Winding and its Necessity                                  | 362 |
|    | 4.26    | Methods of Improving Commutation                                        | 365 |
|    | Section | on Practice Problems                                                    | 366 |
|    | 4.27    | Types of DC Generators                                                  | 368 |
|    | 4.28    | Separately-excited DC Generators                                        | 368 |
|    | 4.29    | Self-excited DC Generators                                              | 369 |
|    | 4.30    | Voltage Regulation of a DC Shunt Generator                              | 371 |
|    | 4.31    | Characteristics of DC Generators                                        | 376 |



xii

|    | 4.32    | No-load Characteristics of DC Generators or Magnetisation Curve of DC |     |
|----|---------|-----------------------------------------------------------------------|-----|
|    |         | Generator                                                             | 376 |
|    | 4.33    | Voltage Build-up in Shunt Generators                                  | 377 |
|    | 4.34    | Critical Field Resistance of a DC Shunt Generator                     | 378 |
|    |         | Load Characteristics of Shunt Generator                               | 379 |
|    |         | Load Characteristics of Series Generators                             | 380 |
|    |         | Load Characteristics of Compound Generator                            | 380 |
|    | 4.38    | Causes of Failure to Build-up Voltage in a Generator                  | 381 |
|    | 4.39    | Applications of DC Generators                                         | 381 |
|    |         | Losses in a DC Generator                                              | 382 |
|    | 4.41    | Constant and Variable Losses                                          | 383 |
|    | 4.42    | Stray Losses                                                          | 384 |
|    |         | Power Flow Diagram                                                    | 384 |
|    | 4.44    | Efficiency of a DC Generator                                          | 384 |
|    | 4.45    | Condition for Maximum Efficiency                                      | 385 |
|    | Sectio  | on Practice Problems                                                  | 387 |
|    | Revie   | w Questions                                                           | 390 |
|    | Multi   | ple Choice Questions                                                  | 392 |
| 5. | DC M    | lotors                                                                | 395 |
|    | Introd  | luction                                                               | 395 |
|    | 5.1     | DC Motor                                                              | 396 |
|    | 5.2     | Working Principle of DC Motors                                        | 396 |
|    | 5.3     | Back emf                                                              | 397 |
|    | 5.4     | Electro-magnetic Torque Developed in DC Motor                         | 398 |
|    | 5.5     | Shaft Torque                                                          | 399 |
|    | 5.6     | Comparison of Generator and Motor Action                              | 399 |
|    | 5.7     | Types of DC Motors                                                    | 401 |
|    | 5.8     | Characteristics of DC Motors                                          | 405 |
|    | 5.9     | Characteristics of Shunt Motors                                       | 405 |
|    | 5.10    | Characteristics of Series Motors                                      | 407 |
|    | 5.11    | Characteristics of Compound Motors                                    | 408 |
|    | 5.12    | Applications and Selection of DC Motors                               | 409 |
|    |         | 5.12.1 Applications of DC Motors                                      | 409 |
|    |         | 5.12.2 Selection of DC Motors                                         | 410 |
|    | 5.13    | Starting of DC Motors                                                 | 411 |
|    | 5.14    | Necessity of Starter for a DC Motor                                   | 411 |
|    | 5.15    | Starters for DC Shunt and Compound Wound Motors                       | 412 |
|    | 5.16    | Three-point Shunt Motor Starter                                       | 412 |
|    | 5.17    | Four-point Starter                                                    | 414 |
|    | 5.18    | Calculation of Step Resistances Used in Shunt Motor Starter           | 416 |
|    | 5.19    | Series Motor Starter                                                  | 422 |
|    | Section | on Practice Problems                                                  | 423 |



|    |         |                                                                  | Contents | Xiii |
|----|---------|------------------------------------------------------------------|----------|------|
|    | 5.20    | Speed Control of DC Motors                                       |          | 428  |
|    | 5.21    | Speed Control of Shunt Motors                                    |          | 428  |
|    |         | 5.21.1 Field Control Method                                      |          | 428  |
|    |         | 5.21.2 Armature Control Method                                   |          | 429  |
|    | 5.22    | Speed Control of Separately Excited Motors                       |          | 431  |
|    | 5.23    |                                                                  |          | 432  |
|    | 5.24    | Speed Control of DC Series Motors                                |          | 440  |
|    |         | 5.24.1 Armature Control Method                                   |          | 440  |
|    |         | 5.24.2 Field Control Method                                      |          | 441  |
|    |         | 5.24.3 Voltage Control Method                                    |          | 442  |
|    | 5.25    | Electric Braking                                                 |          | 451  |
|    | 5.26    | Types of Electric Braking                                        |          | 453  |
|    |         | 5.26.1 Plugging                                                  |          | 453  |
|    |         | 5.26.2 Rheostatic Braking                                        |          | 454  |
|    |         | 5.26.3 Regenerative Braking                                      |          | 455  |
|    | Section | on Practice Problems                                             |          | 457  |
|    | 5.27    | Losses in a DC Machine                                           |          | 460  |
|    | 5.28    | Constant and Variable Losses                                     |          | 461  |
|    | 5.29    | Stray Losses                                                     |          | 461  |
|    | 5.30    | Power Flow Diagram                                               |          | 462  |
|    | 5.31    | Efficiency of a DC Machine                                       |          | 462  |
|    | 5.32    | Condition for Maximum Efficiency                                 |          | 463  |
|    | 5.33    | Test Performed to Determine Efficiency of DC Machines            |          | 471  |
|    | 5.34    | Brake Test                                                       |          | 472  |
|    | 5.35    | Swinburne's Test                                                 |          | 474  |
|    | 5.36    | Hopkinson's Test                                                 |          | 479  |
|    | 5.37    | Testing of DC Series Machines                                    |          | 487  |
|    | 5.38    | Inspection/maintenance of DC Machines                            |          | 491  |
|    | 5.39    | Faults in DC Machines                                            |          | 492  |
|    | 5.40    | Trouble Shooting in a DC Motor                                   |          | 492  |
|    | Section | on Practice Problems                                             |          | 493  |
|    | Revie   | w Questions                                                      |          | 495  |
|    | Multi   | ple Choice Questions                                             |          | 497  |
| 6. | Syncl   | hronous Generators or Alternators                                |          | 500  |
|    | Introd  | luction                                                          |          | 501  |
|    | 6.1     | General Aspects of Synchronous Machines                          |          | 501  |
|    | 6.2     | Basic Principles                                                 |          | 502  |
|    | 6.3     | Generator and Motor Action                                       |          | 503  |
|    | 6.4     | Production of Sinusoidal Alternating emf                         |          | 503  |
|    | 6.5     | Relation between Frequency, Speed and Number of Poles            |          | 504  |
|    | 6.6     | Advantages of Rotating Field System over Stationary Field System |          | 504  |
|    | 6.7     | Constructional Features of Synchronous Machines                  |          | 505  |
|    |         |                                                                  |          |      |



xiv

| 6.8   | Excitation Systems                                               | 509 |
|-------|------------------------------------------------------------------|-----|
| 0.0   | 6.8.1 DC Exciters                                                | 509 |
|       | 6.8.2 Static-Excitation System                                   | 510 |
|       | 6.8.3 Brushless Excitation System                                | 511 |
| Secti | on Practice Problems                                             | 512 |
| 6.9   | Armature Winding                                                 | 513 |
| 6.10  | Types of Armature Winding                                        | 513 |
| 6.11  | Important Terms Used in Armature Winding                         | 515 |
|       | on Practice Problems                                             | 519 |
| 6.12  | Coil Span Factor                                                 | 521 |
| 6.13  | Distribution Factor                                              | 522 |
| 6.14  | Winding Factor                                                   | 524 |
| 6.15  | Generation of Three-phase emf                                    | 524 |
| 6.16  | emf Equation                                                     | 525 |
| 6.17  | Wave Shape                                                       | 526 |
| 6.18  | Harmonics in Voltage Wave Form                                   | 526 |
| Secti | on Practice Problems                                             | 534 |
| 6.19  | Production of Revolving Field                                    | 535 |
| 6.20  | Ferrari's Principle (Vector Representation of Alternating Field) | 539 |
| 6.21  | Production of Two-phase Rotating Magnetic Field                  | 540 |
| 6.22  |                                                                  | 541 |
| 6.23  | Rating of Alternators                                            | 542 |
| 6.24  | Armature Resistance                                              | 542 |
| 6.25  | Armature Leakage Reactance                                       | 543 |
| 6.26  | Armature Reaction                                                | 544 |
| 6.27  | Effect of Armature Reaction on emf of Alternator                 | 546 |
| 6.28  | Synchronous Reactance and Synchronous Impedance                  | 548 |
| 6.29  | Equivalent Circuit of an Alternator and Phasor Diagram           | 548 |
| 6.30  | Expression for No-load Terminal Voltage                          | 549 |
| 6.31  | Voltage Regulation                                               | 551 |
| 6.32  | Determination of Voltage Regulation                              | 552 |
| 6.33  | Synchronous Impedance Method or emf Method                       | 552 |
|       | 6.33.1 Determination of Synchronous Impedance                    | 553 |
|       | 6.33.2 Determination of Synchronous Reactance                    | 555 |
| 6.34  | Modern Alternators                                               | 556 |
| 6.35  | Short-Circuit Ratio (SCR)                                        | 556 |
| Secti | on Practice Problems                                             | 565 |
| 6.36  | Assumptions Made in Synchronous Impedance Method                 | 566 |
| 6.37  | Ampere-turn (or mmf) Method                                      | 567 |
| 6.38  | Zero Power Factor or Potier Method                               | 579 |
| Secti | on Practice Problems                                             | 591 |
| 6.39  | Power Developed by Cylindrical Synchronous Generators            | 592 |



|    |         |                                                                  | Contents | XV  |
|----|---------|------------------------------------------------------------------|----------|-----|
|    |         | (201 Brown Outside from ACC consider the Complete France)        |          | 502 |
|    |         | 6.39.1 Power Output of an AC Generator (in Complex Form)         |          | 593 |
|    |         | 6.39.2 Real Power Output of an AC Generator                      |          | 593 |
|    |         | 6.39.3 Reactive Power Output of an AC Generator                  |          | 594 |
|    |         | 6.39.4 Power Input to an AC Generator (in Complex Form)          |          | 594 |
|    |         | 6.39.5 Real Power Input to an AC Generator                       |          | 594 |
|    |         | 6.39.6 Reactive Power Input to an AC Generator                   |          | 595 |
|    |         | 6.39.7 Condition for Maximum Power Output                        |          | 595 |
|    |         | 6.39.8 Condition for Maximum Power Input                         |          | 596 |
|    | ( 10    | 6.39.9 Power Equations, when Armature Resistance is Neglected    |          | 596 |
|    | 6.40    | Two-Reactance Concept for Salient Pole Synchronous Machines      |          | 597 |
|    | C 41    | 6.40.1 Determination of $X_d$ and $X_q$ by Low Voltage Slip Test |          | 599 |
|    | 6.41    | Construction of Phasor Diagram for Two-Reaction Concept          |          | 600 |
|    | 6.42    | Power Developed by a Salient Pole Synchronous Generator          |          | 603 |
|    |         | on Practice Problems                                             |          | 610 |
|    | 6.43    | Transients in Alternators                                        |          | 611 |
|    |         | 6.43.1 Sub-transient, Transient and Direct Reactance             |          | 613 |
|    | 6.44    | •                                                                |          | 616 |
|    |         | Power Flow Diagram                                               |          | 617 |
|    |         | Necessity of Cooling                                             |          | 617 |
|    | 6.47    |                                                                  |          | 618 |
|    | 6.48    | Preventive Maintenance                                           |          | 619 |
|    |         | on Practice Problems                                             |          | 619 |
|    |         | w Questions                                                      |          | 620 |
|    | Multi   | ple Choice Questions                                             |          | 622 |
| 7. |         | llel Operation of Alternators                                    |          | 626 |
|    |         | duction                                                          |          | 626 |
|    | 7.1     | Necessity of Parallel Operation of Alternators                   |          | 626 |
|    | 7.2     | Requirements for Parallel Operation of Alternators               |          | 627 |
|    | 7.3     | Synchronising Alternators                                        |          | 627 |
|    | 7.4     | Conditions for Proper Synchronising                              |          | 627 |
|    | 7.5     | Synchronising Single-phase Alternators                           |          | 629 |
|    |         | 7.5.1 Dark Lamp Method                                           |          | 629 |
|    |         | 7.5.2 Bright Lamp Method                                         |          | 631 |
|    | 7.6     | Synchronising Three-phase Alternators                            |          | 631 |
|    |         | 7.6.1 Three Dark Lamps Method                                    |          | 632 |
|    |         | 7.6.2 Two Bright and One Dark Lamp Method                        |          | 633 |
|    | 7.7     | Synchronising Three-phase Alternators using Synchroscope         |          | 635 |
|    | 7.8     | Shifting of Load                                                 |          | 636 |
|    | 7.9     | Load Sharing between Two Alternators                             |          | 637 |
|    | Section | on Practice Problems                                             |          | 646 |
|    | 7.10    | Two Alternators Operating in Parallel                            |          | 647 |
|    | 7.11    | Synchronising Current, Power and Torque                          |          | 647 |



| xvi | Contents                                |
|-----|-----------------------------------------|
|     | 00,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

| X V I |         | ments                                                             |     |
|-------|---------|-------------------------------------------------------------------|-----|
|       | 7.12    | Effect of Change in Input Power of One of the Alternators         | 649 |
|       | 7.12    | Effect of Change in Excitation of One of the Alternators          | 650 |
|       | 7.14    | Effect of Reactance                                               | 651 |
|       | 7.15    | Effect of Governors' Characteristics on Load Sharing              | 652 |
|       | 7.16    | Hunting                                                           | 653 |
|       |         | on Practice Problems                                              | 660 |
|       |         | w Questions                                                       | 661 |
|       |         | ple Choice Questions                                              | 663 |
| 8.    | Syncl   | nronous Motors                                                    | 665 |
|       | Introd  | luction                                                           | 665 |
|       | 8.1     | Working Principle of a Three-Phase Synchronous Motor              | 666 |
|       | 8.2     | Effect of Load on Synchronous Motor                               | 667 |
|       | 8.3     | Equivalent Circuit of a Synchronous Motor                         | 669 |
|       | 8.4     | Phasor Diagram of a Synchronous Motor (Cylindrical Rotor)         | 669 |
|       | 8.5     | Relation between Supply Voltage V and Excitation Voltage E        | 671 |
|       | 8.6     | Different Torques in a Synchronous Motor                          | 673 |
|       | 8.7     | Power Developed in a Synchronous Motor (Cylindrical Rotor)        | 673 |
|       | 8.8     | Phasor Diagrams of a Salient-pole Synchronous Motor               | 676 |
|       | 8.9     | Power Developed in a Salient-pole Synchronous Motor               | 679 |
|       | 8.10    | Power Flow in a Synchronous Motor                                 | 679 |
|       | Section | on Practice Problems                                              | 700 |
|       | 8.11    | Effect of Change in Excitation                                    | 701 |
|       | 8.12    | V-Curves and Inverted V-Curves                                    | 703 |
|       | 8.13    | Effect of Change in Load on a Synchronous Motor                   | 704 |
|       | 8.14    | Methods of Starting of Synchronous Motors                         | 706 |
|       | 8.15    | Synchronous Condenser                                             | 707 |
|       | 8.16    | Characteristics of Synchronous Motor                              | 710 |
|       | 8.17    | Hunting                                                           | 711 |
|       | 8.18    | Applications of Synchronous Motors                                | 712 |
|       | 8.19    | Comparison between Three-phase Synchronous and Induction Motors   | 712 |
|       | 8.20    | Merits and Demerits of Synchronous Motor                          | 713 |
|       | Section | on Practice Problems                                              | 713 |
|       | Revie   | w Questions                                                       | 716 |
|       | Multi   | ple Choice Questions                                              | 717 |
| 9.    | Thre    | e-Phase Induction Motors                                          | 721 |
|       | Introd  | luction                                                           | 721 |
|       | 9.1     | Constructional Features of a Three-Phase Induction Motor          | 722 |
|       | 9.2     | Production of Revolving Field                                     | 724 |
|       | 9.3     | Principle of Operation                                            | 725 |
|       | 9.4     | Reversal of Direction of Rotation of Three-Phase Induction Motors | 726 |
|       | 9.5     | Slip                                                              | 727 |



|         |                                                                       | Contents | xvii |
|---------|-----------------------------------------------------------------------|----------|------|
| 9.6     | Frequency of Rotor Currents                                           |          | 728  |
| 9.7     | Speed of Rotor Field or mmf                                           |          | 729  |
| 9.8     | Rotor emf                                                             |          | 730  |
| 9.9     | Rotor Resistance                                                      |          | 730  |
| 9.10    | Rotor Reactance                                                       |          | 730  |
| 9.11    | Rotor Impedance                                                       |          | 731  |
| 9.12    | Rotor Current and Power Factor                                        |          | 731  |
| 9.13    | Simplified Equivalent Circuit of Rotor                                |          | 732  |
| Section | on Practice Problems                                                  |          | 739  |
| 9.14    | Stator Parameters                                                     |          | 740  |
| 9.15    | Induction Motor on No-load                                            |          | 740  |
| 9.16    | Induction Motor on Load                                               |          | 741  |
| 9.17    | Induction Motor vs Transformer                                        |          | 742  |
| 9.18    | Reasons of Low Power Factor of Induction Motors                       |          | 743  |
| 9.19    | Main Losses in an Induction Motor                                     |          | 744  |
| 9.20    | Power Flow Diagram                                                    |          | 744  |
| 9.21    | Relation between Rotor Copper Loss, Slip and Rotor Input              |          | 745  |
| 9.22    | Rotor Efficiency                                                      |          | 745  |
| Section | on Practice Problems                                                  |          | 752  |
| 9.23    | Torque Developed by an Induction Motor                                |          | 752  |
| 9.24    | Condition for Maximum Torque and Equation for Maximum Torque          |          | 753  |
| 9.25    | Starting Torque                                                       |          | 754  |
| 9.26    | Ratio of Starting to Maximum Torque                                   |          | 754  |
| 9.27    | Ratio of Full Load Torque to Maximum Torque                           |          | 755  |
| 9.28    | Effect of Change in Supply Voltage on Torque                          |          | 755  |
| 9.29    | Torque-slip Curve                                                     |          | 756  |
| 9.30    | Torque-speed Curve and Operating Region                               |          | 757  |
| 9.31    | Effect of Rotor Resistance on Torque-slip Curve                       |          | 757  |
| Section | on Practice Problems                                                  |          | 764  |
| 9.32    | Constant and Variable Losses in an Induction Motor                    |          | 765  |
| 9.33    | Main Tests Performed on an Induction Motor                            |          | 766  |
|         | 9.33.1 Stator Resistance Test                                         |          | 766  |
|         | 9.33.2 Voltage-ratio Test                                             |          | 766  |
|         | 9.33.3 No-load Test                                                   |          | 767  |
|         | 9.33.4 Blocked Rotor Test                                             |          | 769  |
|         | 9.33.5 Heat Run Test                                                  |          | 770  |
| 9.34    | Equivalent Circuit of an Induction Motor                              |          | 773  |
| 9.35    | Simplified Equivalent Circuit of an Induction Motor                   |          | 775  |
| 9.36    | Maximum Power Output                                                  |          | 776  |
| 9.37    | Circle Diagram                                                        |          | 781  |
| 9.38    | Circle Diagram for the Approximate Equivalent Circuit of an Induction | n Motor  | 782  |
| 9.39    | Construction of a Circle Diagram for an Induction Motor               |          | 783  |



xviii

|     | 9.40    | Results Obtainable from Circle Diagram                        | 785 |
|-----|---------|---------------------------------------------------------------|-----|
|     | 9.41    | Maximum Quantities                                            | 785 |
|     | 9.42    | Significance of Some Lines in the Circle Diagram              | 786 |
|     | Section | on Practice Problems                                          | 793 |
|     | 9.43    | Effect of Space Harmonies                                     | 795 |
|     |         | 9.43.1 Cogging in Three-phase Induction Motors                | 795 |
|     |         | 9.43.2 Crawling in Three-phase Induction Motors               | 795 |
|     | 9.44    | Performance Curves of Induction Motors                        | 796 |
|     | 9.45    | Factors Governing Performance of Induction Motors             | 798 |
|     | 9.46    | High Starting Torque Cage Motors                              | 798 |
|     |         | 9.46.1 Deep Bar Cage Rotor Motors                             | 799 |
|     |         | 9.46.2 Double Cage Induction Motor                            | 800 |
|     | 9.47    | Motor Enclosures                                              | 807 |
|     | 9.48    | Standard Types of Squirrel Cage Motor                         | 810 |
|     |         | 9.48.1 Class A Motors                                         | 811 |
|     |         | 9.48.2 Class B Motors                                         | 811 |
|     |         | 9.48.3 Class C Motors                                         | 811 |
|     |         | 9.48.4 Class D Motors                                         | 812 |
|     |         | 9.48.5 Class E Motors                                         | 812 |
|     |         | 9.48.6 Class F Motors                                         | 813 |
|     | 9.49    | Advantages and Disadvantages of Induction Motors              | 813 |
|     |         | 9.49.1 Squirrel Cage Induction Motors                         | 813 |
|     |         | 9.49.2 Slip-ring Induction Motors                             | 814 |
|     | 9.50    | Applications of Three-phase Induction Motors                  | 814 |
|     | 9.51    | Comparison of Squirrel Cage and Phase Wound Induction Motors  | 815 |
|     | 9.52    | Comparison between Induction Motor and Synchronous Motor      | 815 |
|     | 9.53    | Installation of Induction Motors                              | 816 |
|     | 9.54    | Preventive Maintenance of Three-phase Induction Motors        | 818 |
|     | Section | on Practice Problems                                          | 819 |
|     | Revie   | w Questions                                                   | 820 |
|     | Multi   | ple Choice Questions                                          | 822 |
| 10. | Start   | ing Methods and Speed Control of Three-phase Induction Motors | 828 |
|     | Intro   | luction                                                       | 828 |
|     | 10.1    | Necessity of a Starter                                        | 829 |
|     | 10.2    | Starting Methods of Squirrel Cage Induction Motors            | 829 |
|     |         | 10.2.1 Direct on Line (D.O.L.) Starter                        | 829 |
|     |         | 10.2.2 Stator Resistance (or Reactance) Starter               | 831 |
|     |         | 10.2.3 Star-Delta Starter                                     | 832 |
|     |         | 10.2.4 Auto-transformer Starter                               | 834 |
|     | 10.3    | Rotor Resistance Starter for Slip Ring Induction Motors       | 836 |
|     | Section | on Practice Problems                                          | 844 |
|     | 10.4    | Speed Control of Induction Motors                             | 844 |



|     |                                                                 | Contents | xix  |
|-----|-----------------------------------------------------------------|----------|------|
|     | 10.5 Speed Control by Changing the Slip                         |          | 0.46 |
|     | 10.5 Speed Control by Changing the Slip                         |          | 845  |
|     | 10.5.1 Speed Control by Changing the Rotor Circuit Resistance   | ,        | 845  |
|     | 10.5.2 Speed Control by Controlling the Supply Voltage          |          | 846  |
|     | 10.5.3 Speed Control by Injecting Voltage in the Rotor Circuit  |          | 847  |
|     | 10.6 Speed Control by Changing the Supply Frequency             |          | 847  |
|     | 10.7 Speed Control by Changing the Poles                        |          | 847  |
|     | 10.8 Speed Control by Cascade Method                            |          | 848  |
|     | 10.9 Speed Control by Injecting an emf in the Rotor Circuit     |          | 850  |
|     | 10.9.1 Kramer System of Speed Control                           |          | 851  |
|     | 10.9.2 Scherbius System of Speed Control                        |          | 851  |
|     | Section Practice Problems                                       |          | 854  |
|     | Review Questions                                                |          | 854  |
|     | Multiple Choice Questions                                       |          | 855  |
| 11. | Single-Phase Motors                                             |          | 857  |
|     | Introduction                                                    |          | 857  |
|     | 11.1 Classification of Single-phase Motors                      |          | 857  |
|     | 11.2 Single-phase Induction Motors                              |          | 858  |
|     | 11.3 Nature of Field Produced in Single Phase Induction Motors  |          | 859  |
|     | 11.4 Torque Produced by Single-phase Induction Motor            |          | 860  |
|     | 11.5 Equivalent Circuit of Single-phase Induction Motor         |          | 861  |
|     | 11.6 Rotating Magnetic Field from Two-phase Supply              |          | 866  |
|     | 11.7 Methods to make Single-phase Induction Motor Self-starting |          | 870  |
|     | 11.8 Split Phase Motors                                         |          | 871  |
|     | 11.9 Capacitor Motors                                           |          | 875  |
|     | Section Practice Problems                                       |          | 878  |
|     | 11.10 Shaded Pole Motor                                         |          | 879  |
|     | 11.11 Reluctance Start Motor                                    |          | 880  |
|     | 11.12 Single-phase Synchronous Motors                           |          | 881  |
|     | 11.13 Reluctance Motors                                         |          | 882  |
|     | 11.14 Hysteresis Motors                                         |          | 884  |
|     | 11.15 AC Series Motor or Commutator Motor                       |          | 885  |
|     | 11.16 Universal Motor                                           |          | 886  |
|     | 11.17 Comparison of Single-phase Motors                         |          | 888  |
|     | 11.18 Trouble Shooting in Motors                                |          | 889  |
|     | Section Practice Problems                                       |          | 890  |
|     | Review Questions                                                |          | 891  |
|     | Multiple Choice Questions                                       |          | 892  |
| 12. | Special Purpose Machines                                        |          | 893  |
|     | Introduction                                                    |          | 893  |
|     | 12.1 Feedback Control System                                    |          | 893  |
|     | 12.2 Servomechanism                                             |          | 894  |



xx Contents

| 12                  | 2 Samomatans                                                                      | 904        |  |  |
|---------------------|-----------------------------------------------------------------------------------|------------|--|--|
| 12.<br>12.          |                                                                                   | 894<br>895 |  |  |
| 12.                 | 12.4.1 Field-controlled DC Servomotors                                            | 895<br>895 |  |  |
|                     | 12.4.1 Preid-controlled DC Servomotors  12.4.2 Armature-controlled DC Servomotors | 895        |  |  |
|                     | 12.4.3 Series Split-field DC Servomotors                                          | 896        |  |  |
|                     | 12.4.4 Permanent-magnet Armature-controlled DC Servomotor                         | 896        |  |  |
| 12.                 |                                                                                   | 897        |  |  |
| 12.                 |                                                                                   | 898        |  |  |
|                     | ction Practice Problems                                                           | 903        |  |  |
| 12.                 |                                                                                   | 903        |  |  |
| 12.                 | 12.7.1 Brushless DC Generator                                                     | 905        |  |  |
| 12.                 |                                                                                   | 905        |  |  |
| 12.                 | •                                                                                 | 906        |  |  |
| 12.                 | .10 Brushless DC Motors                                                           | 907        |  |  |
| 12.                 | .11 Stepper Motors                                                                | 908        |  |  |
|                     | 12.11.1 Permanent-magnet (PM) Stepper Motor                                       | 909        |  |  |
|                     | 12.11.2 Variable-reluctance (VR) Stepper Motor                                    | 912        |  |  |
| Sec                 | ction Practice Problems                                                           | 913        |  |  |
| 12.                 | 12 Switched Reluctance Motor (SRM)                                                | 914        |  |  |
| 12.                 | .13 Linear Induction Motor (LIM)                                                  | 915        |  |  |
| 12.                 | .14 Permanent Magnet DC Motors                                                    | 917        |  |  |
| 12.                 | .15 Induction Generator                                                           | 920        |  |  |
| 12.                 | .16 Submersible Pumps and Motors                                                  | 922        |  |  |
| 12.                 | 17 Energy Efficient Motors                                                        | 926        |  |  |
| Sec                 | ction Practice Problems                                                           | 929        |  |  |
| Re                  | view Questions                                                                    | 929        |  |  |
| Mu                  | ultiple Choice Questions                                                          | 930        |  |  |
| Ppen Book Questions |                                                                                   |            |  |  |
| ndex                |                                                                                   |            |  |  |



#### **Preface**

This book on 'Electrical Machines' has been written for under-graduate students of Electrical Engineering (EE) and Electrical & Electronics Engineering (EEE) belonging to various Indian and Foreign Universities. It will also be useful to candidates appearing for AMIE, IETE, GATE, UPSC Engineering Services and Civil Services Entrance Examinations.

We know that electrical energy has a wide range of applications where electrical machines play a vital role in industrial production and many other areas of science and technology. Accordingly, this book has been designed so that it be useful not only to students pursuing courses in electrical engineering but also for practising engineers and technicians.

'Electrical Machines' is taught at various universities under different titles such as Electrical Machines-I, Electrical Machines-II, DC Machines and Transformers, Electromagnetic Energy Conversion Devices, Special Purpose Machines, etc. All the topics in such courses have been covered in this single unit. As such, the book covers the revised syllabi of all Indian and Foreign Universities.

Generally, students find Electrical Machines to be one of the most difficult subjects to understand, despite the availability of a large number of text books in this field. Keeping this fact in mind, this text has been developed in a systematic manner giving more emphasis on basic concepts.

Each chapter of the book contains much needed text, supported by neat and self-explanatory diagrams to make the subject self-speaking to a great extent. A large number of solved and unsolved examples have been added in various chapters to enable students to attempt different types of questions in examination without any difficulty. Section Practice Problems have been added in all the chapters to maintain regular study and understanding. At the end of each chapter sufficient objective type questions, short-answer questions, test questions and unsolved examples have been added to make the book a complete and comprehensive unit in all respects.

The author lays no claim to original research in preparing the text. Materials available in the research work of eminent authors have been used liberally. But the author claims that he has organised the subject matter in very systematic manner. He also claims that the language of the text is lucid, direct and easy to understand.

Although every care has been taken to eliminate errors, however it is very difficult to claim perfection. I hope this book will be useful to its users (students, teachers and professionals). I shall be very grateful to the readers (students and teachers) and users of this book if they point out any mistake that might have crept in. Suggestions for the improvement of the book will be highly appreciated.



# **Acknowledgements**

There are several people to whom I would like to express my sincere thanks. First of all, I would like to thank Mr Ashok Mittal (Hon'ble Chancellor), Mrs Rashmi Mittal (Hon'ble Pro-chancellor), Mr H. R. Singla (Director General) of Lovely Professional University, Jalandhar, who have inspired me to develop the text in the shape of a book. I would also like to thank Dr Lovi Raj Gupta, Executive Dean, (LFTS) of Lovely Professional University, who has encouraged and helped me in preparing the text.

Secondly, I would like to thank the entire executive staff, faculty and students of Lovely Professional University and Punjab Technical University for their support, collaboration and friendship.

I would like to thank all my friends, particularly Dr Manjo Kumar, Principal, DAV Institute of Engineering and Technology, Jalandhar; Dr Sudhir Sharma, HOD, Electrical, DAV Institute of Engineering and Technology, Jalandhar; Mr D. S. Rana, HOD, Electrical who have been involved, either directly or indirectly, in the successful completion of this book.

I owe my family members, relatives, friends and colleagues (Professor Bhupinder Verma, Mr R. K. Sharma, Mr Satnam Singh, Mr Amit Dhir and Ms Meenakshi Gupta) a special word of thanks for their moral support and encouragement.

I express my gratitude to the Publisher 'Cambridge University Press' and its Associate Commissioning Editor Ms Rachna Sehgal for guidance and support in bringing out the text in the shape of a book.