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Sine-Gordon Model

1.1 The Dawning of Solitons: From the Frenkel–Kontorova Model

to the Sine-Gordon Model

It is traditional to start a discussion of the solitons with a famous story about

John Scott Russell, who first observed and described the solitary waves. Many

books on solitons begin from this starting point (see, e.g., [310] or [383]). Here,

however, we take another route, departing from the Frenkel–Kontorova model

introduced in 1938 [155].1 This one-dimensional toy model describes a chain of

particles, coupled by the horizontal springs to the nearest neighbors and placed

in a periodic potential, which, for example, represents a substrate.

As with every good toy model, it has a lot of other realizations. For example,

it can be visualized as a system of two parallel superconducting wires with a

Josephson junction in between, or even as a model of the basic functions of

DNA (see, e.g., [115]).

Here we consider another mechanical analog of the Frenkel–Kontorova model,

which was suggested by Scott in 1969 [352]. This is a chain of identical simple

pendulums of length l and mass m separated by distance a. The pendulums are

oscillating in parallel planes and are elastically coupled through the identical

torque springs with their nearest neighbors (see Figure 1.1). Thus, the nth

pendulum both vibrates near its equilibrium point xn, i “ 1, 2, . . . s, s Ñ 8
and oscillates under force of gravity.

As a dynamic variable we can consider the deviation angle φpxn, tq from

the lower vertical position at time t, then the potential energy of the elastic

interaction between two adjacent pendulums is

α

2
rφpxnq ´ φpxn´1qs2,

where α is the torsion constant.

1 For a detailed review of the model and its applications, see, e.g., [63, 85].
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Figure 1.1 Chain of pendulums elastically coupled with their nearest neighbors.

Then the rotational kinetic energy T and the total potential energy U of the

system are given by the sum over all the pendulums

T “ I

2

ÿ

n

ˆBφpxn, tq
Bt

˙2

;

U “ α

2

ÿ

n

rφpxn`1, tq ´ φpxn, tqs2 `
ÿ

n

V rxn, ts,
(1.1)

where I is moment of inertia of a pendulum and xn is the coordinate of the nth

pendulum in the chain. The external potential V rxns is simply the gravitational

potential energy

V rxns “ ´mgl p1 ´ cosφpxn, tqq . (1.2)

Then the equation of motion of a pendulum placed at xn is

I
B2φpxn, tq

Bt2 ´αrφpxn`1, tq´2φpxn, tq`φpxn´1, tqs`mgl sinφpxn, tq “ 0. (1.3)

Evidently, for small-angle oscillations φpxnq ! 1 this equation can be linearized

I
B2φpxn, tq

Bt2 ´ αrφpxn`1, tq ´ 2φpxn, tq ` φpxn´1, tqs ` mglφpxn, tq “ 0,

and the motion is simple harmonic. If we neglect the gravity force, the problem

is reduced to

I
B2φpxn, tq

Bt2 ´ αrφpxn`1, tq ´ 2φpxn, tq ` φpxn´1, tqs “ 0. (1.4)
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The Dawning of Solitons 5

This equation can be solved by Fourier transform. Let us multiply (1.4) by e´ikn

and sum over all n supposing that φn ” φpxn, tq decays to zero for large n:

I
B2

Bt2
8
ÿ

n“´8

φne
´ikn “ 2αpcos k ´ 1q

8
ÿ

n“´8

φne
´ikn. (1.5)

This is the simple differential equation that allows us to find the coefficients of

the Fourier transform, the kth mode of the oscillations

φpk, tq “
8
ÿ

n“´8

φne
´ikn.

Clearly, the solution is

φpk, tq “ Apkq cospωtq ` Bpkq sinpωtq,

where the frequency ω “
b

2α
I

p1 ´ cos kq and Apkq, Bpkq are arbitrary constants

that define the energy of the kth mode. Note that the modes of the linear system

are decoupled from each other; there are no transitions between them.

However it is not so easy to find a solution for (1.3) when the linear approxi-

mation cannot be used. As a matter of fact one has to apply numerical methods

to solve it.

On the other hand, we can consider long-wave excitations in this system.

That is, the excitations such that the characteristic length at which φ changes

significantly is much greater than the distance between neighboring pendulums a.

This allows us to introduce the continuum limit of the model (1.1) replacing the

discrete variable xn with the coordinate x “ na and then taking the limit a Ñ 0.

The Taylor expansion of the functions φpxn`1q “ φpxn ` aq and φpxn´1q “
φpxn ´ aq yields

φpxn˘1q « φpxnq˘a
Bupxnq

Bx ` a2

2

B2φpxnq
Bx2

˘ a3

3!

B3φpxnq
Bx3

` a4

4!

B4φpxnq
Bx4

`¨ ¨ ¨ (1.6)

Thus, in the order up to Opa4q,

φpxn`1q ´ 2φpxnq ` φpxn´1q « a2
B2φpxnq

Bx2
,

and the equation of motion (1.3) takes the form

I
B2φpx, tq

Bt2 ´ αa2
B2φpx, tq

Bx2
` mgl sinφpx, tq “ 0. (1.7)

We can now introduce the dimensionless variables to absorb the parameters

of the model:

x Ñ“ x

a

c

mgl

α
; t Ñ t

c

mgl

I
.
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6 Sine-Gordon Model

Then (1.7) finally takes the form

B2φpx, tq
Bt2 ´ B2φpx, tq

Bx2
` sinφpx, tq “ 0. (1.8)

In other words, in the continuum limit a Ñ 0 the set of the discrete real angular

variables φpxn, tq becomes the scalar field φpx, tq, which is a continuous canonical

variable defined for any coordinate x at any moment of time t.

Equation (1.8), known as the sine-Gordon equation, was actually well known

long before it got this name. Historically, it was Jacques Edmond Bour [81] who

analyzed this equation, considering the compatibility conditions for the Gauss

equations for pseudospheres. It was rederived independently by Bonnet in 1867

and Enneper in 1868, again in the context of the differential geometry of surfaces

of a constant negative Gaussian curvature.2

Consequent study of this equation by Bianchi (1879) and Bäcklund (1880s)

[62] resulted in discovery of the interesting result that it is possible to generate

a tower of new solutions of (1.8) from one particular known solution, even a

trivial one. In Section 1.2 we briefly consider this approach, which is known as

the Bäcklund transformation.

Furthermore, (1.8) supports solitonic solutions, the kinks that we discuss in

Section 1.2. To the best of our knowledge, these solutions were first found in

1950 in further consideration of the Frenkel–Kontorova model [248], once again

a long time before the idea of solitons became fashionable.

In 1962, Perring and Skyrme [319] formulated the sine-Gordon model as a

simple, relativistic, nonlinear scalar field theory. Their description is most appro-

priate for our discussion.

Equation (1.8) may be derived from the Lagrangian

L “ 1

2

ˆBφ
Bt

˙2

´ 1

2

ˆBφ
Bx

˙2

´ U rφs ” 1

2
BµφBµφ ´ Upφq, (1.9)

where for the sake of generality we introduce the potential of the scalar field

Upφq “ p1 ´ cosφq. Hereafter we make use of the covariant notations in 1 ` 1

dimensions to make manifest the Lorenz invariance of the model. Our choice for

the metric in 1`1 dimensions is gµν “ diag p1,´1q and we adopt the natural units

� “ c “ 1 to simplify our notations. The corresponding variational equation is

B
Bxµ

ˆ

δL

δpBµφq

˙

“ δL

δφ
, (1.10)

which yields the covariant form of (1.8)

BµBµφ “ ´U 1pφq. (1.11)

2 There were (unsuccessful) attempts to restore historical credit, e.g., referring to this
equation to as the Enneper (sine-Gordon) equation [358].
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The Dawning of Solitons 7

Evidently, the canonical stress energy tensor is

Tµν “
ˆ

δL

δpBµφq

˙

Bνφ ´ gµνL “ BµφBνφ ´ gµνL. (1.12)

Explicitly, the components of Tµν are

T00 “ 1

2

ˆBφ
Bt

˙2

` 1

2

ˆBφ
Bx

˙2

` 1 ´ cosφ; T01 “ B2φ

Bx Bt ;

T11 “ 1

2

ˆBφ
Bt

˙2

` 1

2

ˆBφ
Bx

˙2

´ 1 ` cosφ; T10 “ B2φ

Bx Bt .
(1.13)

As usual, this tensor is conserved due to translational symmetry of the sine-

Gordon model, i.e.,

BµTµν “
"

BtT 00 ´ BxT 10 “ 0

BtT 01 ´ BxT 11 “ 0.
(1.14)

Since we are interested in finite-energy solutions, we have to consider the total

energy of this system

E “
8
ż

´8

dxT00 “
8
ż

´8

dx

„

1

2
pBtφq2 ` 1

2
pBxφq2 ` Upφq

j

. (1.15)

The corresponding vacuum solutions of the field equation (1.11) are configu-

rations φ0, which satisfy the stationary points of the action, i.e., we shall search

for fields that satisfy the conditions

U 1pφ0q “ 0; U2pφ0q ą 0. (1.16)

The potential of the sine-Gordon model Upφq “ p1 ´ cosφq is periodic. It has

an infinite number of degenerate vacua at φ0 “ 2πn, n P Z, for each of those

U2pφ0q “ 1.

Lorentz invariance of the model (1.9) allows us to start from the static confi-

gurations; they can be boosted if necessary. Therefore, we suppose that B0φ “ 0

and the energy functional (1.15) can be written as

E “
8
ż

´8

dx

„

1?
2

Bxφ ˘
a

Upφq
j2

¯
8
ż

´8

dx
a

2Upφq Bxφ ě 0. (1.17)

Evidently, the energy is minimal if

1

2

ˆBφ
Bx

˙2

“ Upφq. (1.18)
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8 Sine-Gordon Model

We suppose that the potential is positively defined for any values of φpxq, thus
we can define a superpotential W pφq as a function associated with Upφq:

1

2

ˆBW
Bφ

˙2

“ Upφq. (1.19)

Hence, the second term in (1.17) can be written as

8
ż

´8

dx
a

2Upφq Bxφ “ W rφp8qs ´ W rφp´8qs. (1.20)

Then the lower energy bound (so-called Bogomolny bound [77]) is saturated if

E ě W rφp8qs ´W rφp´8qs and the scalar field satisfies the first-order equation

Bφ
Bx “ ˘BW

Bφ . (1.21)

The idea of superpotentialW pφq actually originates from supersymmetric models

where this function becomes a fundamental quantity (see, e.g., [354]). On the

other hand, the method of superpotential is very useful to construct nontrivial

soliton solutions in a system of coupled scalar fields [60].

A trivial vacuum solution of the field equation (1.8) is simply the state φ “
φ0 “ const, where φ0 are the minima of the potential energy Upφq. Then the

Bogomolny bound is saturated trivially, i.e., W rφp8qs “ W rφp´8qs and E ě 0.

We can consider small oscillations about the vacuum, then the Taylor expan-

sion yields Upφ ´ φ0q « 1

2
pφ ´ φ0q2 and we arrive at the original linear Klein–

Gordon equation for the scalar field of unit mass:

pB2

t ´ B2

x ` 1qφ “ 0. (1.22)

A plane-wave solution of this equation, commonly referred to as a mode, is

φk,ωpx, tq “ Aeipkx´ωtq, (1.23)

where A is the amplitude, k is the wavenumber of the mode and ω is the frequency

of the propagating wave. Substitution of this function into (1.22) yields the

dispersion relation

´ ω2 ` k2 ` 1 “ 0. (1.24)

In other words, the linear waves of different lengths propagate with different

speeds. Thus, a general solution of the Klein–Gordon equation can be written as

an integral sum over all modes

φpx, tq “
8
ż

´8

dx
!

A`pkqeipkx´ω`tq ` A´pkqeipkx´ω´tq
)

, (1.25)
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The Dawning of Solitons 9

where ω˘ “ ˘
?
k2 ` 1. Evidently, this is a usual expansion in a Fourier series.

These states belong to the perturbative sector of the model, in the context of the

discrete Frenkel–Kontorova model (1.1) these linear excitations can be identified

with phonons.

The solution of the sine-Gordon equation is trivial if the field is in the vacuum

state, i.e., φ0 “ 2πn, n P Z. Since we are looking for a regular solution with finite

total energy, the field must approach the vacuum as x ˘ 8 and Bxφpx, tq Ñ 0 as

x Ñ ˘ 8. We also suppose that Btφpx, tq is bounded on both ends of the infinite

one-dimensional space.

However, the vacuum is infinitely degenerated and the corresponding vacua can

be different. For example, we can consider the asymptotic conditions φp´8q “ 0

and φp8q “ 2π. Then the field is not in the vacuum everywhere; it is interpolating

between these two vacuum values and the corresponding potential energy of the

configuration is no longer zero. Note that in that case the transition to the trivial

solution is not possible–the boundary conditions on the field are different for

these configurations and it would take an infinite amount of energy to overcome

the barrier between these two sectors.3

To find nontrivial solutions of the sine-Gordon equation (1.8) let us con-

sider the first-order equation (1.18). Evidently, for the case under consideration

Upφq “ p1´cosφq and the superpotential isW pφq “ ´4 cos φ
2
. Thus, the minimal

energy bound is saturated if

Bφ
Bx “ ˘2 sin

φ

2
. (1.26)

Separating the variables, we arrive to

dx “ ˘ dpφ{2q
sinpφ{2q . (1.27)

Let us consider the positive sign in the right-hand side of this equation. Then

the integration yields

x ´ x0 “ ln tan
φ

4
,

where x0 is the integration constant. Thus, we get the nontrivial solution to the

sine-Gordon model

φKpxq “ 4 arctan ex´x0 . (1.28)

This solution is referred to as the kink . It corresponds to the transition

between two neighboring vacua, as at x Ñ ´8 the field is taking the value

φp´8q “ 0 while at x Ñ 8 it approaches another vacuum value, φp8q “ 2π

(see Figure 1.1).

3 Strictly speaking, this energy is proportional to the volume of the 1-dim space L.
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10 Sine-Gordon Model
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Figure 1.2 The potential of the sine-Gordon model (left panel), the energy
density of the static kink, and the kink solution localized at x0 “ 2 (right
panel).

Obviously, taking the negative sign in the right-hand side of (1.27) we obtain

another solution, which interpolates between φp´8q “ 2π and φp8q “ 0, the

antikink

φK̄pxq “ 4 arctan e´px´x0q. (1.29)

Both kink and antikink are exponentially localized lumps of energy centered

around the x “ x0. Indeed, substitution of the static solutions (1.28) or (1.29)

into the integrand of (1.15) yields the energy-density distribution displayed in

Figure 1.2, right panel.

Epxq “ 4

cosh2px ´ x0q
. (1.30)

The dimensionless energy of the static configuration, i.e., its mass, is finite,

M “
8
ż

´8

dxEpxq “ 8.

This solution is an example of a soliton, a spacially localized particle-like

configuration that is stable and, in many respects, behaves like a particle.

The kink state belongs to the non-perturbative sector of the sine-Gordon

model; it cannot be obtained via perturbative expansion in the vicinity of a

particular vacuum since it becomes infinitely heavy in the weak-coupling limit.

Furthermore, the kink solution is a topological soliton. We can introduce the

topological current

jµ “ 1

2π
εµνBνφ; Bµjµ “ 1

2π
εµνBµBνφ ” 0, (1.31)
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The Dawning of Solitons 11

which is automatically conserved. Notably, it is not a Noether current, associated

with some symmetry of the model.4 Thus, the topological charge is

Q “ 1

2π

8
ż

´8

dx
Bφ
Bx “ 1

2π
rφp8q ´ φp´8qs . (1.32)

The topological charge is an index that labels different sectors of the sine-Gordon

model. The kink configuration (1.28) corresponds to the sector with Q “ 1,

while the antikink solution (1.29) belongs to the sector with Q “ ´1. The trivial

vacuum solution is in the sector with Q “ 0. Note that in the framework of the

Frenkel–Kontorova model the kink solitons are representing dislocations in a one-

dimensional atomic chain. These solutions are important in solid-state physics

to model various plastic deformations.

In what follows we use the properties of symmetry of the sine-Gordon equa-

tion (1.8). The model is symmetric both with respect to the usual space-time

symmetries, i.e., translations x Ñ x`x0, t Ñ t` t0, reflections x Ñ ´x, t Ñ ´t,

and the Lorentz transformations (recall that we are using natural units)

x Ñ x ´ vt?
1 ´ v2

“ γpx ´ vtq; t Ñ t ´ vx?
1 ´ v2

“ γpt ´ vxq, (1.33)

where γ “ 1{
?
1 ´ v2 is the Lorentz factor, as usual.

The sine-Gordon model also enjoys another group of symmetries, which include

the reflections of the field φ Ñ ´φ and shifts between the vacua φ Ñ φ ` 2πn.

Thus, the moving solitons may be obtained by a Lorentz transformation of the

kink solution (1.28):

φKpx, tq “ 4 arctan exp pγpx ` x0 ` vtqq . (1.34)

Then we can also define the momentum of the moving configuration as

P “
8
ż

´8

dx T 0

1
“

8
ż

´8

dx BxφBtφ. (1.35)

Clearly, both the energy of the kink and its momentum conserve (cf. (1.14)).

Substitution of the solution (1.34) into the expression (1.35) yields the explicit

value of the momentum P “ 8v{
?
1 ´ v2.

4 However, in the quantum-field theory there is an exact equivalence between the
sine-Gordon model and the massive Thirring model [105]. This duality allows us to
identify the topological current of the quantum sine-Gordon model with dual Up1q
Noether current of the massive Thirring model.
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