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The Mathieu Group M24 As We Knew It

In this chapter we start by reviewing the common way to describe the Math-
ieu group G = M24 as the automorphism group of the binary Golay code and
of the Steiner system formed by the minimal codewords in the Golay code.
This discussion will lead us to the structure of the octad–trio–sextet stabiliz-
ers {G1, G2, G3}. The starting point is the observation that, when forming
a similar triple {H1, H2, H3} comprised of the stabilizers of one-, two- and
three-dimensional subspaces in H = L5(2), we have

G1 ∼= H1 ∼= 24 : L4(2), G2 ∼= H2 ∼= 26 : (L3(2) × S3),

[G1 : G1 ∩ G2] = [H1 : H1 ∩ H2] = 15,

[G2 : G1 ∩ G2] = [H2 : H1 ∩ H1] = 3,

so that the amalgams {G1, G2} and {H1, H2} have the same type according to
Goldschmidt’s terminology, although they are not isomorphic and differ by a
twist performed by an outer automorphism of

H1 ∩ H2 ∼= G1 ∩ G2 ∼= (23 × 23) : (L3(2) × 2),

which permutes conjugacy classes of L3(2)-subgroups. This observation led
us to the construction of M24 as the universal completion of a twisted L5(2)-
amalgam.

1.1 The Golay Code

Commonly the Mathieu group M24 is defined as the automorphism group of
the Golay code, which by definition is a (a) binary (b) linear code (c) of length
24, which is (d) even, (e) self-dual and (f) has no codewords of weight 4.
By (a) we can identify a codeword with its support in the standard basis and
view the Golay code as a pair (P,C), where P is a set and C is a collection
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2 The Mathieu Group M24 As We Knew It

of subsets of P, so that P together with an ordering can be identified with the
standard basis of the vector space 2P := {A | A ⊆ P} in which addition is
performed by the symmetric difference operator:

A + B := (A ∪ B) \ (A ∩ B).

The weight of A ⊆ P is its cardinality |A| and the remaining defining
properties of the Golay code can be restated as follows:

(b) C is closed under addition;
(c) |P| = 24;
(d) every subset in C has an even number of elements;
(e) a subset B of P intersects evenly every A ∈ C exactly when B is taken

from C;
(f) the minimal weight of C is 8.

It is convenient to deduce the numerology of the Golay code starting with con-
sideration of its co-code C∗ := 2P/C. For A ⊆ P let A∗ denote the image of A
in the co-code: A∗ = A+C. The following cardinality attribute is immediately
evident from the minimal weight of C being 8.

Lemma 1.1 Whenever two distinct subsets A and B in P, each of cardinality
at most 4, have the same image in C∗, the equality |A| = |B| = 4 holds, and
A is disjoint from B.

Let P(4) be the set of all subsets of cardinality at most 4 in P. Since it is
not possible to find more than six pairwise disjoint 4-subsets in a 24-set, the
cardinality attribute Lemma 1.1 gives the following lower bound on the size of
the image P

∗
(4)

of P(4) in C∗:

|P∗
(4)| ≥ 1 + 24 +

(

24

2

)

+

(

24

3

)

+
1

6

(

24

4

)

= 212.

On the other hand, the self-duality of C means that it is a maximal isotropic
subspace in 2P with respect to the non-degenerate symplectic form

f : (A, B) �→ |A ∩ B| mod 2.

Thus the dimension of C is exactly half the dimension of 2P, so that |C| =

|C∗| = 212, and the above lower bound is attained. Therefore C∗ = P
∗
(4)

,
which brings about the following representative principle.

Lemma 1.2 For every X ⊆ P the coset X∗ contains a subset A of cardinality
at most 4. The cardinality of such a subset A is uniquely determined by X. If the
cardinality of A is strictly less than 4 then A itself is uniquely determined by
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1.1 The Golay Code 3

X, but if the cardinality is 4 then there are precisely six choices for A forming
a partition of P into six disjoint 4-subsets.

Let us introduce some further terminology by calling the minimal non-empty
subsets of C (having size eight) octads, and denoting by B the set of octads.
A partition of P into six 4-subsets such that the union of any two of them is
an octad is known as a sextet. Notice that the partition which appeared in the
last sentence of the representative principle Lemma 1.2 is a sextet. A partition
of P into three disjoint octads is called a trio. Let S and T denote the sets of
sextets and trios, respectively. Given a sextet, one can easily construct a trio by
taking a sub-partition of the sextet, and then P is an element of C, since it is
the sum of the octads in a trio. Also two distinct octads cannot share a 5-set,
because of the minimal weight property. These observations, together with the
representative principle, give the following Steiner attribute.

Lemma 1.3 Every 4-subset of P is a member of a unique sextet, and every 5-
subset is contained in a unique octad. Furthermore, trios exist and P, viewed
as an element from 2P, is contained in C.

Now easy combinatorial counting demonstrates the equalities

|S| =
1

6

(

24

4

)

= 1771 and |B| =

(

24
5

)

(

8
5

)
= 759.

The pair (P,B) is a Steiner system of type S(24, 8, 5), which by definition
is a collection of 8-subsets in a 24-set such that every 5-subset is covered by
exactly one 8-subset from the collection.

In order to calculate the number of trios we first analyze how two octads can
intersect. Let ni denote the number of octads intersecting a given octad B in
exactly i elements. Clearly n8 = 1, while ni = 0 whenever i is odd by the self-
duality condition, and n6 = 0 by the minimal weight condition. A 4-subset X
is contained in five octads which are unions of the pairs of 4-subsets in the
sextet determined by X and B is one of them. This readily gives the equality

n4 =

(

8

4

)

(5 − 1) = 280.

In order to calculate n2 we consider a 5-subset Q which intersects B in exactly
two elements. The unique octad B(Q) containing Q might intersect B in four
points, but all such subsets Q can be counted, since n4 is known. For the
remaining Qs we have |B ∩ B(Q)| = 2, which gives
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4 The Mathieu Group M24 As We Knew It

n2 =

[(

8

2

)(

16

3

)

− n4

(

4

2

)(

4

3

)] /(

6

3

)

= 448.

Finally,

n0 = |B| − n8 − n4 − n2 = 30.

Since C is linear and contains P, the complement of the union of two disjoint
octads is again an octad, so that an octad is contained in 15 = n0/2 trios and

|T| = |B| · n0/(2 · 3) = 3795.

Any two disjoint octads determine a trio, which implies that any two octads
that are disjoint from a given octad B are either disjoint forming a trio with B,
or intersect each other in a 4-subset. Since an octad is contained in more than
one trio, this demonstrates that every trio is sub-partitioned by a sextet. There
are 15 partitions of a six-element set into three disjoint pairs, therefore every
sextet sub-partitions 15 trios. In view of the equality

15 · |S| = 7 · |T|,

this implies that every trio is sub-partitioned by exactly seven sextets.

1.2 The Octad Graph

Define the octad graph Ŵ to be the graph having the set B of octads as the
vertex set, in which two vertices are adjacent whenever they are disjoint as
octads. From the discussion in the previous section, we have that Ŵ is reg-
ular of valency n0 = 30 and every edge is contained in a unique triangle
corresponding to a trio, and hence there are 15 triangles through a given vertex.

Theorem 1.4 The octad graph Ŵ is distance-regular with the following
intersection diagram:

1
30

30
1

1

28
280

3

3

24
448

15

15

The intersection diagram indicates that the diameter of Ŵ is 3, while the number
of vertices at distance i from any given vertex-octad B is 1, 30, 280 and 448
for i = 0, 1, 2 and 3, respectively. These numbers appear inside the circles
read from left to right. If B ′ is a vertex at distance i from B then, among the
30 vertices adjacent to B ′, exactly ci vertices are at distance i − 1 from B, ai

at distance i and bi at distance i + 1. The parameters ci , ai and bi depend not
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1.3 A Review 5

on the individual choices of B and B ′, but only on the distance between them,
and on the diagram they are drawn around the i th circle at 9, 12 and 3 o’clock,
respectively.

Proof of Theorem 1.4 The values b0 = n0 = 30, c1 = 1, a1 = 1 and b1 =

n0 − c1 − a1 = 24 have already been justified. For a sextet S the subgraph
induced by the vertices or octads which are unions of pairs of 4-subsets in S is
a 15-vertex subgraph of valency 6. This subgraph is the graph on 2-subsets of
a six-element set in which two subsets are adjacent whenever they are disjoint.
These subgraphs will be called quads, with every quad being distance-regular
as described by the following diagram:

1
6

6
1

1

4
8

3

3

Since any two octads intersecting in four elements are unions of pairs of 4-
subsets in the sextet determined by the intersection, we conclude that such
octads are at distance 2 in Ŵ and are contained in a common quad. The diagram
of the quad shows that c2 ≥ 3 and a2 ≥ 3, and hence b2 ≤ 24. Notice that
at this stage the parameters c2, a2 and b2 might still depend on the particular
choice of the pair of vertices at distance 2 in Ŵ, but for any vertex of Ŵ the
number N2,3 of edges joining vertices at distance 2 with vertices at distance 3
from that vertex satisfies the inequality

N2,3 ≤ 280 · 24.

Suppose that B and B ′ are octads intersecting in a 2-subset, and let T =

{B, B1, B2} be a trio containing B. Then the 6-set B ′ \ B splits between B2

and B3. Since any two octads intersect evenly and never share a 6-set, up to
reordering the splitting is 6 = 4+2. Therefore, in every triangle-trio containing
B there is exactly one vertex at distance 2 from B ′ and the other two vertices,
including B, are at distance 3, so that c3 = a3 = 15 and

N2,3 = 448 · 15.

Since the value of N2,3 attains the above upper bound, the equality c2 = a2 = 3
holds and the proof of distance-regularity is complete.

1.3 A Review

In this section we reveal the existence and uniqueness features of the Golay
code C and discuss the automorphism group of C along with some of
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6 The Mathieu Group M24 As We Knew It

its important subgroups. In all the uniqueness statements the caveat up to
isomorphism is implicit. The following statement of existence-uniqueness was
first established by E. Witt in 1938 for the Steiner system.1 The construction
of the Golay code in 19492 extends it to the code, and for the octad graph the
uniqueness was proved by A. E. Brouwer.3

Theorem 1.5 There exists exactly one Steiner system (P,B) of type
S(24, 8, 5). The span of B in the power space 2P is the unique Golay code, and
the octad graph Ŵ is the unique distance-regular graph with its intersection
diagram subject to the existence of the quads.

The Steiner system (P,B) is uniquely reconstructible from the Golay code
C. In fact C can be recovered from the octad graph Ŵ, although we postpone
the explanation of this procedure. In any event, all of the three objects (P,B),
C and Ŵ have the same automorphism group G. The following 5-transitivity
attribute is the central point of the review. This and further theorem attributes
in this section will be proved later in the book within our construction of the
Mathieu group M24 by group amalgams (see Theorem 2.2 and sections after
that theorem). Other proofs can be found in M. Aschbacher’s book,4 in Chap-
ter 6 of the book by J. D. Dixon and B. Mortimer,5 in my book6 and in many
other books and journal articles.

Theorem 1.6 The automorphism group G of (P,B), C and Ŵ is the Mathieu
group M24 discovered by É. Mathieu in 1873.7 It is simple of order

|M24| = 210 · 33 · 5 · 7 · 11 · 23

and acts 5-fold transitively on the 24-set P.

The 5-fold transitivity is by definition the transitivity of G on the set of ordered
5-subsets of P. The following flag-transitivity attribute is the foundation of our
treatment of G. Here a flag � = {B, T, S} is an octad–trio–sextet triple such
that S sub-partitions T , and B is one of the three octads in T .

1 E. Witt, Über Steinersche Systeme, Abh. Math. Seminar Hamburg 12 (1938), 265–275.
2 M. J. E. Golay, Notes on digital coding, Proc. IRE 37 (1949), 657.
3 A. E. Brouwer, The uniqueness of the near hexagon on 759 points, in Finite Geometries, ed.

N. L. Johnson, M. J. Kallaher and C. T. Long, Marcel Dekker, New York, 1982, pp. 47–60.
4 M. Aschbacher, Sporadic Groups, Cambridge University Press, Cambridge, 1994.
5 J. D. Dixon and B. Mortimer, Permutation Groups, Springer, Berlin, 1996.
6 A. A. Ivanov, Geometry of Sporadic Groups I, Cambridge University Press, Cambridge, 1999.
7 É. Mathieu, Sur la fonction cinq fois transitive de 24 quantités, J. Math. Pures Appl. 18

(1873), 25–46.
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1.3 A Review 7

Theorem 1.7 The group G acts transitively on the set of flags �, the stabilizer
of � has order 210·3, and thus contains a Sylow 2-subgroup of G as a subgroup
of index 3.

With the flag � = {B, T, S} as above, let G1, G2 and G3 be the stabilizers in
G of B, T and S, respectively. Then we have the following parabolic structure
attribute formulated in the standard group-theoretical terms.

Theorem 1.8 The following isomorphisms hold:

G1 ∼= 24 : L4(2), G2 ∼= 26 : (L3(2) × S3), G3 ∼= 26 : 3 · S6.

By the flag-transitivity attribute, G acts transitively on each of the sets B, T

and S as on the cosets of G1, G2 and G3, respectively. In particular, the action
of G on Ŵ is vertex-transitive. Furthermore, the following distance-transitivity
property holds.

Theorem 1.9 The action of M24 on the octad graph Ŵ is distance-transitive,
and so it is vertex-transitive, and G1 permutes transitively the vertices at
distance i from B for every i = 0, 1, 2 and 3.

The following simple connectedness attribute proved by M. Ronan8 assures
the success of our construction of the Mathieu group M24 as the universal
completion of the Mathieu amalgam {G1, G2, G3}.

Theorem 1.10 The octad–trio–sextet geometry of the Mathieu group M24 is
simply connected.

8 M. A. Ronan, Locally truncated buildings and M24, Math. Z. 180 (1982), 469–501.
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