Language resources and computational models are becoming increasingly important for the study of language variation. A main challenge of this interdisciplinary field is that linguistics researchers may not be familiar with these helpful computational tools and many natural language processing (NLP) researchers are often not familiar with language variation phenomena. This essential reference introduces researchers to the necessary computational models for processing similar languages, varieties, and dialects. In this book, leading experts tackle the inherent challenges of the field by balancing a thorough discussion of the theoretical background with a meaningful overview of state-of-the-art language technology. The book can be used in a graduate course or as a supplementary text for courses on language variation, dialectology, and sociolinguistics or on computational linguistics and NLP.

Part I covers the linguistic fundamentals of the field, such as the question of status and language variation. Part II discusses data collection and preprocessing methods. Finally, Part III presents NLP applications, such as speech processing, machine translation, and language-specific issues in Arabic and Chinese.

DR. MARCOS ZAMPIERI is an assistant professor at the Rochester Institute of Technology where he leads the Language Technology Group. He obtained his PhD from Saarland University in Germany with a thesis on computational approaches to language variation. He has previously held research and teaching positions in Germany and the UK. Dr. Zampieri published over 80 peer-reviewed papers on topics such as language acquisition and variation, offensive language identification, and machine translation. Since 2014, he is the main organizer of the workshop series on NLP for Similar Languages, Varieties and Dialects (VarDial). He is the lead organizer of the popular OffensEval shared tasks on offensive language identification at SemEval 2019 and 2020.

DR. PRESLAV NAKOV is Principal Scientist at Qatar Computing Research Institute at Hamad Bin Khalifa University. He leads the Tanbih megaproject, developed in collaboration with MIT. He coauthored a book on semantic relations between nominals, two books on computer algorithms, and many research papers in top-tier conferences and journals. He received the Young Researcher Award at RANLP 2011. He was also the first to receive the Bulgarian President’s John Atanasoff Award, named after the inventor of the first automatic electronic digital computer. Dr. Nakov’s research has been featured in more than 100 news outlets, including Forbes, the Boston Globe, and the MIT Technology Review.
Studies in Natural Language Processing

Series Editor:
Chu-Ren Huang, The Hong Kong Polytechnic University

Associate Series Editor:
Qi Su, Peking University

Editorial Board Members:
Nianwen Xue, Brandeis University
Maarten de Rijke, University of Amsterdam
Lori Levin, Carnegie Mellon University
Alessandro Lenci, Università degli Studi, Pisa
Francis Bond, Nanyang Technological University

Volumes in the SNLP series provide comprehensive surveys of current research topics and applications in the field of natural language processing (NLP) that shed light on language technology, language cognition, language and society, and linguistics. The increased availability of language corpora and digital media, as well as advances in computer technology and data sciences, has led to important new findings in the field. Widespread applications include voice-activated interfaces, translation, search engine optimization, and affective computing. NLP also has applications in areas such as knowledge engineering, language learning, digital humanities, corpus linguistics, and textual analysis. These volumes will be of interest to researchers and graduate students working in NLP and other fields related to the processing of language and knowledge.

Also in the Series
Douglas E. Appelt, Planning English Sentences
Madeleine Bates and Ralph M Weischedel (eds.), Challenges in Natural Language Processing
Steven Bird, Computational Phonology
Peter Bosch and Rob van der Sandt, Focus
Pierette Bouillon and Federica Busa (eds.), Inheritance, Defaults and the Lexicon
Ronald Cole, Joseph Mariani, Hans Uszkoreit, Giovanni Varile, Annie Zaenen, Antonio Zampolli, and Victor Zue (eds.), Survey of the State of the Art in Human Language Technology
David R. Dowty, Lauri Karttunen, and Arnold M Zwecky (eds.), Natural Language Parsing
Ralph Grishman, Computational Linguistics
Graeme Hirst, *Semantic Interpretation and the Resolution of Ambiguity*
András Kornai, *Extended Finite State Models of Language*
Kathleen R. McKeown, *Text Generation*
Martha Stone Palmer, *Semantic Processing for Finite Domains*
Terry Patten, *Systemic Text Generation as Problem Solving*
Ehud Reiter and Robert Dale, *Building Natural Language Generation Systems*
Manny Rayner, David Carter, Pierette Bouillon, Vassilis Digalakis, and Matis Wiren (eds.), *The Spoken Language Translator*
Michael Rosner and Roderick Johnson (eds.), *Computational Lexical Semantics*
Richard Sproat, *A Computational Theory of Writing Systems*
George Anton Kiraz, *Computational Nonlinear Morphology*
Nicholas Asher and Alex Lascarides, *Logics of Conversation*
Margaret Masterman (edited by Yorick Wilks), *Language, Cohesion and Form*
Walter Daelemans and Antal van den Bosch, *Memory-Based Language Processing*
Chu-Ren Huang, Nicoletta Calzolari, Aldo Gangemi, Alessandro Lenci, Alessandro Oltramari, and Laurent Prévot (eds.), *Ontology and the Lexicon: A Natural Language Processing Perspective*
Thierry Poibeau and Aline Villavicencio (eds.), *Language, Cognition, and Computational Models*
Similar Languages, Varieties, and Dialects

A Computational Perspective

Edited by

Marcos Zampieri
Rochester Institute of Technology

Preslav Nakov
Qatar Computing Research Institute, HBKU
Contents

List of Contributors
Foreword
Introduction

Part I Fundamentals

1 **Language Variation**
JAMES A. WALKER
1.1 Introduction: Defining Language Variation
1.2 Types of Linguistic Variables
1.3 Dimensions of Variation
1.4 Conclusion

2 **Phonetic Variation in Dialects**
RACHAEL TATMAN
2.1 Introduction
2.2 Vowels
2.3 Consonants
2.4 Suprasegmentals
2.5 Conclusion

3 **Similar Languages, Varieties, and Dialects: Status and Variation**
MIRIAM MEYERHOFF AND STEFFEN KLAERE
3.1 Introduction
3.2 Language: More Than Communication
3.3 Language and Dialect
3.4 Creoles as a Class of Natural Languages
3.5 Introducing the Corpus of Spoken Bequia Creole English
3.6 Transforming Spoken Word into Categorical Data
3.7 Feature Interrelationship
3.8 Graphical Models to Visualise Interactions
3.9 Feature Relations at a Marginalised Level
3.10 Feature Interrelationship within Communities
3.11 Community Distinction
Contents

3.12 Speaker-Specific Creole Frequency 45
3.13 Conclusions: Principled Methods for Exploring Systematic Dialects within Languages 48

4 Mutual Intelligibility 51
CHARLOTTE GOOSKENS AND VINCENT J. VAN HEUVEN
4.1 Introduction 51
4.2 How to Measure Intelligibility 58
4.3 Extra-linguistic and Para-linguistic Factors Influencing Intelligibility 67
4.4 Linguistic Determinants of Intelligibility 70
4.5 Relationship between Intelligibility and Language Trees 83
4.6 Conclusions, Discussion, and Desiderata for Future Research 87

5 Dialectology for Computational Linguists 96
JOHN NERBONNE, WILBERT HEERINGA, JELENA PROKIĆ AND MARTIJN WIELING
5.1 Introduction 96
5.2 Dialectology 96
5.3 Dialectometry 98
5.4 Edit Distance on Phonetic Transcriptions 100
5.5 Geography of Distributions 104
5.6 Validation 108
5.7 Emerging Opportunities and Issues 111
5.8 Conclusions 112

Part II Methods and Resources

6 Data Collection and Representation for Similar Languages, Varieties and Dialects 121
TANJA SAMARĐIĆ AND NIKOLA LJUBEŠIĆ
6.1 Representing Language Variability in Corpora 122
6.2 Types of Micro-Variation and the Corresponding Data Collection Procedures 124
6.3 Privacy and Linguistic Micro-Variation 133
6.4 Conclusion 134

7 Adaptation of Morphosyntactic Taggers 138
YVES SCHERRER
7.1 Introduction 138
7.2 Model Transfer Methods 145
7.3 Normalization and Other Data Transfer Methods 149
7.4 Tagger Adaptation and Multilingual Models 156
7.5 Conclusions 158
Contents

8 Sharing Dependency Parsers between Similar Languages

Željko Agić

8.1 Introduction 167
8.2 A New Hope? Notable Exceptions 172
8.3 To Conclude: A Glimpse of the Future 178

Part III Applications and Language Specific Issues

9 Dialect and Similar Language Identification

Marcos Zampieri

9.1 Introduction 187
9.2 A Supervised Text Classification Problem 189
9.3 Collecting Data 190
9.4 Competitions 192
9.5 DSL Shared Task 2015 195
9.6 Conclusion and Future Perspectives 198

10 Dialect Variation on Social Media

Dong Nguyen

10.1 Introduction 204
10.2 Social Media for Dialect Research 206
10.3 Processing Data 209
10.4 Patterns in Social Media 210
10.5 Future Outlook 213

11 Machine Translation between Similar Languages

Preslav Nakov and Jörg Tiedemann

11.1 Introduction 219
11.2 Models and Approaches 219
11.3 Character-Level Machine Translation 223
11.4 Closely Related Languages as MT Pivots 228
11.5 Bitext Combination 234
11.6 Language Adaptation 238
11.7 Other Approaches 243
11.8 Applications and Future Directions 244
11.9 Conclusions 246

12 Automatic Spoken Dialect Identification

Pedro A. Torres-Carrasquillo and Bengt J. Borgström

12.1 Introduction 254
12.2 Background 255
12.3 Resources for Dialect Identification 260
12.4 State of the Art 265
12.5 Standardized Evaluations and Recent Performance 269
12.6 Challenges and Future Outlook 272
Contents

13 Arabic Dialect Processing
NIZAR HABASH
13.1 Introduction 279
13.2 Arabic and Its Variants 279
13.3 Challenges of Arabic Dialect Processing 282
13.4 Arabic Dialect Resources 285
13.5 Arabic Dialect Processing Tools and Applications 289
13.6 Conclusion and Outlook 293

14 Computational Processing of Varieties of Chinese: Comparable Corpus-Driven Approaches to Light Verb Variation
MENGHAN JIANG, HONGZHI XU, JINGXIA LIN, DINGXU SHI, AND CHU-REN HUANG
14.1 Introduction 304
14.2 Computational Approaches to Language Variations in Chinese and Other Languages 310
14.3 Classification of Varieties of Mandarin Chinese 316
14.4 Conclusion 319
Contributors

ŽELJKO AGIĆ Unity Technologies
BENG'T J. BORGSTRÖM MIT Lincoln Laboratory
CHARLOTTE GOOSKENS University of Groningen
NIZAR HABASH New York University Abu Dhabi
WILBERT HEERINGA Fryske Akademy
CHU-REN HUANG The Hong Kong Polytechnic University
MENGHAN JIANG Peking University/The Hong Kong Polytechnic University
STEFFEN KLAERE University of Auckland
JINGXIA LIN Nanyang Technological University Singapore
NIKOLA LJUBEŠIĆ Josef Stefan Institute
MIRIAM MEYERHOFF Victoria University of Wellington
PRESLAV NAKOV Qatar Computing Research Institute, HBKU
JOHN NERBONNE University of Freiburg
DONG NGUYEN Alan Turing Institute
JELENA PROKIĆ Leiden University
TANJA SAMARDŽIĆ University of Zurich
YVES SCHERRER University of Helsinki
DINGXU SHI Guangdong University of Foreign Studies
RACHAEL TATMAN Rasa Technologies
JÖRG TIEDEMANN University of Helsinki
PEDRO A. TORRES-CARRASQUILLO MIT Lincoln Laboratory
List of Contributors

VINCENT J. VAN HEUVEN University of Pannonia, Leiden University
JAMES A. WALKER La Trobe University
MARTIJN WIELING University of Groningen
HONGZHI XIU Shanghai International Studies University
MARCOS ZAMPIERI Rochester Institute of Technology
Foreword

Over the past decade, we have witnessed a revolution in Natural Language Processing (NLP) driven by advances in machine learning, growing amounts of natural language data, and increased computing power. As a result, computational linguists have made major advances across a range of tasks with diverse technological applications. Crucially, these advances are changing the lives of people around the world, who are increasingly interacting with NLP as part of their daily routine. These innovations are also starting to revolutionise the field of linguistics, where very large corpora and NLP methodologies are being used to expand our scientific understanding of language, allowing linguists to study language at scale for the first time, as demanded by the inherent complexity of this most basic of human behaviours. However, although these technological advances are improving our world in many ways, they are also creating new problems.

Perhaps most obvious of these problems is that NLP technologies tend to work best for speakers of the dominant languages of the world – thereby inadvertently increasing the power of speakers of these languages. Modern NLP workflows generally rely on large collections of training data, often carefully annotated by hand, which are usually only available for major languages. As a result, the benefits of the AI revolution in NLP have largely been reserved for speakers of a small number of high-resourced languages, especially English. To address this issue, there have been calls for NLP researchers to clearly acknowledge the languages upon which they work – especially if that language is simply English, as is often the case – and by extension to accept that NLP applications that are trained and evaluated on high-resourced languages will not necessarily perform as well on languages of the world more generally. This is popularly known as the ‘Bender Rule’, named after Emily Bender, the computational linguist who has championed this perspective over the past decade. The rule has even been evoked in linguistics, primarily to encourage linguists who work on the English language to acknowledge how this naturally limits the generalisability of their research.
Foreword

But speakers of low-resourced languages are not the only ones who are being left behind by the current NLP revolution. In addition to zooming out to acknowledge the typological diversity of human language, computational linguists must zoom in and acknowledge the sociolinguistic diversity of human languages. Even English is not simply English – it is a complex system of mutually and sometimes not-so-mutually intelligible dialects, characterised by systematic patterns of variation, changing over time in ways and for reasons that linguists are only beginning to understand. Treating this variation as noise or assuming that speakers of non-standard dialects will be adequately served by tools trained on standard dialect data amounts to contributing to the entrenchment of social inequities.

Speakers of non-standard dialects are being technologically disenfranchised by NLP. For speakers standard American English or Standard British English, NLP tools for English work well and will inevitably continue to improve over time, but performance necessarily falls for speakers of non-standard dialects, especially those associated with the most marginalised communities. As NLP tools increasingly become embedded into our daily lives, it is crucial that these technologies work for regular people regardless of their social background. Computational linguists have a responsibility to make sure this is the case – to fight against the inequalities they have helped create. The challenge is to build robust NLP technologies that model linguistic variation directly, probably at the expense of maximising economic value.

This situation presents a clear intellectual challenge for computational linguists. It is arguably as complex as any problem currently faced in NLP. It is certainly a far greater technical problem than the divide between high- and low-resourced languages, where the solution at least is clear – the compilation and annotation of large corpora for low-resourced languages. Alternatively, there is no clear approach to building NLP tools that can handle language internal variation, not least because linguists do not have anywhere near a complete understanding of how language internal variation is patterned. For example, building corpora that represent languages, regardless of their size, is often fairly straightforward, as languages are often delimited by relatively hard borders – be they defined politically or based on mutual intelligibility – but dialects generally blend into each other, making even compiling representative dialect corpora a difficult task, and at least part of the solution.

This volume represents an important first step to address the challenge of language-internal variation in NLP. By bringing together linguists who specialise in language variation and change and computational linguists who develop NLP tools capable of working with language-internal variation, this collection provides an indispensable introduction for any researcher in NLP who takes this challenge seriously. This volume also meets the Bender Rule.
by considering language-internal variation cross-linguistically, highlighting the fact that all language, be they low- or high-resourced, contain internal variation.

Crucially, this volume also opens up a dialogue between NLP researchers and linguists interested in variation. It is sometimes remarked that linguists do not have much to offer NLP these days, at least for high-resourced languages like English, given that the grammars of these languages are fairly well understood. Such an attitude reflects a narrow view of language and linguistics that artificially simplifies the endeavour of NLP, in much the same way that generative linguists once artificially simplified the endeavour of linguistics. When the NLP community takes variation seriously, sociolinguists, dialectologists, historical linguists, and corpus linguists should be the first port of call. Similarly, given the complexity of linguistic variation, these are probably the same linguists that have the most to gain from engaging with computational linguistics, as demonstrated by the emerging interdisciplinary field of computational sociolinguistics, with which a number of the contributors to this volume are affiliated. Ideally linguists and computational linguists will work together to better understand and process language variation, with research in one area informing the other, accelerating progress in both.

Jack Grieve
University of Birmingham
February 18, 2020
Introduction

Variation is intrinsic to human language. Language differs from speaker to speaker, from community to community, as well as across time, genre, media, etc. Natural language processing (NLP) systems are typically trained on standard contemporary language varieties such as the language found in books and newspapers. Such systems work very well on the kind of language they are trained on, but their performance degrades when faced with variation.

One of the most relevant dimensions of variation from a computational perspective is diatopic language variation, or the variation of language spoken (and written) in different places and/or regions of a linguistic area, e.g., language varieties and dialects. Dialects are per se nonstandard, thus posing challenges to most off-the-shelf NLP tools. On the other hand, the similarity between closely related languages such as Dutch–Flemish, Bulgarian–Macedonian, and Turkish–Kazakh can provide opportunities for researchers and developers.

With these challenges and opportunities in mind, we introduce you to the present book, Similar Languages, Varieties, and Dialects: A Computational Perspective. The book consists of fourteen chapters written by well-known researchers in dialectology, language variation, sociolinguistics, computational linguistics, and natural language processing.

The idea for this book came from the success of the series of workshops – Natural Language Processing for Similar Languages, Varieties and Dialects (VarDial) – that have been organized yearly since 2014 and have been co-located with international NLP conferences such as COLING, EACL, NAACL, and RANLP. VarDial has become an important forum for scholars working on topics related to the study of diatopic language variation from a computational perspective and the application of NLP methods to dialects and similar languages. Since the workshop’s first edition, there has been an uphill trend in the number of submissions as well as in the number of research papers published on related topics in specialized journals and conferences.

Even though the interest of the research community has seen steady growth, to the best of our knowledge, so far there have been no books approaching diatopic language variation from a computational perspective. While there have been several well-known handbooks and edited volumes published on topics
such as dialectology (Chambers and Trudgill, 1998); language variation, and change (Chambers et al., 2002); and sociolinguistics (Meyerhoff, 2015), the computational aspect has remained largely underexplored.

We believe that this book fills an important gap in the existing literature. It is interdisciplinary by nature, and it can be useful for both experienced researchers and (graduate) students in computer science, linguistics, natural language processing, and related areas. The book provides a concise introduction to core topics in language variation and an overview of the computational methods applied to similar languages, varieties, and dialects.

The book is divided into three parts. Part I covers the fundamentals of language variation and the study of dialects and similar languages. Chapter 1 discusses different dimensions of language variation and how they are manifested. Chapter 2 focuses on the phonetic variation in dialects. The question of status, i.e., dialect versus language, is discussed in Chapter 3. Mutual intelligibility between similar languages and dialects is discussed in detail in Chapter 4, with several examples from languages such as Danish, Spanish, and Portuguese. Closing the first part of the book, Chapter 5 presents a concise yet comprehensive overview of dialectology for computational linguists.

Part II covers methods and resources for data collection, preprocessing, and annotation for similar languages, varieties, and dialects. Chapter 6 deals with data collection and representation, covering social media and speech transcripts. Chapter 7 discusses preprocessing and adaptation of taggers used to annotate similar languages. Finally, Chapter 8 deals with methods to learn dependency parse trees from one language and to project them to a related language.

The last part of the book, Part III, covers applications and language-specific issues when processing similar languages, varieties, and dialects. Chapter 9 presents an overview of computational methods for similar languages and dialect identification. Chapter 10 presents an account of computational methods applied to diatopic language variation in social media. Chapter 11 deals with machine translation between similar languages, varieties, and dialects. Chapter 12 discusses speech processing applications. The last two chapters deal with language-specific issues when processing dialects and varieties of two major languages: Arabic (Chapter 13) and Chinese (Chapter 14).

We would like to take this opportunity to thank all chapter authors for their valuable contribution and the colleagues who kindly helped us by giving the authors feedback and suggestions. We are grateful to Željko Agić, Patricia Cukor-Avila, Charlotte Gooskens, Wilbert Heeringa, Vincent J. van Heuven, Chu-Ren Huang, Menghan Jiang, Steffen Klaere, Jingxia Lin, Nikola Ljubešić, Miriam Meyerhoff, John Nerbonne, Dong Nguyen, Jelena Prokić, Tanja Samardžić, Dingxu Shi, Rachael Tatman, Jörg Tiedemann, Pedro Torres-Carrasquillo, James A. Walker, Martijn Wieling, and Hongzhi Xu.
Finally, we would like to thank the series editor, Chu-Ren Huang for the interest in our volume and for the continuous support, and Kaitlin Leach and Amy He at Cambridge University Press for their support throughout the editorial process.

References

