MARITIME NETWORKS IN THE ANCIENT MEDITERRANEAN WORLD

This volume brings together scholars of Mediterranean archaeology, ancient history, and complexity science to advance theoretical approaches and analytical tools for studying maritime connectivity. For the coast-hugging populations of the ancient Mediterranean, mobility and exchange depended on a distinct environment and technological parameters that created diverse challenges and opportunities, making the modeling of maritime interaction a paramount concern for understanding cultural interaction more generally. Network-inspired metaphors have long been employed in discussions of this interaction, but increasing theoretical sophistication and advances in formal network analysis now offer opportunities to refine and test the dominant paradigm of connectivity. Extending from prehistory into the Byzantine period, the case studies here reveal the potential of such network approaches. Collectively they explore the social, economic, religious, and political structures that guided Mediterranean interaction across maritime space.

Justin Leidwanger is Assistant Professor in the Department of Classics, a faculty member at the Stanford Archaeology Center, and the Omar & Althea Dwyer Hoskins Faculty Scholar at Stanford University. His research uses maritime cultural heritage to understand the role of seaborne networks in structuring economic and social relationships across the Roman and late antique worlds.

Carl Knappett is Professor in the Department of the History of Art at the University of Toronto, where he holds the Walter Graham/Homer Thompson Chair in Aegean Prehistory. He is the author of Thinking through Material Culture, and An Archaeology of Interaction, and recently coeditor of Minoan Architecture and Urbanism with Quentin Letesson, and Human Mobility and Technological Transfer in the Prehistoric Mediterranean with Evangelia Kiriatzi.
MARITIME NETWORKS IN THE ANCIENT MEDITERRANEAN WORLD

Edited by

JUSTIN LEIDWANGER
Stanford University

CARL KNAPPETT
University of Toronto
CONTENTS

List of Figures
page vii

List of Tables
x

List of Contributors
xi

Preface
xiii

1. **MARITIME NETWORKS, CONNECTIVITY, AND MOBILITY IN THE ANCIENT MEDITERRANEAN**
Justin Leidwanger and Carl Knappett
1

2. **ROBUST SPATIAL NETWORK ANALYSIS**
Tim Evans
22

3. **NEW APPROACHES TO THE THERAN ERUPTION**
Ray Rivers
39

4. **GEOGRAPHY MATTERS: DEFINING MARITIME SMALL WORLDS OF THE AEGEAN BRONZE AGE**
Thomas F. Tartaron
61

5. **CULTS, CABOTAGE, AND CONNECTIVITY: EXPERIMENTING WITH RELIGIOUS AND ECONOMIC NETWORKS IN THE GRECO-ROMAN MEDITERRANEAN**
Barbara Kowalzig
93

6. **SHIPWRECKS AS INDICES OF ARCHAIC MEDITERRANEAN TRADE NETWORKS**
Elizabeth S. Greene
132

7. **NETLOGO SIMULATIONS AND THE USE OF TRANSPORT AMPHORAS IN ANTIQUITY**
Mark L. Lawall and Shawn Graham
163
CONTENTS

8. LESSONS LEARNED FROM THE UNINFORMATIVE USE OF NETWORK SCIENCE TECHNIQUES: AN EXPLORATORY ANALYSIS OF TABLEWARE DISTRIBUTION IN THE ROMAN EASTERN MEDITERRANEAN 184
Tom Brughmans

9. AMPHORAS, NETWORKS, AND BYZANTINE MARITIME TRADE 219
Paul Arthur, Marco Leo Imperiale, and Giuseppe Muci

10. NAVIGATING MEDITERRANEAN ARCHAEOLOGY’S MARITIME NETWORKS 238
Barbara J. Mills

Index 257
FIGURES

2.1. Illustration of the network parameters used in this paper
page 26
2.2. Sketch showing the forms of the typical cost functions used in gravity models
27
2.3. PPA for $k = 2$
29
2.4. A simple MDN example
29
2.5. A screenshot showing an ariadne network
30
2.6. On the left, a comparison of the number of edges per site in PPA against distance measures. On the right, a similar comparison for the MDN model
34
2.7. Example of the use of hierarchical clustering (left) and PCA
35
3.1. The deterrence function $V(s)$ for costs proportional to distance and with a short-distance “shoulder”
43
3.2. Important sites for the MBA Aegean, including Knossos and Thera
47
3.3. Dendrogram for the sites of Figure 3.2
49
3.4. Upper figures: the radiation model for Aegean networks before and after the eruption of Thera. Lower figures: ariadne networks for $D = 100$ kilometers before and after the eruption of Thera
52
4.1. Map of the Mediterranean and Aegean Sea region
64–65
4.2. Maps representing four nested geographical scales of maritime networks in the Aegean and eastern Mediterranean
74
4.3. Map of the Saronic Gulf and surrounding land masses
77
4.4. Plan of a portion of Bronze Age architecture at Kolonna on Aigina
78
4.5. The modern coastline at Korphos
80
4.6. The reconstructed Late Bronze Age harbor basin at Kalamianos
80
4.7. Plan of architecture exposed on the surface of the Mycenaean site at Kalamianos
81
4.8. Sherds of the 12th century BC from Kynos, showing net fishing strikingly similar to modern net fishing techniques in Greece (gripos) and India (karamadi)
85
5.1. The spread of Apollo Delios, Artemis Delia, and other divinities of the Delian pantheon in the Aegean island world
100
5.2. Locations of Artemis’ shrines in Attica and lining the Euboian Gulf
102
5.3. The cults of Artemis Ephesia along the Iberian coast and in southern France
113
6.1. Map of the Mediterranean with Archaic shipwreck sites
134
6.2. Detail map of the Aegean indicating zones of interaction for the shipwreck at Pabuç Burnu
140
LIST OF FIGURES

6.3. Zones of interaction for the shipwrecks at Kekova Adası, Kepçe Burnu, and Çaycağız Koyu 141
6.4. Zone of interaction for the shipwrecks at Kekova Adası, Kepçe Burnu, Çaycağız Koyu mapped alongside a distribution zone for early Archaic basket-handle amphoras found at sites of consumption 143
6.5. Zones of interaction for the Pointe Lequin 1A shipwreck 144
6.6. Ego network for the shipwreck at Pabuç Burnu 147
6.7. Ego network for the shipwreck at Pabuç Burnu expanded to include Archaic wrecks that share construction elements and ship's equipment, cargo items, and galley wares 148
6.8. Geographic network comprising shipwreck sites and cargo origins using Gephi’s ForceAtlas2 layout 151
6.9. ForceAtlas2 graph of a network community represented by cargo origins connected by shipwreck edges 153
6.10. GeoLayout graph of a network community represented by cargo origins connected by shipwreck edges 153
6.11. One-mode graph in which shared cargos are used as the edges to join shipwrecks 154
6.12. Network communities and overlapping zones of interaction in the Mediterranean 156
7.1. Distribution of amphora types from phases of activity at the Sanctuary of Demeter and Kore on Acrocorinth, and comparison of type frequencies between the Sanctuary of Demeter and Kore in the 4th century BC with the fill of Corinth Drain 1971-1 166
7.2. Comparison between frequency distributions of stamped amphora handles from Athenian Agora deposit Q 8-9:1 and the Middle Stoa Building Fill, and frequency distribution of amphora types based on counts of rims and toes in the same deposits 167
7.3. Screen image of Netlogo mimicry model with Networked Sharing turned off, high memory duration 169
7.4. Screen image of Netlogo mimicry model with addition of small-world network: sharing turned on, low memory duration 170
7.5. Aggregate results of mimicry model with no network, preferential-attachment network, and small-world network 171
7.6. Screen image of Netlogo modified language change model with preferential-attachment network 173
7.7. Screen image of Netlogo modified language change model with small-world network 173
7.8. Aggregate results of Netlogo modified language change model using preferential-attachment network and threshold model for adoption, and small-world network and threshold model for adoption 174
7.9. Aggregate results of Netlogo modified language change model using preferential-attachment network and rewards model for adoption, and small-world network and rewards model for adoption 175
7.10. Screen image of Netlogo preferential-attachment model set for no social bias and no shape bias 178
LIST OF FIGURES

7.11. Screen image of Netlogo preferential-attachment model set for friendship bias at 50, no shape bias 179
7.12. Screen image of Netlogo preferential-attachment model set for no friendship bias, shape bias at 75 179
7.13. Screen image of Netlogo preferential-attachment model set for no friendship bias, maximized shaped bias (0) 180
7.14. Screen image of Netlogo preferential-attachment model set for friendship bias at 50, maximized shape bias 180
8.1. The network model 185
8.2. Number of sites a certain ware is attested at, per twenty-five-year period (n = 8,073) 189
8.3. Three matrices representing site assemblages 190
8.4. (a) The same matrix as Figure 8.3a but showing percentages of forms’ distributions rather than absolute numbers; (b) BR coefficients of the same matrix; (c) network representation of (b) 192
8.5. Distribution of BR values of form–form similarity matrices per period 195
8.6. Distribution of BR values of form–form similarity matrices per period 196
8.7. Global network measures per twenty-five-year period for the complete network 204
8.8. Global network measures per twenty-five-year period for the network with a threshold on the mean similarity value 204
8.9. Global network measures per twenty-five-year period for networks with a threshold on the mean + standard deviation value 205
8.10. Number of nodes (forms) per ware for the complete networks 205
8.11. Number of nodes (forms) per ware for the networks with a threshold on the mean similarity value 206
8.12. Number of nodes (forms) per ware for the networks with a threshold on the mean + standard deviation similarity value 206
8.13. Boxplot of the proportion of change in node ranking of the clustering coefficient 207
8.14. Boxplot of the proportion of change in node ranking of the degree 208
9.1. Major eastern Roman and Byzantine amphora forms between the 3rd and 13th centuries 221
9.2. Bipartite network graph of selected Byzantine artifacts and their site associations 223
9.3. Affiliation network of sites based on selected 8th-century artifacts 225
9.4. Network displaying only sites connected by strong affiliations 226
9.5. Geographic projection of the early medieval sites’ affiliation network 227
9.6. Globular amphoras distribution within the network 228
9.7. Affiliation network of sites based on 10th- to 11th-century selected artifacts 231
10.1. Kristian Kristiansen’s representation of the Third Science Revolution in archaeology 242
TABLES

2.1. Table of the basic features of several spatial network models
2.2. A simple example of the types of vector used to compare different networks
2.3. Correlation matrix for the Kendall’s tau method using the PageRank values of Table 2
3.1. The sites enumerated in Figure 3.2, including the size of their local resource base
8.1. Typo-chronological references and (possible) region of production for major eastern tablewares
8.2. Summary statistics of BR coefficients for the complete networks per period
8.3. Summary statistics of BR coefficients of complete networks per period
8.4. Global network measures for the complete networks per twenty-five-year period
8.5. Global network measures for the networks per twenty-five-year period with a threshold on the mean BR value
8.6. Global network measures for the networks per twenty-five-year period with a threshold on the mean + standard deviation BR value
CONTRIBUTORS

Paul Arthur (University of Salento)
Tom Brughmans (University of Oxford)
Tim Evans (Imperial College London)
Shawn Graham (Carleton University)
Elizabeth S. Greene (Brock University)
Marco Leo Imperiale (University of Salento)
Carl Knappett (University of Toronto)
Barbara Kowalzig (New York University)
Mark L. Lawall (University of Manitoba)
Justin Leidwanger (Stanford University)
Barbara J. Mills (University of Arizona)
Giuseppe Muci (University of Salento)
Ray Rivers (Imperial College London)
Thomas F. Tartaron (University of Pennsylvania)
PREFACE

This book owes its initial impetus to a year of collaboration between the coeditors at the University of Toronto in 2012–2013, which allowed for fruitful discussions of maritime networks spanning three millennia between the Bronze Age and late antiquity. It was this interest in comparing and contextualizing network behavior across different Mediterranean worlds that gave rise to the November 2013 Toronto workshop on which this volume is based, Networks of Maritime Connectivity in the Ancient Mediterranean: Structure, Continuity and Change over the Longue Durée. In the midst of that venture came Cyprian Broodbank’s provocative proposal that the group author a collective “manifesto” capturing some of the key ideas and insights of our focused discussions (Leidwanger et al., “A manifesto for the study of Mediterranean maritime networks,” Antiquity+ 342 (2014), at http://journal.antiquity.ac.uk/projgall/leidwanger342d), a stimulating process that prompted further reflection and informed the present contributions.

We thank the Social Sciences and Humanities Research Council of Canada for the Postdoctoral Fellowship and the Connections Program grant that made this collaboration and workshop possible. Support for the event was also provided by the Department of the History of Art, the Aegean Material Culture Laboratory, and the Archaeology Centre at the University of Toronto. The Royal Ontario Museum kindly hosted a public lecture in association with the workshop. Assistance in the running of the event came from graduate students Paula Gheorghiade, Rachel Kulick, and Elana Steingart. We wish to thank Beatrice Rehl, the editorial team, and the reviewers for Cambridge University Press, who have helped shepherd the volume along. Most importantly, though, we wish to acknowledge the participants who made the workshop such a stimulating success, some of whom were not able to contribute to the present volume.